Implementing a Distributed
Motion Planner

Presented by Jing Yang
Nov. 15, 2007




Agenda

@ Review the distributed motion planner (DSRT)
@ Implementation

@ Challenges

@ Asynchronous message passing

@ Classes

@ Experimental results

@ Discussions




Motion Planning
Basics

Free Space

@ Configuration space (C-Space) -- The space of all
the configurations of the robot.

@ Free C-Space -- The set of configurations at which
the robot does not collide with any obstacles.

@ Motion Planning -- Given two configurations of a
robot, find a free path in the free C-Space that
connects them.




Distributed SRT - Overview

@ A distributed algorithm using a master-client
architecture

@ Clients {Cl,...,Cc}: useful computations

@ Masters {M1,... Mm}: schedule tasks




Algorithm (1)
L VN

X

@ Milestone Computations

D

D




Algorn‘hm (2)

@ Candidate Edge Computations

D




@ Edge Computations - concurrency issues!




Edge Computations

@ Master assigns an edge for an available client

@ Both milestones of the edge must be stored in
the local memory of the chosen client

@ Two cases:

@ Both milestones are currently owned by the
client (simple)

® One or neither is owned by the client
(complex) - need other clients’ help

8



Client

Challenges for w i

B )
o N
Implementing DSRT g
5 A8
@ Complicated communications . o\ g
Master ‘404,
@ Task assignment: master -> client >
S [
@ Ask for task: client -> master ry
Client

@ Data sharing: client -> client

® Shared memory or message passing?

@ Message passing: Synchronous or Asynchronous?

@ Channel: one-to-one, one-to-many or many-fto-one?

9



AsynchChannel

class AsyncChannel§
private int numMessages;
private Vector messages;
private int receiverld;

public synchronized void send(Object m)i...}
public synchronized Object receive()s...}}

@ Message is queued if the receiver is busy
@ Sender does not block

@ Receiver blocks if there is no queued message



AsynchChannel: send & receive

public synchronized void send(Object m){
if (m==null) throw new NullPointerException();
numMessages++;
messages.addElement(m);
if (numMessages <= 0) notify(); //unblock the receiver}

public synchronized Object receive(){
Object receivedMessage = null;
numMessages--;
if (humMessages < 0)
try {wait();} //block the receiver
catch (InterruptedException e) {}
receivedMessage = messages.firstElement();
messages.removeElementAt(0);
return receivedMessage;}



Message types

Message class Attributes Flow

Edge result;

Available B s Client -> Master
int src; ;
Edge e Master -> Client
int toWhom;

SendMilestoneTo Master -> Client

int milestoneld;

: int id; : .
Milestone Bb oot data Client -> Client

12



Assumptions

@ Channels shared by all the processors

@ Error-free communication channels, i.e., no
lost messages

® Messages can arrive in different order than
they were sent

@ Processors do not fail or halt

13




Master class

class Master extends Threadt
int id; AsyncChannel[] channels; Edge[] edges; int numEdges;
public void run(){
while (numEdges>0){

message=channelslid].receive();
if (((Available)message).result != null) {numEdge--; update
edges;}
int cid=((Available)message).senderld;
..//select an edge e for cid
channels[cid].send(e);
..//tell e.src and e.dst’s owner x (if not cid) to send data to
cid
channels[x].send(new SendMilestoneTo(e.src, cid));

o



Client class

class Client extends Thread{

int id; AsyncChannel[] channels;

HashMap myMilestones; Edge currentJob;

public void run(){

while (frue)s
message=channels[id].receive();
if (message instanceof Edge) {currentJob=(Edge)message;}
else if (message instanceof Milestone)s
myMilestones.put(message.id,message)}

else if(message instanceof SendMilestoneTo)s...//send milestone}
..//try connecting currentJob if both ends are in myMilestones

15




Experimental results (1)

2500000000
2000000000

1500000000

1000000000

500000000




Experimental results (2)

500-200

10000000000
9000000000
8000000000
7000000000

6000000000

5000000000

4000000000

3000000000

2000000000

1000000000




Experimental results (3)




Discussions

@ Centralized design

@ No "synchronized” method or object in the
thread classes

@ Possible optimizations:
@ Multiple masters
@ More than one job scheduled at a time

@ Cached memory (clients dont delete their
temporary milestones immediately)

19



Questions?
Thank you!




