
Verifying a Distributed
Motion Planner

1

Presented by Jing Yang
Dec. 6, 2007

Agenda

Review the distributed motion planner (DSRT)

Verification - experiencing JPF

State Search

Race Detection

Moving “synchronized” around

Discussions

2

Motion Planning
Basics

Forbidden Space

Free Space

Motion Planning -- Given two configurations of a
robot, find a free path in the free Configuration
space that connects them.

3

DSRT

Milestone Computations

Candidate Edge Computations

Edge Computations - concurrency issues!

4

Implementing DSRT

Communications

Task assignment: master -> client

Ask for task: client -> master

Data sharing: client -> client

Asynchronous message passing

Messages are queued, sender doesn’t block, receiver blocks
when there is no queued message.

Many-to-one channels
5

Task

Ta
sk

Ac
k

Ack

D
a
ta

D
a
ta

Master

Client

Client

Experiencing JPF

JPF reports error if there is a non-
terminated thread.

Let Master broadcast “Finish” messages to all
Clients.

6

Experiencing JPF

Old JPF reports “no live thread” and
“deadlock”, if a thread object is created but
not started.

New version works!

7

Experiencing JPF - DFS/BFS

8

2 threads 3 threads 4 threads

DFS 7 paths 11 paths
15 paths (4
hours on
navy)

BFS 7 paths 10 paths Out of
memory

paths doesn’t increase when # Edges increases.

Experiencing JPF - paths
Try counting paths of the DFS search

“A” at the end of main() after join();
“B” at the end of Master.run();
“C” the end of Client.run().

9

A # B # C
Print A only 7 - -
Print A and B 7 136 -
Print A and C 7 - 39

Print A, B and C 7 141 44

... ...

Assertion

Master: Each candidate edge is computed
once

Put assert() at the end of the while loop

Client: An candidate edge can be computed
when its two ends are stored in the local
memory

Put assert() inside the connect method

10

Experience JPF - Racing
Add jpf.listener =
gov.nasa.jpf.tools.precise.PreciseRaceDetector in
jpf.properties

1 Master & 1 Client: no racing

Each channel has only one sender and one receiver

Sender and receiver do not change variables in the
channel at the same time

1 Master & 2+ Clients: racing

Multiple threads attempt sending to a same channel

11

AsynchChannel: send & receive
public synchronized void send(Object m){
! if (m==null) throw new NullPointerException();
! messages.addElement(m);
 numMessages++;
! if (numMessages <= 0) notify(); }

public synchronized Object receive(){
! Object receivedMessage = null;
! numMessages--;
! if (numMessages < 0)
! ! try {wait();}

catch (InterruptedException e) {}
! receivedMessage = messages.firstElement();
! messages.removeElementAt(0);
! return receivedMessage;}

12

Try putting “synchronized” in different places

public synchronized void send(Object m){
! if (m==null) throw new NullPointerException();
! messages.addElement(m);
 numMessages++;
! if (numMessages <= 0) notify(); //unblock the receiver}

Experiencing JPF - extra

13

Experiencing JPF - extra
public void send(Object m){
! if (m==null) throw new NullPointerException();
! messages.addElement(m);
 numMessages++;
! synchronized(this){ if (numMessages <= 0) notify();} }

14

Java does not report error

JPF has NoSuchElementException error when
main thread is calling join() method

JPF reports Deadlock after removing join in
main. Both master and client are waiting.

Experiencing JPF - extra
public void send(Object m){
! if (m==null) throw new NullPointerException();
! messages.addElement(m);
 synchronized(this){ numMessages++;
 if (numMessages <= 0) notify();} }
public synchronized Object receive(){
! Object received = null;
! synchronized(this){ numMessages--;
! if (numMessages < 0)
! ! try {wait();} catch (InterruptedException e) {} }
! received = messages.firstElement();
! messages.removeElementAt(0); return receivedMessage;}

15

JPF reports no error for 2 clients

Summary

16

Distributed motion planner: DSRT
Experience JPF on DSRT
implementation
Search state
Paths
Race condition

Questions?
Thank you!

17

