
1 Random Processes

There are many ways to define a random process, but for our purposes, the following is

sufficient:

• A random process is a function of time X(t), so that for each fixed time t∗, X(t∗) is a

random variable.

As a result, we can write the probability density function (pdf) of the random process at

any given time. For example, fX(t∗)(x) represents the pdf of the random process at time t∗.

Joint probability density functions measure the joint probability of the process at k different

times; these are called kth order statistics of the random process. For example, for k = 2

and times t1 and t2, we can write the second order statistics as fX(t1),X(t2)(x1, x2).

1.1 Discrete time random processes

1.1.1 Definition, Mean, and Variance

It’s easy to imagine a random process in discrete time, as merely a sequence of random vari-

ables, one for each time interval. For instance, consider the following two random processes

defined at integer times t ∈ {. . . ,−2,−1, 0, 1, 2, . . .}:

Example 1 At each time t ∈ {. . . ,−2,−1, 0, 1, 2, . . .}, a fair coin is flipped. If the coin

shows heads after the flip at time t, then X(t) = 1; otherwise, X(t) = −1. Thus, for any

integer t∗, we can write

fX(t∗)(x) =



















0.5, x = +1;

0.5, x = −1;

0 otherwise.

Since, at each fixed time t, the random process is a random variable, we can calculate the

mean and variance of the process at each fixed time as usual for random variables. Thus,

for the process as a whole, the mean and variance for a random process are calculated as
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functions of time. For instance, for the process in Example 1, the mean of this process is

given by

µ(t) =
∑

x∈{+1,−1}

xfX(t)(x)

= (+1)(0.5) + (−1)(0.5)

= 0

for all t. The variance of the process is given by

σ2(t) =
∑

x∈{+1,−1}

(x − µ(t))2fX(t)(x)

= (+1 − 0)2(0.5) + (−1 − 0)2(0.5)

= 1

for all t.

As an alternative, the following more compicated example has mean and variance that

are non-trivial functions of time:

Example 2 Let X(0) = 0. For each t ∈ {1, 2, . . .}, a fair coin is flipped. If the coin shows

heads after the flip at time t, then X(t) = X(t − 1) + 1; otherwise, X(t) = X(t − 1).

For any t, it is clear that X(t) is the number of heads in the previous t trials. Such

random variables are represented by the binomial distribution [1]. Thus,

fX(t)(x) =

(

t

x

)

1

2t
.

The mean of this random process is given by

µ(t) =
t

2
,

and the variance is given by

σ2(t) =
t

4
.

The reader is asked to prove these values in the exercises.

Instances of the random processes from Examples 1 and 2 are given in Figure 1.

2



0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10

15

20

25

30

t

X
(t

)

 

 
Example 1
Example 2

Figure 1: Illustration of the discrete-time random processes from Examples 1 and 2.

1.1.2 Autocorrelation

Suppose you wanted a measure of correlation between two random variables, X1 and X2,

with the same mean µ = 0 and the same variance σ2 > 0. As a candidate for this measure,

consider

R = E[X1X2]. (1)

If the random variables are independent (i.e., uncorrelated), then since E[X1X2] = E[X1]E[X2]

for independent random variables, we would have

R = E[X1]E[X2] = µ2 = 0,

bearing in mind that each of the random variables are zero mean. On the other hand, if the

two random variables are completely correlated (i.e., X1 = X2), we would have

R = E[X1X2] = E[X2
1 ] = σ2.

Further, if they were completely anticorrelated (i.e., X1 = −X2), it is easy to see that

R = −σ2.
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This measure of correlation also has the following nice property:

Theorem 1 Given the above definitions, |R| ≤ σ2.

Proof: Start with E[(X1 + X2)
2]. We can write:

E[(X1 + X2)
2] = E[X2

1 + 2X1X2 + X2
2 ]

= E[X2
1 ] + 2E[X1X2] + E[X2

2 ]

= σ2 + 2R + σ2

= 2σ2 + 2R.

Since (X1+X2)
2 ≥ 0 for all X1 and X2, it is true that E[(X1+X2)

2] ≥ 0. Thus, 2σ2+2R ≥ 0,

so R ≥ −σ2. Repeating the same procedure but starting with E[(X1 − X2)
2], we have that

R ≤ σ2, and the theorem follows.

Since R = 0 when X1 and X2 are independent, R = σ2 (the maximum possible value) when

they are completely correlated, and R = −σ2 (the minimum possible value) when they are

completely anticorrelated, R is a good candidate for a correlation measure. The magnitude

of R indicates the degree of correlation between X1 and X2, while the sign indicates whether

the variables are correlated or anticorrelated. Properties of this correlation measure when

the variances are unequal, or when the means are nonzero, are considered in the exercises.

We apply this correlation measure to different time instants of the same random process,

which we refer to as the autocorrelation. In particular, let X(t) be a discrete-time random

process defined on t ∈ {. . . ,−2,−1, 0, 1, 2, . . .}. Then the autocorrelation between X(t1) and

X(t2) is defined as

R(t1, t2) = E[X(t1)X(t2)]. (2)

Note the similarity with (1), since X(t) is merely a random variable for each time t. For the

same reason, R(t1, t2) has all the same properties as R.
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1.1.3 Stationary random processes

A stationary discrete-time random process is a process for which the statistics do not change

with time. Formally, a process is stationary if and only if

fX(t1),X(t2),...,X(tk)(x1, x2, . . . , xk) = fX(t1+τ),X(t2+τ),...,X(tk+τ)(x1, x2, . . . , xk) (3)

for all k ∈ {1, 2, . . .} and all τ ∈ {. . . ,−2,−1, 0, 1, 2, . . .}. This does not imply that the

process X(t) is constant with respect to time, only that the statistical variation of the

process is the same, regardless of when you examine the process. The process in Example

1 is stationary; intuitively, this is because we keep flipping the same unchanging coin, and

recording the outcome in the same way at all t.

We now examine the effects of stationarity on the mean, variance, and autocorrelation

of a discrete-time random process X(t). The mean µ(t) is calculated as follows:

µ(t) =

∫

x

xfX(t)(x)dx

=

∫

x

xfX(t+τ)(x)dx

= µ(t + τ),

where the second line follows from the fact that fX(t) = fX(t+τ) for all τ ∈ {. . . ,−2,−1, 0, 1, 2, . . .}.

Thus, µ(t) = µ(t + τ) for all τ , so µ(t) must be a constant with respect to t. Using a similar

line of reasoning, we can show that σ2(t) is a constant with respect to t. Thus, for stationary

random processes, we will write µ(t) = µ and σ2(t) = σ2 for all t.

For the autocorrelation, we can write

R(t1, t2) = E[X(t1)X(t2)]

=

∫

x1

∫

x2

x1x2fX(t1),X(t2)(x1, x2)dx2dx1 (4)

=

∫

x1

∫

x2

x1x2fX(t1+τ),X(t2+τ)(x1, x2)dx2dx1. (5)

Let τ = τ ′ − t1. Substituting back into (5), we have

R(t1, t2) =

∫

x1

∫

x2

x1x2fX(t1+τ ′−t1),X(t2+τ ′−t1)(x1, x2)dx2dx1

=

∫

x1

∫

x2

x1x2fX(τ ′),X(t2−t1+τ ′)(x1, x2)dx2dx1. (6)
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However, in (6), since X(t) is stationary, fX(τ ′),X(t2−t1+τ ′)(x1, x2) does not change for any

value of τ ′. Thus, setting τ ′ = 0, we can write

R(t1, t2) =

∫

x1

∫

x2

x1x2fX(0),X(t2−t1)(x1, x2)dx2dx1,

which is not dependent on the exact values of t1 or t2, but only on the difference t2 − t1.

As a result, we can redefine the autocorrelation function for stationary random processes as

R(t2 − t1); further, reusing τ to represent this difference, we will usually write R(τ), where

R(τ) = E[X(t)X(t + τ)]

for all t.

The properties that µ(t) = µ, σ2(t) = σ2, and R(t1, t2) = R(t2 − t1) apply only to the

first and second order statistics of the process X(t). In order to verify whether a process

is stationary, it is necessary to prove the condition (3) for every order of statistics. In

general this is a difficult task. However, in some circumstances, only first and second order

statistics are required. In this case, we define a wide-sense stationary (WSS) process as any

process which satisfies the first and second order conditions of µ(t) = µ, σ2(t) = σ2, and

R(t1, t2) = R(t2 − t1). We have shown that all stationary processes are WSS, but it should

seem clear that a WSS process is not necessarily stationary.

1.2 Continuous time random processes

A continuous time random process X(t) is defined over all t ∈ R, where R represents the set

of real numbers. Following the definition of a random variable that we gave at the beginning

of this document, for each time instant t∗ ∈ R in continuous time, X(t∗) is a random variable.

It is straightforward to move from discrete-time random processes to continuous-time

random processes. One approach – but by no means the only one – would be to linearly

interpolate between the values of the discrete-time process. In the following example, we

apply this approach to Example 1:

Example 3 Let X(t) be a continuous-time random process with the following properties. For

times t ∈ {. . . ,−2,−1, 0, 1, 2, . . .} (i.e., integer times), the process is defined as in Example
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Figure 2: Illustration of the continuous-time random process from Example 3.

1. For all other t (i.e., non-integer times), letting ⌊t⌋ represent the largest integer less than

or equal to t, and letting λ = t − ⌊t⌋,

X(t) = λX(⌊t⌋) + (1 − λ)X(⌊t⌋ + 1), (7)

which linearly interpolates between the integer times. An illustration is given in Figure 2.

For integer times, fX(t)(x) is as given in Example 1. For non-integer times, from (7),

X(t) is a random variable which is dependent on X(⌊t⌋) and X(⌊t⌋+ 1). Further, there are

only four possible values of X(t), corresponding to the four possible values of X(⌊t⌋) and

X(⌊t⌋ + 1) (i.e., the four possible values of those two coin flips):

fX(t)(x) =











































1/4, x = 1;

1/4, x = −1;

1/4, x = 2λ − 1;

1/4, x = 1 − 2λ;

0 otherwise.
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In the special case where λ = 0.5, then 2λ − 1 = 1 − 2λ = 0, and we have

fX(t)(x) =































1/4, x = 1;

1/4, x = −1;

1/2, x = 0;

0 otherwise.

Calculation of mean, variance, and autocorrelation is accomplished in exactly the same

way as for discrete-time random processes, with the exception that time t can take any value

in R, not just integer values. Furthermore, stationary and wide-sense stationary processes

are defined in the same way, again allowing t ∈ R.

2 Exercises

1. For the random process in Example 2, show that µ(t) = t/2, and σ2(t) = t/4. Is this

process stationary? Explain.

2. Suppose X1 and X2 are zero-mean random variables with variances σ2
1 and σ2

2, respec-

tively. For the correlation measure R defined in (1), show that

|R| ≤
σ2

1 + σ2
2

2
.

3. Suppose X1 and X2 have the same nonzero mean µ, and the same variance σ2. For

the correlation measure R defined in (1), show that |R| ≤ σ2 + µ2.

4. Give an example of a discrete-time random process for which µ(t) = µ and σ2(t) = σ2

for all t, but there exist t1 and t2 such that R(t1, t2) 6= R(t2 − t1).

5. Calculate µ(t) and R(t1, t2) for the continuous time random process given in Example

3. Is this process stationary? Explain.

6. Let X(t) = X sin(2πt), where X is a random variable corresponding to the result of

a single fair coin flip: X = 1 if the coin is heads, and X = −1 is the coin is tails.
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Does X(t) satisfy the definition of a continuous-time random process? If so, calculate

fX(t)(x); if not, explain why not.
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