
Concurrent Red-Black Trees

Franck van Breugel

York University, Toronto

April 21, 2009

Franck van Breugel Concurrent Red-Black Trees

Red-Black Tree

A red-black tree is a binary search tree the nodes of which are
coloured either red or black and

the root is black,
every leaf is black,
if a node is red, then both its children are black,
for every node, every path from that node to a leaf contains
the same number of black nodes.

[Bayer, 1972] and [Guibas and Sedgewick, 1978]

3

1

Franck van Breugel Concurrent Red-Black Trees

Three Implementations

〈〈interface〉〉
Set〈T〉

contains(T) : boolean
add(T) : boolean

RedBlackTree〈T〉

Franck van Breugel Concurrent Red-Black Trees

The Monitor Solution

1 package moni tor ;
2

3 public class RedBlackTree<T extends Comparable<T>>

4 implements Set<T>

5 {
6 public synchronized boolean conta ins (T element)
7 {
8 . . .
9 }

10

11 public synchronized boolean add (T element)
12 {
13 . . .
14 }
15 }

Franck van Breugel Concurrent Red-Black Trees

The Readers-Writers Solution

〈〈interface〉〉
ReadWriteLock

readLock() : Lock
writeLock() : Lock

ReentrantReadWriteLock
Lock

lock()
unlock()

2

Franck van Breugel Concurrent Red-Black Trees

The Readers-Writers Solution

1 private ReadWriteLock lock ;
2

3 public RedBlackTree ()
4 {
5 th is . l ock = new ReentrantReadWriteLock () ;
6 . . .
7 }
8

9 public boolean conta ins (T element)
10 {
11 th is . l ock . getReadLock () . lock () ;
12 . . .
13 th is . l ock . getReadLock () . unlock () ;
14 }
15 . . .

Franck van Breugel Concurrent Red-Black Trees

Locking Nodes

Processes lock the nodes of the red-black tree in three different
ways:

ρ-lock: lock to read

α-lock: lock to exclude writers

ξ-lock: exclusive lock

Although a node can be locked by multiple processes, there are
some restrictions.

ρ α

ξ

Franck van Breugel Concurrent Red-Black Trees

Locking Nodes

ρ
ξ

0
ρ

α

1
ρ

α

2
ρ

α

. . .

α
ξ

0 ρ 1 ρ 2 ρ
. . .

Franck van Breugel Concurrent Red-Black Trees

Locking Nodes

1 public class Node<T>

2 {
3 private i n t conta iners ;
4 private i n t s t a t e ;
5 private boolean w r i t i n g ;
6

7 public void readLock () { . . . }
8 public void readUnlock () { . . . }
9 public void wr i teLock () { . . . }

10 public void wri teUnock () { . . . }
11 public void exc lus iveLock () { . . . }
12 public void exc lus iveUnlock () { . . . }
13 }

Franck van Breugel Concurrent Red-Black Trees

Performance Comparison: add only

0

1

2

3

4

5

6

2 3 4 100

monitor
readers-writers
locks

Franck van Breugel Concurrent Red-Black Trees

Performance Comparison: contains only

0

1

2

3

4

5

6

7

2 3 4 100

monitor
readers-writers
locks

Franck van Breugel Concurrent Red-Black Trees

Performance Comparison: contains and add

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 100

monitor
readers-writers
locks

Franck van Breugel Concurrent Red-Black Trees

Room for Improvement

lock only “half a node”

lock granularity

Franck van Breugel Concurrent Red-Black Trees

Looking Ahead

Plan

verify some properties, such as deadlock freedom, of all
three concurrent implementations by means of Java
PathFinder

show undesirable behaviour of
1 add (3) ;
2 add (1) ;
3 (add (2) | | p r i n t (con ta ins (1)))

in case no synchronization is used

Challenges

state space explosion

native code

Franck van Breugel Concurrent Red-Black Trees

