Concurrent Red-Black Trees

Franck van Breugel
York University, Toronto

May 12, 2009

Franck van Breugel Concurrent Red-Black Trees

Red-Black Tree

A red-black tree is a binary search tree the nodes of which are
coloured either red or black and

@ the root is black,
@ every leaf is black,
@ if a node is red, then both its children are black,

@ for every node, every path from that node to a leaf contains
the same number of black nodes.

[Bayer, 1972] and [Guibas and Sedgewick, 1978]

Franck van Breugel Concurrent Red-Black Trees

Three Implementations

({interface))
Set(T)
contai ns(T) : bool ean
add(T) : bool ean

RedBlackTree(T)

Franck van Breugel Concurrent Red-Black Trees

The Monitor Solution

1 package monitor;

2

3 public class RedBlackTree<T extends Comparable<T>>
4 implements Set<T>

s {

6 public synchronized boolean contains(T element)
7 A

8

o}

10

1 public synchronized boolean add(T element)

12 {

13

14 }

15 }

Franck van Breugel Concurrent Red-Black Trees

The Readers-Writers Solution

private ReadWriteLock lock;

public RedBlackTree ()
{

1
2
3
4
5 this.lock = new ReentrantReadWriteLock();
6
7
8
9

}

public boolean contains(T element)

10 {
1 this .lock.getReadLock (). lock ();

13 this .lock.getReadLock (). unlock ();
14 }

Franck van Breugel Concurrent Red-Black Trees

The Locks Solution

Processes lock the nodes of the red-black tree in three different
ways:

@ p-lock: lock to read

@ a-lock: lock to exclude writers

@ ¢-lock: exclusive lock

Although a node can be locked by multiple processes, there are
some restrictions.

(—@
o

Franck van Breugel Concurrent Red-Black Trees

@ some synchronization is needed
@ deadlock freedom

@ no uncaught exceptions

@ no data races

@ post-conditions

Franck van Breugel Concurrent Red-Black Trees

Some Synchronization is Needed

1| add(3);
2 |add (1);
s |(add(2) || assert(contains(1)))

Franck van Breugel Concurrent Red-Black Trees

Some Synchronization is Needed

JPF found an interleaving leading to an uncaught exception

gov. nasa. j pf.jvm NoUncaught Excepti onsProperty
j ava. | ang. NoCl assDef FoundError: RedBl ackTree
at Main.main(Starter.java: 11)

el apsed tine: 0: 00: 00

st at es: new=0, visited=1, backtracked=0
sear ch: maxDept h=0, constrai nts=0

choi ce generators: thread=1, data=0

heap: gc=0, new=205, free=0

i nstructions: 2079

max menory: 16MB

| oaded code: cl asses=56, nethods=763

Franck van Breugel Concurrent Red-Black Trees

Deadlocks, Exceptions and Data Races

Numerous small tests were verified by JPF for the three
implementations:

@ no deadlocks,
@ no uncaught exceptions,
@ no data races.

Franck van Breugel Concurrent Red-Black Trees

Post-Conditions

Added to the implementations:
@ isOk(): tests whether the tree is a red-black tree
@ elements(): returns the collections of elements of the tree

Franck van Breugel Concurrent Red-Black Trees

Post-Conditions

(tree.add (1) || tree.add(2));

assert tree.isOk();

assert tree.elements().contains(1);
assert tree.elements(). contains(2);

S w N [

Franck van Breugel Concurrent Red-Black Trees

State Spaces

) [add(l) |- || add(n)]

Franck van Breugel Concurrent Red-Black Trees

o monitor
= readers-writers
= |ocks

Franck van Breugel Concurrent Red-Black Trees

Conclusion

Three algorithms
@ the monitor solution

@ simplest implementation
@ smallest state space

@ the readers-writers solution

@ most efficient implementation
o largest state space

@ the locks solution

@ most complicated implementation
@ most inefficient implementation

Franck van Breugel Concurrent Red-Black Trees

And the winner is ...

???

Franck van Breugel rent Red-Black Trees

