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Motivation

 B-tree is widely used for storing large files,
especially on secondary storage devices

 Concurrent interest in database design



B-Tree Data Structure
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Sequential algorithm

A descent through the tree to a leaf node

 An operation on the leaf node
— Search: check for the existence of a key
— Insert: add a key
— Delete: remove a key

* An optional ascent to restructure the tree
— Overflow

— Underflow



Previous Work

e Exclusively lock entire subtree of the highest

affected node (use semaphore)

* Lock-coupling : acquire lock on child before
releasing lock on parent (use write-exclusive
lock, exclusive lock)

d o Writer-exclusion lock: lock out
other writers




e Exclusively lock entire subtree of the highest

Previous Work

affected node (use semaphore)

* Lock-coupling : acquire lock on child before
releasing lock on parent (use write-exclusive

lock, exclusive lock)

d e

Writer-exclusion lock: lock out
other writers

esebede Exclusive lock: lock out all
other readers and writers



pblem without lock-coupling




pblem without lock-coupling




pblem without lock-coupling
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pblem without lock-coupling
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B-link Structure

e By Lehman and Yao
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e Add a rightlink : lock-coupling is unnecessary
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A Split in B-link Structure
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A Split in B-link Structure
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A Split in B-link Structure
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A Split in B-link Structure
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A Split in B-link Structure
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. What about Merge
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er Modification to B-li

* By Lanin and Shasha | —

* Empty node add an outlink to the node where
its content is merged to
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Merge in B-link structure
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Merge in B-link structure
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Merge in B-link structure
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Merge in B-link structure
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delete(a): remove link
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