

# CONCURRENT B-TREE ALGORITHM

COSC6490A

Liping Han

#### Motivation

- B-tree is widely used for storing large files, especially on secondary storage devices
- Concurrent interest in database design

#### **B-Tree Data Structure**





#### Sequential algorithm

- 1
- A descent through the tree to a leaf node
- An operation on the leaf node
  - Search: check for the existence of a key
  - Insert: add a key
  - Delete: remove a key
- An optional ascent to restructure the tree
  - Overflow
  - Underflow

#### Previous Work

- Exclusively lock entire subtree of the highest affected node (use semaphore)
- Lock-coupling: acquire lock on child before releasing lock on parent (use write-exclusive lock, exclusive lock)



Writer-exclusion lock: lock out other writers

#### Previous Work

- Exclusively lock entire subtree of the highest affected node (use semaphore)
- Lock-coupling: acquire lock on child before releasing lock on parent (use write-exclusive lock, exclusive lock)



5









#### Search(d)





Insert(c)



9





Search(d) fail

Insert(c)

#### **B-link Structure**

- By Lehman and Yao
- Add a rightlink: lock-coupling is unnecessary







Insert(c): locate





Insert(c): half-split





Insert(c): half-split





Insert(c): half-split





Insert(c): add-link



#### **Further Modification to B-link**



- By Lanin and Shasha
- Empty node add an outlink to the node where its content is merged to







delete(a): locate





delete(a): locate





delete(a): half-merge





delete(a): remove link

#### **Papers**

- Lehman, P. L. and Yao, s. B. 1981. Efficient locking for concurrent operations on B-trees. ACM Trans.
   Database Syst. 6, 4 (Dec. 1981), 650-670. DOI=
   http://doi.acm.org.ezproxy.library.yorku.ca/10.1145/319628.319663
- Lanin, V. and Shasha, D. 1986. A symmetric concurrent B-tree algorithm. In *Proceedings of 1986 ACM Fall Joint Computer Conference* (Dallas, Texas, United States). IEEE Computer Society Press, Los Alamitos, CA, 380-389.