@

CONCURRENT B-TREE
ALGORITHM

Liping Han

Motivation

 B-tree is widely used for storing large files,
especially on secondary storage devices

 Concurrent interest in database design

B-Tree Data Structure

MS53 o 54 e

Key 53:
<Associated
Information>

Sequential algorithm

A descent through the tree to a leaf node

 An operation on the leaf node
— Search: check for the existence of a key
— Insert: add a key
— Delete: remove a key

* An optional ascent to restructure the tree
— Overflow

— Underflow

Previous Work

e Exclusively lock entire subtree of the highest

affected node (use semaphore)

* Lock-coupling : acquire lock on child before
releasing lock on parent (use write-exclusive
lock, exclusive lock)

d o Writer-exclusion lock: lock out
other writers

e Exclusively lock entire subtree of the highest

Previous Work

affected node (use semaphore)

* Lock-coupling : acquire lock on child before
releasing lock on parent (use write-exclusive

lock, exclusive lock)

d e

Writer-exclusion lock: lock out
other writers

esebede Exclusive lock: lock out all
other readers and writers

pblem without lock-coupling

pblem without lock-coupling

pblem without lock-coupling

v

?b\do

e gebh

Do

Insert(c)

pblem without lock-coupling

e ——

e d e Ob\do

Faobodo anb>ocodo

Search(d) fail Insert(c)

B-link Structure

e By Lehman and Yao

B ———

e Add a rightlink : lock-coupling is unnecessary

obo\do

e gehoe

e ceoede

A Split in B-link Structure

o d e

Faobodo >

Insert(c): locate

A Split in B-link Structure

o d e

>

Faobodo >

Insert(c): half-split

A Split in B-link Structure

o d e

vaebedsl -

Insert(c): half-split

A Split in B-link Structure

40 ced o>
Faobo <

Insert(c): half-split

A Split in B-link Structure

”ocodo>
Faobo <

Insert(c): add-link

. What about Merge

[

—»obocodﬁ:\x—f

Incorrect

e g e ph e

e ceoede

pbede

X

~

—> o b e c o (o

onvenient

er Modification to B-li

* By Lanin and Shasha | —

* Empty node add an outlink to the node where
its content is merged to

Qb\dO

\AX>

—>obvocodo—>

Merge in B-link structure

™ e g e b o o coede—

delete(a): locate

Merge in B-link structure

T™ o b e e coede—

delete(a): locate

Merge in B-link structure

> ebecede X —

delete(a): half-merge

Merge in B-link structure

v

#.b.c.d.\y

delete(a): remove link

e Lehman, P. L. and Yao, s. B. 1981. Efficient locking for .
concurrent operations on B-trees. ACM Trans.
Database Syst. 6, 4 (Dec. 1981), 650-670. DOI=
http://doi.acm.org.ezproxy.library.yorku.ca/10.1145
/319628.319663

e Lanin, V. and Shasha, D. 1986. A symmetric
concurrent B-tree algorithm. In Proceedings of 1986
ACM Fall Joint Computer Conference (Dallas, Texas,
United States). IEEE Computer Society Press, Los
Alamitos, CA, 380-389.

	Motivation
	B-Tree Data Structure
	Sequential algorithm
	Previous Work
	Previous Work
	Problem without lock-coupling
	Problem without lock-coupling
	Problem without lock-coupling
	Problem without lock-coupling
	B-link Structure
	A Split in B-link Structure
	A Split in B-link Structure
	A Split in B-link Structure
	A Split in B-link Structure
	A Split in B-link Structure
	What about Merge
	Further Modification to B-link
	Merge in B-link structure
	Merge in B-link structure
	Merge in B-link structure
	Merge in B-link structure
	Papers
	1.pdf
	CONCURRENT B-TREE ALGORITHM

