R

CONCURRENT B-TREE
ORITHM Implementation

Liping Han'

e Data items are stored in leaf nodes o

 Each Internal node include size-1 keys and size
downlinks to its children, | M/2 | <size<M

e Within each node keys are in ascending order
* All leaf nodes have same depth

root[T]

A%[g\ I I1{}dc‘
z 1000 keys
1001

1000 1000 . 1000 1001 nodes,
T R ,u_{)\ z71 1,001,000 keys

1001 1001 1001

1000 1000 1000 1,002,001 nodes,
| e \—‘ 1,002,001,000 keys

ariants for Concurrent

 Each internal node has a rigtlink to the node .
right to it at the same level

* Empty node add an outlink to the node where
its content is merged to

obc\do

AN

e hbecede

BTree

arity: int
root: Node
read: Lock

Node

size: int
keys: int[]
childs: Node[]

write: Lock rightlink: Node
search(int key) searchInNode(int key)
insert(int key, Stack ancestor) insertInNode(int key)
delete(int key, Stack ancestor) deleteInNode(int key)
main(String[] args)
Searcher rmerier: Deleter

key: int key: int key: int

Searcher(int key) Inserter(int key) Deleter(int value)

void run() void run() void run()

 —

Thread

Lock Granularity

e Lock on nodes —
e General case lock on one node
e Early-lock-releasing

ReaderWriter Solution

e private ReentrantReadWriteLock rwl = N QW
ReentrantReadWriteLock();

e private Lock read = rwl.readLock();

e private Lock write = rwl.writeLock();

Alcorithms — Phase 1

e [ocate

read.lock
findpath
read.unlock

Alcorithms — Phase 2

e Action on leaf node
— Search: read lock
— Insert: write lock

— Delete: write lock

Aloorithms — Phase 3

* Normalization: two phase split and merge
— Half-split/half-merge: not involve parent

— Add-link/remove-link: take place on node of level
above half-split/half-merge

xtra link: extra work

-

 During locate phase, traversal may follow 0
rightlink or outlink instead of downlink
— At each level, scan node by moving right (or follow

outlink if node is empty) to find the exact node
where the key falls in its coverset

— Record the node and the first key bigger than
target at each leve| 4 |,

—> e g e bh e e coede—

xtra link: extra work

* During the ascendants of normalization, a .
node may have several or no parent

— Let s be the rightmost key in the left node after a
half-split or before a half-merge

— The parent node should be the one where s falls
In its coverset

o bede

—> e g e bh e e coede—

Multi-nodes to lock

.g‘

Fbocof. —

Insert(e)

Multi-nodes to lock

.g‘

FbccceOfr—>
|

Insert(e)

wMulti-nodes to lock

o ge
e cof o —
>
Fbo / .
ce
Insert(e)

Normalization: half-split

wMulti-nodes to lock

1e’ joeofct>
Fboco <

Insert(e) Delete(c): - wait
|
Normalization: half-split

Multi-nodes to lock

.g‘

FbccceOfr—>
|

Insert(e) - Insert(d)

Dead-lock?

.g‘

FbccceOfr—>
|

Insert(e) > Insert(d)

Normalization: half-split

Next Step

 Experimental on algorithm performance
 Try ascendant approach

e Lehman, P. L. and Yao, s. B. 1981. Efficient locking for .
concurrent operations on B-trees. ACM Trans.
Database Syst. 6, 4 (Dec. 1981), 650-670. DOI=
http://doi.acm.org.ezproxy.library.yorku.ca/10.1145
/319628.319663

e Lanin, V. and Shasha, D. 1986. A symmetric
concurrent B-tree algorithm. In Proceedings of 1986
ACM Fall Joint Computer Conference (Dallas, Texas,
United States). IEEE Computer Society Press, Los
Alamitos, CA, 380-389.

	B-Tree
	Variants for Concurrent
	Diagram
	Lock Granularity
	ReaderWriter Solution
	Algorithms – Phase 1
	Algorithms – Phase 2
	Algorithms – Phase 3
	Extra link: extra work
	Extra link: extra work
	Multi-nodes to lock
	Multi-nodes to lock
	Multi-nodes to lock
	Multi-nodes to lock
	Multi-nodes to lock
	Dead-lock?
	Next Step
	Papers
	1.pdf
	CONCURRENT B-TREE ALGORITHM Implementation

