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e Data items are stored in leaf nodes o

 Each Internal node include size-1 keys and size
downlinks to its children, | M/2 | <size<M

e Within each node keys are in ascending order
* All leaf nodes have same depth
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ariants for Concurrent

 Each internal node has a rigtlink to the node .
right to it at the same level

* Empty node add an outlink to the node where
its content is merged to
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BTree

arity: int
root: Node
read: Lock

Node

size: int
keys: int[]
childs: Node[]

write: Lock rightlink: Node
search(int key) searchInNode(int key)
insert( int key, Stack ancestor) insertInNode(int key)
delete(int key, Stack ancestor) deleteInNode(int key)
main(String[] args)
Searcher rmerier: Deleter

key: int key: int key: int

Searcher(int key) Inserter(int key) Deleter(int value)

void run() void run() void run()

 —

Thread




Lock Granularity

e Lock on nodes —
e General case lock on one node
e Early-lock-releasing



ReaderWriter Solution

e private ReentrantReadWriteLock rwl = N QW
ReentrantReadWriteLock();

e private Lock read = rwl.readLock();

e private Lock write = rwl.writeLock();



Alcorithms — Phase 1

e [ocate

read.lock
findpath
read.unlock



Alcorithms — Phase 2

e Action on leaf node
— Search: read lock
— Insert: write lock

— Delete: write lock



Aloorithms — Phase 3

* Normalization: two phase split and merge
— Half-split/half-merge: not involve parent

— Add-link/remove-link: take place on node of level
above half-split/half-merge



xtra link: extra work

-

 During locate phase, traversal may follow 0
rightlink or outlink instead of downlink
— At each level, scan node by moving right (or follow

outlink if node is empty) to find the exact node
where the key falls in its coverset

— Record the node and the first key bigger than
target at each leve| 4 |,
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xtra link: extra work

* During the ascendants of normalization, a .
node may have several or no parent

— Let s be the rightmost key in the left node after a
half-split or before a half-merge

— The parent node should be the one where s falls
In its coverset
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Multi-nodes to lock
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Multi-nodes to lock
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wMulti-nodes to lock
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Normalization: half-split



wMulti-nodes to lock
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Multi-nodes to lock
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Dead-lock?
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Normalization: half-split



Next Step

 Experimental on algorithm performance
 Try ascendant approach
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