@

CONCURRENT B-TREE
Verification

Liping Han"




e Data items are stored in leaf nodes o

 Each Internal node include size-1 keys and size
downlinks to its children, | M/2 | <size<M

e Within each node keys are in ascending order
* All leaf nodes have same depth

root[T]

A%[g\ I I1{}dc‘
z 1000 keys
1001

1000 1000 . 1000 1001 nodes,
T R ,u_{)\ z71 1,001,000 keys

1001 1001 1001

1000 1000 1000 1,002,001 nodes,
| e \—‘ 1,002,001,000 keys




ariants for Concurrent

 Each internal node has a rigtlink to the node .
right to it at the same level

* Empty node add an outlink to the node where
its content is merged to

obc\do

AN

e hbecede




Lock Granularity

e Lock on nodes —
e General case lock on one node
e Early-lock-releasing



Alcorithms — Phase 1

e [ocate

read.lock
findpath
read.unlock



Alcorithms — Phase 2

e Action on leaf node
— Search: read lock
— Insert: write lock

— Delete: write lock



Aloorithms — Phase 3

* Normalization: two phase split and merge
— Half-split/half-merge: not involve parent

— Add-link/remove-link: take place on node of level
above half-split/half-merge



Monitor Implementation

public class monitorBTree implements BTree {

public synchronized boolean delete(int key) {

e

public synchronized boolean search(int key) {

e

public synchronized boolean insert(int key) {

e



gReader-Writer Solution

public class Node { h —
public ReentrantReadWritelLock rwLock;
public Node(int t, int key){

this.rwlLock = new ReentrantReadWriteLock();



Reader-Write Solution

public class RWBTree implements BTree { —
private ReentrantReadWriteLock treelLock;
public RWBTree(int k){

this.treeLock = new ReentrantReadWriteLock();



Performance

B monitor

B reader-write

1 thread 2 threads 3 threads 4 threads

19/05/2009 Liping Han 10



Properties

* Synchronization

insert(1) || delete(1) | | search(1)
e Deadlock free

 No uncaught exceptions



tates Explode Quickly

« B-Tree instance has read-lock and/or write-lock in
case of root read/write

e Each Node instance has read-lock and/or write-lock

e Search thread places a read lock on each of the
nodes it accesses

* Insert thread places a read lock on each of the nodes
it accesses except the final leaf node and a write lock
on the leaf

e Same condition for Delete thread

e Potential Split/Merge places write locks on the
nodes being modified



tates Explode Quickly

 1inserter, 1 searcher, 1 deleter, each threads....
do 1 operation on initially empty tree

states: new=254580, visited=426950,
backtracked=681529

1 inserter, 1 searcher, 1 deleter, each threads
do 2 operations on initially empty tree

states: new=1720955, visited=3008107,
backtracked=4729061



tates Explode Quickly

—e— Monitor
—m— Reader-Writer

1000000
100000 -
10000 -
1000 -
100 -
10 -
: 1 op per |2 ops per 3 ops per 4 ops per
thread | thread | thread thread
—e— Monitor 221 680 1061 1454
—=— Reader-Writer | 665 37795 | 187468 | 761203




e Lehman, P. L. and Yao, s. B. 1981. Efficient locking for .
concurrent operations on B-trees. ACM Trans.
Database Syst. 6, 4 (Dec. 1981), 650-670. DOI=
http://doi.acm.org.ezproxy.library.yorku.ca/10.1145
/319628.319663

e Lanin, V. and Shasha, D. 1986. A symmetric
concurrent B-tree algorithm. In Proceedings of 1986
ACM Fall Joint Computer Conference (Dallas, Texas,
United States). IEEE Computer Society Press, Los
Alamitos, CA, 380-389.



	B-Tree
	Variants for Concurrent
	Lock Granularity
	Algorithms – Phase 1
	Algorithms – Phase 2
	Algorithms – Phase 3
	Monitor Implementation
	Reader-Writer Solution
	Reader-Write Solution
	Performance
	Properties
	States Explode Quickly
	States Explode Quickly
	States Explode Quickly
	Papers
	1.pdf
	CONCURRENT B-TREE Verification

	1.pdf
	CONCURRENT B-TREE Verification




