
1

A Lock-Free concurrent
algorithm for Linked lists

CSE-COSC6490A : Concurrent Object-Oriented Languages
York University - W09

Speaker: Alexandre Walzberg

Date: April, 2nd 2009

Paper: MikhailFomitchev and Eric Ruppert, Lock-Free Linked Lists and Skip Lists.PODC'04, 2004.

2

PlanPlan

1. Introduction

2. The problem
3. The algorithm

3

1. Introduction1. Introduction

Simply allow to make concurrent operations on a same shared
ordered linked list…but without using OS synchronisation
primitives (lock-free).
Operations: Search (for a key), Insert and Delete an element

• Interested in the CAS instruction
• Already Worked on a Spin-locks algorithm, wanted to see
further : free-locks algorithm
• Linked lists are everywhere and are the base of all the data
structures

The goals

The motivation

4

2. The Problem2. The Problem

Insertion

Deletion

Reminder

A B C

A B C

5

2. The Problem2. The Problem

Problem: Several concurrent process => can lead to loss of data

The problem

A B C

6

⇒We do NOT want to change a pointer if another process change it between
the time we read it and the time we write it

⇒ To avoid that: we need a way to verify that the pointer did not change and to
change it value atomically.

⇒ The Compare And Swap atomic instruction is designed for this purpose :

2. The Problem2. The Problem

word CAS (word* Address, word exceptedValue, word
newValue){

value = *Address;
if (value == expectedValue) *Address = newValue;
return value;

}

The solution: CAS

7

3. The Algorithm3. The Algorithm

First solution (Harris):

A B C

A marked node can be deleted safely, as any of the process can
then insert a node between B and C or delete C.

Problem:
If another process wants to delete C or insert an element between
B and C, it has to re-search the element from the head !!

The idea (1)

Mark

8

3. The Algorithm3. The Algorithm

Improvement 1:

A C

Problem:
Long back-links chain can appear !!

B

The idea (2)

Mark

9

3. The Algorithm3. The Algorithm

Improvement 2:

A C

A flag prevent any operation on the node (except
the deletion of the next node)

B

The idea (3)

Mark

Flag

10

3. The Algorithm3. The Algorithm
The Data Structure

Succ
31 012

Backlink
31 012

Key
31 012

Element
31 012

Node

…

…

…

…

2 LSB of a pointer : always 0 !
- one will represent the flag
- the other one the mark

Allow to update the 3 information
atomically

Head key = -

Tail’s key = +

8
8

11

3. The Algorithm3. The Algorithm
The functions

Insert

Delete

Search : just use SearchFrom

SearchFrom : used by Delete, Insert, TryFlag and Search

TryFlag : set the flag of a node

HelpFlagged : logically delete a node

TryMark : set the mark of a node

HelpMarked : physically delete a node

Try-er: loop that run until a CAS operation succeed
(additional check before CAS, update after the CAS)

Helpers: allow other process to help another one deleting
his node (pre-emptive system)

12

ConclusionConclusion

Algorithm complexity : n for each operation (+ contention)

Allow several process (running on different processor or the same one) to make
safe operations on shared linked lists in the same time

No System Call, a process is never blocked !

No locks ! => No dead-locks !!

Useful for SMP OS design but also for any other concurrent programs

Constitute a good start point for concurrent algorithm for other data-structures

13

Any questions ??

Thank you for your attention!

