algorithm for Linked lists

Speaker: Alexandre Walzberg
Date: April, 2nd 2009

1. Introduction
2. The problem
3. The algorithm

I inredlcioen

The goals

Simply allow to make concurrent operations on a same shared
ordered linked list...but without using OS synchronisation
primitives (lock-free).

Operations: Search (for a key), Insert and Delete an element

The motivation

e Interested in the CAS instruction

NS

Prenpiem

Reminder

Insertion

Prenpiem

The problem

Problem: Several concurrent process => can lead to loss of data

The solution: CAS

= We do NOT want to change a pointer if another process change it between
the time we read it and the time we write it

— To avoid that: we need a way to verify that the pointer did not change and to
change it value atomically.

= The Compare And Swap atomic instruction is designed for this purpose :

word CAS (word* Address, word exceptedValue, word
newValue){

value = *Address:

5 e Algentiam

The idea (1)

First solution (Harris):

DR O

A marked node can be deleted safely, as any of the process can Mark

5 e Algentiam

The idea (2)

Improvement 1:

AT .

5 e Algentiam

The idea (3)

Improvement 2:

oo W

5 e Algentiam

The Data Structure

Node

Element

Key

Backlink

Succ

5 e Algentiam

Insert

Delete

Search : just use SearchFrom

SearchFrom : used by Delete, Insert, TryFlag and Search
TryFlag : set the flag of a node

HelpFlagged : logically delete a node

TryMark : set the mark of a node

HelpMarked : physically delete a node

Conciusion

Algorithm complexity : n for each operation (+ contention)

Allow several process (running on different processor or the same one) to make
safe operations on shared linked lists in the same time

No System Call, a process is never blocked !

No locks ! => No dead-locks !!

Useful for SMP OS design but also for any other concurrent programs

Constitute a good start point for concurrent algorithm for other data-structures

Any questions ??

Thank you for your attention!

