Adaptive Distributed Dynamic Channel Allocation for Wireless Networks

Prepared By Ulka Thaker

COSC6490A Concurrent Object Oriented Programming

Content

- Introduction
- Algorithm
- Conclusion

Introduction

Introduction

- Radio spectrum is scarce resource in wireless networks.
- Efficient use of bandwidth is essential for supporting large number of mobile users in cellular network.
- In order to reuse radio spectrum, the current wireless systems use a cellular architecture.

Cellular Architecture

- Geographical area is divided into several coverage area called CELLS.
- Radio spectrum is divided into number of wireless communication CHANNELS.
- Each cell have mobile service station (MSS) and multiple mobile hosts (MH).

Cellular Architecture

MH1

REQUEST to acquire channel

MSS1

- MSS1 finds free channel using channel allocation procedure.
- MSS1 informs MH1 which channel to use.
- MH1 starts using the channel for communication.
- After channel is utilized

MH1

Informs
about no
longer
channel
usage

MSS1

Cellular Architecture

- If MH1 travels and moves out of cell1 and enters cells2.
- Old channel in cell 1 is released and new channel in cell 2 is allocated.
- This released channel of cell1 can now be reused by other mobile host MH.

Distributed Dynamic Channel Allocation Scheme

Search Scheme

Update Scheme

Search Scheme

- When cell needs a channel, it sends a request message with time stamp to all neighbouring cell to find the set of currently available channels.
- it then picks one available channel after receiving the response from every cell.
- Cell which is currently searching for a channel postpones the response to any request message with a higher timestamp than its request message until it has completed its search.
- i.e. every new search is postponed until previous are finished.

Update Scheme

- Every cell maintains information of channel used in its neighbouring cells.
- When a cell need a channel, selects free channel, and REQUEST permission with time stamp from neighbouring cells.
- Uses channel only after receiving permission from all neighbouring cells.
- Before using the channel, cell sends acquisition message to update used channel information on all neighbouring cells.

Update Scheme Cont.....

- On waiting for permission, if another cell request for same channel.
- It responds REJECT if its with greater timestamp.
- Responds GRANT with less timestamp and abort its own request.
- It then attemps to acquire another free channel.

Scheme used in this algorithm....

- In the Algorithm to be discussed, uses update scheme or search scheme based on:-
- Number of free available channels
- And number of attempts it has made to acquire channel.

Algorithm

Initially

- Each cell[i] in the system is assigned a set of primary channels PR[i].
- Each cell is in local channel selection mode i.e.
 have primary channel to acquire.

Local Mode

On acquiring channel sends ACQUISITION message

All Cells in interference region

On releasing channel sends
RELEASE message

Multiple requests can proceed in parallel, there is no deadlock.

Borrowing Mode

• Number of free primary channels fall below a some threshold based on the channel consumption rate.

CHANGE_MODE message

Cell [i]

get set of channels in use via RESPONSE message

All Cells in interference region

Borrow a Channel

- Cell [i] selects one of the free channels r.
- It queries interfering neighbouring cells for permission to use r.
- Borrowing SUCCESS receives grant RESPONSE message from all the cells in IN.
- After communication is over, RELEASE message is sent to all the cells that had sent grant message.

Borrow a Channel

- Borrowing FAILS receives reject RESPONSE message from one or more cells in IN and tries to acquire another channel.
- In order to bound number of failure or attempts in borrowing update mode, a cell enters borrowing search mode after some predefined n rounds.
- cell in borrowing search mode guarantees that a it will acquire a free channel if there is one available.

Conditions

- Any cells[i] postpones all search or update request with higher timestamps.
- A cell in local mode postpones it's local request with a higher timestamp till an ACQUISITION message for the search request with a lower timestamp is received.
- Thus all requests from cells in an interference region are sequentialized with respect to their timestamps avoiding deadlock.

Conclusion

Conclusion

 No two interference neighbourhood cells acquire same channel.

The algorithm is deadlock free.

END

Thank You

Questions?