Group Mutual
Exclusion (GME)

Algorithms

-A simple local-spin GME &
a space-efficient FCFS GME

By Carrie Chu April, 2009

" I
The problem

m A process requests a “session”.

m Processes requesting the same session
can be in CS simultaneously.

m Processes requesting different sessions
can not.

m Usual ME algorithm can’t be directly
applied to solve the problem.

E.g. a CD jukebox

GME model

A group mutual exclusion process:
repeat
NCS
Try section
CS
Exit section
forever

» The problem is to design Try and Exit
sections, s.t. certain properties can be
satisfied.

GME properties

m (P1) Mutual exclusion: If two processes are in the
CS at the same time, then they request the same
session.

m (P2) Lockout freedom: If a process enters the Try
section, then it eventually enters the CS.

m (P3) Bounded exit: If a process enters the Exit
Section, then it enters the NSC within a bounded
number of its own steps.

m (P4) Concurrent entering: If a process i requests a
session and no process requests a different
session, then j enters the CS within a bounded
number of its own steps.

" S
Two GME algorithms

m Patrick Keane and Mark Moir. A simple local-

spin group mutual exclusion algorithm. In
Proceedings of the 18th annual ACM
Symposium on Principles of Distributed
Computing, pages 23-32, Atlanta, Georgia,
United States, 1999. ACM.

m Srdjan Petrovic. Space-efficient FCFS group
mutual exclusion. Information Processing
Letters, 95(2): 343-350, July 2005.

" S
Algorithm 1: local-spin GME

m Satisfy P1-P3, and a weak P4 (concurrent
occupancy)

m It uses:

An exclusive lock M (implemented by any ME)
A process waiting queue Q

m Each process gets a spin location in an

boolean array of N processes wait, in
which the process can wait to enter CS.

shared variables

M: lock; Session, Num: integer; {: queue of 0..N-1;

Wait: array [0..N-1] of boolean; Need: array [0..N-1] of integer
local variables

t, v: integer;

initially

Num =0 A Session=1 A Q=0
0: t=
1: Wait{p] := false; < < Attend session {>>
2: Need[p) = t;
3. Acquire(M); 13: Acgquire(M);
4: if Session=t A @ =0 then 14: Num := Num-1;
5 Num := Num+1 15: if @+#0 A Num =0 then
6: else if Session £t A Num =0 then 16: Session:= Need[Head(Q)];
7 Session := t 17: for each v € do
8 Num =1 18: if Need{v] = Session then

else 19: Delete(Q, v);
9. Wait{p] := true; 20: Num := Num+1;
10: Enqueue(Q, p) 21: Wait[v] := false

fi; fi od Ai;
11: Release(M); 22: Release(M)
12: while Wait[p] do od;

23:goto 0 ¢
Y
Try section Exit section

A simple local-spin group mutual exclusion algerithm. Code i1s shown for process p.

An example for algorithm 1

Process I |] | kK|l | m|n

Session s1|s1|s2|s2|s1|s2

Result:1,] > k,l,n 5> m

"
Algorithm 2: space-efficient FCFS GME

m Satisfy P1-P4, and FCFS (first come first
served)

(P5) FCFS: If a process i completes the doorway
before process j enters the doorway and the two
processes request different sessions, then |
doesn’t enter the CS before 1.

m Space efficient: @(N) without deadlock

"
Algorithm 2: space-efficient FCFS GME

m [ransformed from Lycklama-Hadzilacos ME
algorithm [doi:10.1145/115372.115370]

m Not use lock

m Shared variables are all arrays of N processes.
Each cell owned by a process, has a single
writer (its owner) and multiple readers.

m Modular composition of two parts: FCFS+ME

" J
Shared variables foreach i e {1,2,..., N}
gesaion;: integer
turn;: {0,1,.... 11}

competing;: boclean
Local variables

=) FCFS

=) ME

furm_snap: array [1...N]of {0, 1,..., 11}

repeat

1: PFemainder Section

2: gmesgeion; = mysession

3 for j=1to N do furn_snap[j] = turn;

4 if conflictimysassion)

3 turn; = (turn; + 1) mod 12

G6: for j=1to N do

T: wait until (session; {0, mysession})

W (furn_snap[j] # turn;)

8L: competing; = frus

9 for j=1tod—1do
10: if competing; ~i(sesaion; & {0, mysassion})
11: competing; = false
12: wait until (—~competing;)

v(sesaion; € {0, mysession})
13: goto
14: for j=i+1to N do
15: wait until { ~competing;)
v (session; € {0, mysession})
l6: C8
(17 competing; =false | ME
[18: =ession; =0 FCFS
forever

=) Exit section

Space efficient FCFS algorithm — code for process i

FCFS in Try section

if conflictim

-] OF L s e I.._l

sesslon; = mysession
for j=1to N do nwn_snap[j] = turn;
Fassion)
turn; = (turr; + 1) mod 12
for j=1to N do
wait until (15&551-:::11 € {0, mysession})

W (furn_snap[j] # turn;)

—> doorway

Process

J

Session

ST

ST

S2

S2

ST

S2

Result: |

L] > K I—->m-—-n

ME in Try section

BL: competing; = frus
0: for j=1toi—1do

10: if competing; A (aeasion; ¢ {0, mysassion])
11: compeat ing-,' =false -
12: wait until (—~competing;)

viseasion; € {0, mysession})
13: gotol)
14: for j=i+1to N do
15: wait until (—~competing;)

W (session; € {0, mysession})

Process i

Session s

Result: i, k — |

Characteristics comparison

Local Spin Space-efficient FCFS
Use Lock Yes No
Access Order Capturing FCFS
GME Properties
Mutual Exclusion v \
Lockout Freedom \ \
Bounded Enter v \
Concurrent Entering Weak \
(concurrent occupancy)
Complexity O(N) O(N)
Remote references bounded NUMA: unbounded
CC: O(N)

