Group Mutual
Exclusion (GME)

Algorithms

-- Implementation of the local-spin GME and
the space-efficient FCFS GME

By Carrie Chu April, 2009

I
Problem review

m A process reguests a “session”.

m Processes requesting the same session can be
in CS simultaneously.

m Processes requesting different sessions can not.

m A group mutual exclusion process:

repeat
NCS: sleep(5)
Try section
CS: sleep(5)
Exit section
forever

" S
Two GME algorithms

m Patrick Keane and Mark Moir. A simple local-

spin group mutual exclusion algorithm. In
Proceedings of the 18th annual ACM
Symposium on Principles of Distributed
Computing, pages 23-32, Atlanta, Georgia,
United States, 1999. ACM.

m Srdjan Petrovic. Space-efficient FCFS group
mutual exclusion. Information Processing
Letters, 95(2): 343-350, July 2005.

Program structure

GMEProcess

run()

enterSession()

e

LocalSpinGME

enterSession()

Q

N

FcfsGME

enterSession()

Driver

main()

" S
Algorithm 1: local-spin GME(1)

Each process does:

Decide a session < ; Exit Section
Acquire lock M
@ If it's the last process left the CS and Q isn’'t empty
establish the session requested by head process of Q
Try Section capture processes requesting the same session in Q together to enter CS
deque the processes and set their spin locations to false
Acquire lock M Release lock M
If can go to the CS
goto CS
Else ﬁ
put itself in the waiting queue Q
set its spin location to true
Release lock M [:J> CS
Busy wait on its spin location

Algorithm 1: local-spin GME(3)

public class LocalSpinGME extends GMEProcess {
private static final Semaphore s_lock = new Semaphore(1);
private static final ArrayList<Thread> s_queue = new ArrayList<Thread>();
private boolean m_wait;

protected void enterSession() {
// Try section
s_lock.acquire();

s_lock.release();
while(m_wait) {

sleep(1)
}

Algorithm 2: space-efficient FCFS GME(1)

m Shared variables are owned by each process,
each of which has a single writer (its owner) and
multiple readers.

m |t doesn’t use lock, semaphore, compare-and-
swap, compare-and-set atomic mechanisms.

m Think about “bakery algorithm”.
m |t satisfies property FCFS.
m Modular composition of two parts: FCFS+ME

Algorithm 2: space-efficient FCFS GME(2)

Each process does:

Decide a session

<

Try Section

complete the doorway

FCFS: the order to enter CS depends on the order in which processes

ME: high-numbered processes let low-numbered processes proceed first

N

Exit Section

ME
FCFS

CS

» The code is sequential with busy wait loops.

Algorithm 2: space-efficient FCFS GME(3)

public class FcfsGME extends GMEProcess {
private int m_turn;
private boolean m_compting;

protected void enterSession() {

fcfs();
mutualExclusion();

}

private void fcfs() {

\.A./'hile(.)
sleep(1)
}

Test (1)

m [WO ways

Create threads with fixed session numbers.
Create threads with randomly assigned
session numbers.

m [he test tuned the number of threads,

sessions and iterations to produce
different cases.

Test(2)
Process |] K | | |m] n
Session s1 | s1|s2 |s2|s1]| s2

» The test is able to produce the expected
results for both algorithms.

» The test didn’t find cases that violate ME.

Performance comparison (1)

8 processes, 100 iterations on navy:

3000

2500 -

2000

O Local-spin

1500
m FCFS

1000 -

Execution time

500

_=

1 2

0

Session

»When # of session =1, execution time is almost the same. Lock
doesn’t create much overhead.

»When # of session =2, FCFS has more session switch costs.

Performance comparison (2)

100 iterations on navy:

8000
7000 -
06000 -—
£
=5000 ||
54000 [] L
33000 -
(]
232000

0 ‘

p=4 s=3 p=8 s=6 p=12 s=9

p: # of threads; s: # of sessions

@ Local-spin
m FCFS
O FCFS /w

» Local spin algorithm takes less time than FCFS algorithm, even
comparing with FCFS algorithm without FCFS code.

" S
Looking ahead

m Further verify ME property for both algorithms
m Verify FCFS property for the space-efficient
algorithm

m Verify deadlock solution for the space-efficient
algorithm

Questions?

" J
shared variables
M: lock; Session, Num: integer; Q: queue of 0..N-1;
Wait: array [0..N-1] of boolean; Need: array [0..N-1] of integer
local variables
t, v: integer;

initially

Num =0 A Session=1 A Q=0
0: t=
1: Wast{p] := false; < < Attend session {>>
2: Need[p) := ¢
3: Acquire(M); 13: Acquire(M);
4: if Session=1t A Q =0 then 14: Num := Num-1;
5 Num := Num+1 15: if @ # @ A Num =0 then
6: else if Session# ¢t A Num = 0 then 16: Session:= Need[Head(Q)];
7 Session = &, 17: for each v € @ do
8 Num =1 18: if Need{v] = Session then

else 19: Delete(@, v);
9: Wait{p] := true; 20: Num := Num+1;
10: Enqueue(Q, p) 21: Wait{v] .= false

fi; fi od fi;
11: Release(M), 22: Release(M)
12: while Wait{p] do od;

23:goto 0 ¢
) 4
Try section Exit section

A simple local-spin group mutual exclusion algerithm. Code i1s shown for process p.

" J
Shared variables foreach i e {1,2,..., N}
gesaion;: integer
turn;: {0,1,.... 11}

competing;: boclean
Local variables

=) FCFS

=) ME

furm_snap: array [1...N]of {0, 1,..., 11}

repeat

1: PFemainder Section

2: gmesgeion; = mysession

3 for j=1to N do furn_snap[j] = turn;

4 if conflictimysassion)

3 turn; = (turn; + 1) mod 12

G6: for j=1to N do

T: wait until (session; {0, mysession})

W (furn_snap[j] # turn;)

8L: competing; = frus

9 for j=1tod—1do
10: if competing; ~i(sesaion; & {0, mysassion})
11: competing; = false
12: wait until (—~competing;)

v(sesaion; € {0, mysession})
13: goto
14: for j=i+1to N do
15: wait until { ~competing;)
v (session; € {0, mysession})
l6: C8
(17 competing; =false | ME
[18: =ession; =0 FCFS
forever

=) Exit section

Space efficient FCFS algorithm — code for process i

