
Group Mutual 

Exclusion (GME) 

Algorithms

-- Verification of  the local-spin GME 
and the space-efficient FCFS GME 

By Carrie Chu     May, 2009



Problem review

� A process requests a “session”.

� Processes requesting the same session can be 
in CS simultaneously.

� Processes requesting different sessions can not.

� A group mutual exclusion process:
repeat

NCS: sleep(5)
Try section

CS: sleep(5)
Exit section

forever



Two GME algorithms

� Patrick Keane and Mark Moir. A simple local-
spin group mutual exclusion algorithm. In 
Proceedings of the 18th annual ACM 
Symposium on Principles of Distributed 
Computing, pages 23-32, Atlanta, Georgia, 
United States, 1999. ACM.

� Srdjan Petrovic. Space-efficient FCFS group 
mutual exclusion. Information Processing 
Letters, 95(2): 343-350, July 2005. 



Algorithm review (1)

� Local-spin algorithm:

� Use an exclusive lock to protect access to other 

shared variables

� The lock is implemented by a semaphore.



Algorithm review (2)

A process in local-spin algorithm does:



Algorithm review (3)

� Space-efficient FCFS algorithm
� It doesn’t use lock, semaphore, compare-and- swap, 

compare-and-set atomic mechanisms 
� the code is sequential with some busy waits.

� Shared variables are owned by each process, each of 
which has a single writer (its owner) and multiple 
readers.

� Shared variables are implemented as private attributes in a 
process object, with only public read methods.

� It satisfies property FCFS.

� Modular composition of two parts: FCFS+ME



Verifications

� Local-spin algorithm

� group ME property

� use of lock is essential to ensure group ME

� Space-efficient FCFS algorithm

� group ME property

� some codes are essential to avoid deadlock

� data race



Local-spin algorithm verification 

- group ME property (1)

Available shared variables:

s_session: int // current session established in CS

m_need: int    // session of the thread

In CS:

assert s_session == m_need;

sleep(5);

assert s_session == m_need;



Local-spin algorithm verification 

- group ME property (2)

Completed:

No errors detected

439051941648M5:20:22DFS

ResultStatesMemoryTimeSearch

iterations=1; threads =3; sessions = 2

� Local-spin algorithm satisfies group ME property



Local-spin algorithm verification 

- lock

� Comment out lock acquire() and release()

NOT completed: out of memory

No errors detected

22022M0:11:34DFS

Assertion error44510220M0:00:19BFS

ResultStatesMemoryTimeSearch

iterations=1; threads =3; sessions = 2

�Lock is essential to ensure group ME



Space-efficient FCFS algorithm verification
- group ME property (1)

Available shared variables:

m_need: int // session of the thread

Added shared variables (used only in CS):

s_session: int // current session established in CS

s_num: int // number of threads in CS

s_lock: new Semaphore (1)



Space-efficient FCFS algorithm verification
- group ME property (2)

In CS:
s_lock.acquire();
s_num++;
If (s_num == 1)

s_session = m_need;
s_lock.release();
assert s_session == m_need;
sleep(5);
assert s_session == m_need;
s_lock.acquire();
s_num--;
s_lock.release();



Space-efficient FCFS algorithm verification
- group ME property (3)

NOT completed: out of memory

No errors detected

656816312030M8:17:17DFS

NOT completed: out of memory

No errors detected

12531712408M0:16:18BFS

ResultStatesMemoryTimeSearch

iterations=1; threads =3; sessions = 2

�For DFS, JPF created more states to verify FCFS algorithm 
(local-spin algorithm: 43905194 states). 

�All the results we obtained don’t show this algorithm 

violates group ME property.



Space-efficient FCFS algorithm verification
- deadlock (1)

� FCFS part review

� FCFS property: i would block on j if j completes the 

doorway before i.

� How does it ensure FCFS property? 

turn variable vs. its local copy turn_snap

1. Doorway starts - i reads all other processes’ turn 

and make a local copy of them turn_snap

2. i possibly increments its turn – doorway ends

3. i checks turn[j] ?= turn_snap[j]



Space-efficient FCFS algorithm verification
- deadlock (2)

� A possible deadlock could occur when:
1. A fast process j, requesting same session as a slow 

process i, enters CS repeatedly, each time over-
passing i in the doorway and increments its turn
variable;

2. i falls asleep after exiting the doorway;

3. The over-passing happens enough times, turn[j] 
wraps back to the value i read.

4. The i wakes up and j then requests a different 
session.



Space-efficient FCFS algorithm verification
- deadlock (3)

Completed:

No errors detected

559253160M0:02:23DFS

Completed:

No errors detected

559253666M0:03:17BFS

ResultStatesMemoryTimeSearch

iterations=3; threads =2; sessions: first 2 iterations=1, last iteration=2

� Though the deadlock is easily produced by java, jpf

seems can’t detect such deadlocks directly.



Space-efficient FCFS algorithm verification
- data race

� turn variable clearly has race: FCFS property is ensured by checking
the order of turn read and increment.

� JPF can detect the race:
====================================================== 
gov.nasa.jpf.tools.PreciseRaceDetector
race for: "int FcfsGME.m_turn“
Thread-0 at FcfsGME.fcfs(FcfsGME.java:69)

"(FcfsGME.java:69)"  : putfield
Thread-1 at FcfsGME.getTurn(FcfsGME.java:24)

"(FcfsGME.java:24)"  : getfield
====================================================== 



Questions?


