E AENRY BT 8

hE S¥e B4

o <l o B

wik = =u Y e i i

HE N B Uy 8 DS H

W
13

O-N-

ZAFEl

WURY BB DE

- e

BECE AEMWV

m@ECNE & »

m

P O LAE WUKY B U.ﬂt. &8

s nm s XAER
w7k

S HESN LFE wURY BB

3

U

e NE ECE

:
o
:

m
m
o
:
:

-E-S-S'ER,

ICE
ICNTE B U

HUGH

Agenda

Topics:
1. Multiple cycle implementation

Patterson: Section 4.5

Multicycle Implementation

Instruction:
— Execution of each instruction is broken into diffiet steps

— Each step requires 1 clock cycle
— Each instruction takes multiple clock cycles

Functional Unit:
— Can be used more than once in an instruction (Bubdsly once in a clock cycle)

Advantages:

=

. Instru_ction
| register | Data
» PC Address d
» A -
_ +—>| Register #
Memory InSthngg% —1 Registers >ALU ALUOUL|[-$
Memory *—>| Register #
—pe | data — » B -
Pata register | Register #

One ALU is used for incrementing PC and for arithmeperations
Data memory and Instruction memory are combined
5 additional registers are added

An instruction register (IR) to hold instructionsfbre distributing data to register file or ALU
A memory data register (MDR) to hold data befoisributing to register file or ALU
Registers A and B that hold data before the ALU

Register ALUout that hold data computed by ALU

[

0 0
M Instruction | > Read M
u Address [25-21] register 1 U
X
Instruction Read Read 1_5 —L> X
1 Memory [20-16] T‘ register 2 datal 1
MemData _ 0 _ Registers
Instruction M Write Read
[15-O]f ¥ instruction | u register gata 2 . 0 jump
Write ; - X
data Instruction [15-11] . Write 4mp|1 M
register data 2 Y
Instruction 0 3
[15-0] M
u
X
Memory 1

data
register

ALUOuUt

result

Because functional units are shared, multiplexersadded to select data between different devices

MUX before memory selects either the PC outpuc(fetstruction) or ALU output (storing data)

MUX before “write register” selects write-registaumber (instruction [15-11] or instruction[20-16])
MUX before “write data” selects data from “ALUOut” {&pe instruction) or “MemData” (lw instruction)
Upper MUX before ALU selects PC output (increme@f Br “Read data 1” (R-type instruction)

Lower MUX before ALU selects “Read data 2", or ‘sigxtended instruction[15-0]" or shift left sign
extended instruction[15-0], or 4

A0

—

HXCzo

Address

Memory
MemData

Write
data

Instruction

[25—21]

Instruction
[20—16]

Instruction
[15-0]

Instruction
register

Instruction
[15-0]

A 4

Read
register 1

Read
Read
register 2 data 1

. Registers

Write Read
register data 2

Write
data

l

!

Memory
data
register

Instruction [5— 0]

S

Zero —>

result

—p

ALUOut

Because functional units are shared, multiplexegsadded to select data between different devices

MUX before memory selects either the PC outpuc(fetstruction) or ALU output (storing data)
MUX before “write register” selects write-registanmber (instruction [15-11] or instruction[20-16])

.

Jump
address [31-0]

ALUOUL gy

]
Op
[5-0]
A
Instruction [25—0] O L
1 N \left 2
Instruction
0 [31-26] | 5 PC [31-28]
M Instruction »| Read M
u Address [25—-21] " | register 1 _| N
1X Mem Instruction {4 Read Read A X
oy [20— 16] ._r register 2 datal I |
Membata Instruction ° Wn'teRegiSterS result
B M ; Read
[15-0] Instruction | u register gaig 2 H—.- 0
Write i 15-11] | x . M
bl Inrsuycuon [] . Wiite 4 =1 4
egister data |2 !
Instruction 3
[15-0]
» Memory
data
register » ~
Instruction [5— 0]

v

R o
xXcZ

Control Input

Effect when Deasserted (0)

Effect when asserted (1)

lorD

PC supplies address to memory (instruction fetch)

ALUout supplies address to memory (Iw/sw)

Memory content specified by address is placed on

hlemBead None “Memdata” o/p (Iw/any instruction)

MemWrite None I/p “Write data” is stored at specified address (sw)

IRWrite None “MemData” o/p is written on IR (instruction fetch)

RegDst “Write Register” specified by Instruction[20-16] (Iw) “WriteRegister” specified by Instruction[15-11] (R-type)
: Data from “WriteData” i/p is written on the register

REQHITE None specified by “WriteRegister” number

ALUSrcA PC is the first operand in ALU (increment PC) Register A is the first operand in ALU

MemtoReg “WriteData” of the register file comes from ALUOut “WriteData” of the register file comes from MDR

PCWrite SRS Hrsmes i HERiEe e 4=l PC is written; Source is determined by PCSource

output of ALU
PCWriteCond |Operation at PC depends on PCWrite PSS A el el FAHES RSl S

determined by PCSource

Action of 2-bit Control Signals

\

00 |ALU performs an add operation
ALUOp 01 |ALU performs a subtract operation
10 | The function field of Instruction defines the operdion of ALU
00 |The second operand of ALU comes from Register B
01 |The second operand of ALU =4
ALUSrcB 10 |The second operand of ALU is sign extended Instruicn[15-0]
11 '(I)']he second operand of ALU is sign extended, 2-befit shifted Instruction[15-
00 |Output of ALU (PC + 4) is sent to PC
PCSource 01 |Contents of ALUOuUt (branch target address = PC + 4 4 x offset) is sent to P¢
10 Cpntents qf Instruction[25-0], shift Ieft' by 2, andconcatenated with the MSB 4}
bits of PC is sent to PC (jump instruction)

W10-M

]
Op
[5-0]
A
Instruction [25— 0]
Instruction
5 [31-26]
M Instruction l »| Read
u Address [25—-21] " | register 1
X
Instruction L Read Read
L Memory 12016 [T l register 2 datal
MembData —) st 0 Wit Registers i
n e M e Read resu
A5-0If [instruction | u register gata 2 B 0
Write i 15-11] | x . M
bl Inrsuycuon [] . Wiite 4 =1 4
egister data |2 !
Instruction 0 3
[15-0] M
u
R X
»”| Memory > 1
data 16
register ® ‘\ > ~
Instruction [5— 0]

Jump
address [31-0]

= O
xcZ

ALUOUL gy

Shift Left 27?

What two instructions require the “Shift Left 2” block?

1 It
Brnch OnEqual sea 1 peC il g gy e

(4) BranchAddr= §{ 14{immediate[15]}, immediate, 2'b0 }

Execution of each instruction is broken into aesenf steps

Each step is balanced to do almost equal amoumbk

Each step takes one clock cycle

Each step contains at the most 1 ALU operatiod, mgister file access, or 1 memory access
Operations listed in 1 step occurs in parallel gldck cycle

Different steps occur in different clock cycles

Different steps are:

1.

RO 1N

IF: Instruction fetch step

ID: Instruction decode and register fetch step

EX: Execution, memory address computation, ondnacompletion step
MEM: Memory access of R-type instruction complrtstep

WB: Write back completion step

12

Step 1: Instruction Fetch

Fetch instruction from memory and compute the asklod next sequential instruction

| R
PC

Menor y[PCl ;
PC + 4;

Operation:

.

Read register rs in register file and store convéns in register A
Read rt in register file and store content of rt fnagister file
Compute branch target address

A = Reg[I R 25-21]];
B = Reg[I| R 20-16]];
ALUQut = PC + (sign-extend(l R 15-0]) << 2);

Operation:

1. Access register file to write rs in A.

2. Access reqister file to write rt in B.

3. Compute branch target address and store in ALYQuUtISrcA = 0; ALUSreB = 1)
Remember that ALU must addl(UOp = 00)

After this step, one of the four actions are pdssiklemory reference (lw/sw), R-type, Branch,
or Jump 14

Memory Reference (sw/lw):
ALUCUt = A + sign-extend(l R 15-0])

ALU adds content of A and sign-extend(IR[15-0})L.(USrcA = 1, ALUSrcB = 10,
(ALUOp = 00

R-type (add/sub/or/and):
ALUQut = A op B
ALU performs specified operation on A and 8. (SrcA = 1, ALUSrcB = 00,
Operation of ALU is determined by the function fi@ode ALUOp = 10
Branch (beq):
if (A== B) PC = ALUQut;
ALU does the equal comparison operation on A afdBJSrcA = 1, ALUSrcB = 00),
ALU must subtractALUOp = 01)
Update PC with ALUOut if A == BRCWriteCond = 1, PCSource =)01
Jump ()):
PC = P 31-28] || (IR 25-0) << 2);
PC gets overwritten by output of jump address MBX Gource = 10, PCWrite 9 1

CSE
; I.- ..I- -! IE

15

Step 4. Memory Access or R-type Instruction
Completion

Memory Reference (sw/lw):.
MDR = Menory[ALUQut | ; (for lw
or Menory[ALUCuUt] = B; (for sw

1. Address from ALUOut is applied at “address” i/pnaémory (orD = 1)
2. For swMemWrite = 1 For lw,MemRead =1

Step 5:Memory Write Back (Completion)

load (Iw):
Reg[| R 20-16]] = MDR;

MDR is stored into the register specified by IR[P&}-(MemtoReg = 1, RegWrite = 1,
RegDst =0

