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Agenda

Topics:

1. Multiple cycle implementation - complete

Patterson: Appendix C, D
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Breaking the Instruction Execution into Clock 
Cycles

Execution of each instruction is broken into a series of steps

— Each step is balanced to do almost equal amount of work

— Each step takes one clock cycle

— Each step contains at the most 1 ALU operation, or 1 register file access, or 1 memory access

— Operations listed in 1 step occurs in parallel in 1 clock cycle

— Different steps occur in different clock cycles

— Different steps are:

1. IF: Instruction fetch step

2. ID: Instruction decode and register fetch step

3. EX: Execution, memory address computation, or branch completion step

4. MEM: Memory access of R-type instruction completion step

5. WB: Write back completion step



W10-M
4

Multicycle Implementation: Control Units added
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Multicycle Implementation – 5 Steps

Multicycle implementation – “unwound” to show datapath in each step
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Summary of Steps used in different Instructions

lw:
MDR = Memory[ALUOut]
or sw:
Memory[ALUOut] = B

Action for

Jump
Memory Reference 

Instruction
Branch

PC = PC[31-28]||
(IR[25-0)<<2);

if(A == B)
then
PC = ALUOut;

R-type Instruction

IR = Memory[PC];

PC = PC + 4;
IF - Instruction 
fetch

A = Reg[IR[25-21]];

B = Reg[IR[20-16]];

ALUOut = PC + (sign-extend(IR[15-0])<<2);

ID - Instruction 
decode /
Register fetch

ALUOut = A + sign-
extend(IR[15-0])

ALUOut=A op B

EX –
R-type Execution / 
address comp. /
Branch /Jump

Reg[IR[15-11]] 
= ALUOut;

MEM - Memory 
Access /
R-type Completion

lw:
Reg[IR[20-16]]=MDR;

WB - Memory Read 
Completion

Step Name
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Multipath Datapath Implementation: Control

— Recall that design of single cycle datapath was based on a combinational circuit

— Design of multicycle datapath is more complicated

1. Instructions are executed in a series of steps

2. Each step must occur in a sequence

3. Control of multicycle must specify both the control signals and the next step

— The control of a multicycle datapath is based on a sequential circuit referred to as a finite state 
machine

00

10

0111

State 0

State 1

State 2

State 3

A finite state diagram for a 2-bit counter

— Each state specifies a set of outputs

— By default, unspecified outputs are assumed disabled

— The number of the arrows identify inputs  



W10-M
8

Finite State Machine?
• See Appendix C

• A sequential logic 
function which has a state 
and inputs – the logic 
function determines the 
next state and outputs
– Moore machine – outputs 

depend on just the current 
state

– Mealy machine – outputs 
depend on current state and 
inputs

• Book uses Moore machine 
description
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Finite State Machine Control of Multicycle
Datapath (1)

Memory access
instructions
(Figure 4.20)

R-type instructions
(Figure 4.19)

Branch instruction
(Figure 4.21)

Jump instruction
(Figure 4.24)

Instruction fetch/decode and register fetch
(Figure 4.36)

Start

High-Level View
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Finite State Machine Control of Multicycle
Datapath (2)
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Fig. D.3.1: Steps 1 and 2: Instruction Fetch and Decode Instructions
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Finite State Machine Control
of Multicycle Datapath (3)

Finite State Machine for Memory Reference Instructions
MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegWrite
MemtoReg = 1

RegDst = 0

Memory address computation

(Op = 'LW') or (Op = 'SW')

Memory
access

Write-back step

(O
p

=
'SW

')

(O
p

=
' L

W
')

4

2

53

From state 1

To state 0

Memory
access



W10-M
12

Finite State Machine Control of Multicycle
Datapath (4)

Finite State Machines for R-type Instructions
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Finite State Machine Control of Multicycle
Datapath (5)

Finite State Machine for Branch Instruction

Branch completion
8

(Op = 'BEQ')
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PCWriteCond
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Jump completion
9

(Op = 'J')

From state 1

To state 0

PCWrite
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Finite State Machine for Jump Instruction
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Finite State Machine
Control of Multicycle Datapath (5)
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Control Logic – Truth Table

Note that control outputs 

depend only on current 

state (Op column is blank 

for all output rows)

Next state depends on 

current state and inputs 

(opcode from instruction)
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Multicycle Implementation: Control Units added
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