
W10-M

CSE 2021
Computer Organization

Hugh Chesser, CSEB
1012U

W10-M
2

Agenda

Topics:

1. Multiple cycle implementation - complete

Patterson: Appendix C, D

W10-M
3

Breaking the Instruction Execution into Clock
Cycles

Execution of each instruction is broken into a series of steps

— Each step is balanced to do almost equal amount of work

— Each step takes one clock cycle

— Each step contains at the most 1 ALU operation, or 1 register file access, or 1 memory access

— Operations listed in 1 step occurs in parallel in 1 clock cycle

— Different steps occur in different clock cycles

— Different steps are:

1. IF: Instruction fetch step

2. ID: Instruction decode and register fetch step

3. EX: Execution, memory address computation, or branch completion step

4. MEM: Memory access of R-type instruction completion step

5. WB: Write back completion step

W10-M
4

Multicycle Implementation: Control Units added

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25–0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

W10-M
5

Multicycle Implementation – 5 Steps

Multicycle implementation – “unwound” to show datapath in each step

W10-M
6

Summary of Steps used in different Instructions

lw:
MDR = Memory[ALUOut]
or sw:
Memory[ALUOut] = B

Action for

Jump
Memory Reference

Instruction
Branch

PC = PC[31-28]||
(IR[25-0)<<2);

if(A == B)
then
PC = ALUOut;

R-type Instruction

IR = Memory[PC];

PC = PC + 4;
IF - Instruction
fetch

A = Reg[IR[25-21]];

B = Reg[IR[20-16]];

ALUOut = PC + (sign-extend(IR[15-0])<<2);

ID - Instruction
decode /
Register fetch

ALUOut = A + sign-
extend(IR[15-0])

ALUOut=A op B

EX –
R-type Execution /
address comp. /
Branch /Jump

Reg[IR[15-11]]
= ALUOut;

MEM - Memory
Access /
R-type Completion

lw:
Reg[IR[20-16]]=MDR;

WB - Memory Read
Completion

Step Name

W10-M
7

Multipath Datapath Implementation: Control

— Recall that design of single cycle datapath was based on a combinational circuit

— Design of multicycle datapath is more complicated

1. Instructions are executed in a series of steps

2. Each step must occur in a sequence

3. Control of multicycle must specify both the control signals and the next step

— The control of a multicycle datapath is based on a sequential circuit referred to as a finite state
machine

00

10

0111

State 0

State 1

State 2

State 3

A finite state diagram for a 2-bit counter

— Each state specifies a set of outputs

— By default, unspecified outputs are assumed disabled

— The number of the arrows identify inputs

W10-M
8

Finite State Machine?
• See Appendix C

• A sequential logic
function which has a state
and inputs – the logic
function determines the
next state and outputs
– Moore machine – outputs

depend on just the current
state

– Mealy machine – outputs
depend on current state and
inputs

• Book uses Moore machine
description

W10-M
9

Finite State Machine Control of Multicycle
Datapath (1)

Memory access
instructions
(Figure 4.20)

R-type instructions
(Figure 4.19)

Branch instruction
(Figure 4.21)

Jump instruction
(Figure 4.24)

Instruction fetch/decode and register fetch
(Figure 4.36)

Start

High-Level View

W10-M
10

Finite State Machine Control of Multicycle
Datapath (2)

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

Register fetch

(Op = 'LW') or (Op = 'SW') (Op = R-type)

(O
p

=
'B

EQ
')

(O
p

=
'J

M
P

')

0
1

Start

Memory reference FSM R-type FSM Branch FSM Jump FSM

Fig. D.3.1: Steps 1 and 2: Instruction Fetch and Decode Instructions

W10-M
11

Finite State Machine Control
of Multicycle Datapath (3)

Finite State Machine for Memory Reference Instructions
MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegWrite
MemtoReg = 1

RegDst = 0

Memory address computation

(Op = 'LW') or (Op = 'SW')

Memory
access

Write-back step

(O
p

=
'SW

')

(O
p

=
' L

W
')

4

2

53

From state 1

To state 0

Memory
access

W10-M
12

Finite State Machine Control of Multicycle
Datapath (4)

Finite State Machines for R-type Instructions

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

RegDst = 1
RegWrite

MemtoReg = 0

Execution

R-type completion

6

7

(Op = R-type)

From state 1

To state 0

W10-M
13

Finite State Machine Control of Multicycle
Datapath (5)

Finite State Machine for Branch Instruction

Branch completion
8

(Op = 'BEQ')

From state 1

To state 0

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

Jump completion
9

(Op = 'J')

From state 1

To state 0

PCWrite
PCSource = 10

Finite State Machine for Jump Instruction

W10-M
14

PCWrite = 1
PC Source = 1 0

ALUS rcA = 1
ALU SrcB = 00
ALUO p = 01

PC W ri teCond = 1
PC Source = 01

ALUS rcA = 1
ALUSrcB = 00

ALU O p = 10

R egD st = 1

M emtoR eg = 0

MemWrite = 1
IorD = 1IorD = 1

ALU SrcA = 1
ALU SrcB = 10
ALUO p = 00

R egDst = 0
RegW rite = 1

M emtoR eg = 1

ALUSrcA = 0
ALUS rcB = 11
ALUO p = 00

MemRead = 1
ALU SrcA = 0

IorD = 0
IRW rite

ALUSrcB = 0 1
ALU O p = 00

PC W rite = 1
PC S ource = 0 0

Instruction fe tch
Instruction decode/

register fetch

Jump
comple tion

Branch
completionExe cution

M emory address
com putation

M emory
access

M emory
access R-type comple tion

W rite -back step

(Op = 'LW ') or (Op = 'S W ') (Op = R-type)

(O
p = ' BE Q')

(O
p

=
'J')

(Op = 'SW')

(O
p

=
'L W

')

4

0
1

9862

753

Start

MemRead = 1
RegWrite = 1

W10-M
15

Finite State Machine
Control of Multicycle Datapath (5)

PCWrite

PCWriteCond
IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3
NS2
NS1
NS0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

State register

IRWrite

MemRead

MemWrite

Instruction register
opcode field

Outputs
Control logic

Inputs

W10-M
16

Control Logic – Truth Table

Note that control outputs

depend only on current

state (Op column is blank

for all output rows)

Next state depends on

current state and inputs

(opcode from instruction)

W10-M
17

Multicycle Implementation: Control Units added

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25–0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

