E AENRY BT 8

hE S¥e B4

o <l o B

BENBN BPE
WURY BB DE

BCE REMbW
o H_wm,y_ﬂ n
= | - M T
B8 oW BX

U

e NE ECE

CSE 2021
Computer Organization

%L te e e

- & -
ar B S O L

L & R &

E.}.”

| B HESN L8

S HESN ol ¢URY BE Ditte

L]
-

PUREY BB DE=- H

W
13

- e

w D @

=]
LAE WURY BB a.ﬂr. &8

= I L

i
L« Wk,

CSEB

Hugh Chesser
1012U

W11-W

M)
Ly 1 &%Emlt & UﬁN.Q"

WURY BB

ba)

=)

Jump
address [31-0]

H
xcZ

ALUOUL gy

]
Op
[5-0]
A
Instruction [25—0] O L
1 N \left 2
Instruction
0 [31-26] | 5 PC [31-28]
M Instruction »| Read M
u Address [25—-21] " | register 1 _| N
1X Mem Instruction {4 Read Read A X
oy [20— 16] ._r register 2 datal I |
Membeata Instruction 0 Wn'teRegiSterS result
B M ; Read
[15-0] Instruction | u register gaig 2 H—.- 0
Write i 15-11] | x . M
bl Inrsuycuon [] . Wiite 4 =1 4
egister data |2 !
Instruction 3
[15-0]
> Memory >
data
register » ~
Instruction [5— 0]

v

> Add

IF/ID

ID/EX

Address

Instruction
memory

Instruction

A

YAdd Add

EX/MEM

ﬂ

Y

. | Read
| register 1 Read
data 1
Read
register 2
- Registers p..q
Write data 2
register
» | Write
data

e

Zero
DALY 4y

y

Read
Address data

Data
memory

_ | Write
" | data

— PCWirite

Finite State M achine PCWiiteCond

Control of Multicycle Datapath (5) lorD

MemRead

MemWrite

IRWrite

Control logic MemtoReg

Outputs <

PCSource

ALUOp

ALUSrcB

ALUSTIrcA

RegWrite

RegDst

NS3

NS?2

s NS1
np

N NSO

'd N

A
Bl 2 B Q| 3 2
ol ol ol ol o o Al H Al B

Instruction register State register

opcode field I T .

A 4

MemRead = 1

ALUSICA =0
lorD =0
Start > IRW rite
ALUSrcB =01
ALUOp =00
PCWrite=1
CSource = 0
Memory address _ oW
computation o) ot O E xe cution
(o)t 6
ALUSrcA =1 =
ALUSrcB = 10 A'?_b%srégA: 010
ALUOp = 00 ALUOp= 10
0O
= 2.,
2 S
I @
@ Memory Memory
¥ ___access access v
5
MemRead = 1 MemWrite = 1 RRe%{ljit = %
lorD = 1 lorD = 1 bl

W rite-back step

RegDst=0
RegWrite =1

MemtoReg =0

Instruction fetch

Instruction decode/
register fetch

ALUSrcA =0

ALUSTCB = 11
ALUOp = 00

Q
Ay9< Y =
09 //?\ Q/;% 1
Branch \S @ Jump
completion v _completion

ALUSICA = 1
ALUSICB = 00 PCWrite = 1
ALUOp = 01

PCWriteCond =1 PCSource = 10

PCSource = 01

R-type completion

MemtoReg=1

Control Logic — Truth Table

| ouput | Cumentstaes | O
Note that control outputs [e+ tated

PCWriteCond state8
depend only on current VermeaT a0+ stios
state (Op column is blank [ww S0

MemtoReg stated
for all output rows) FoSonees oot

ALUOpL stated

ALUORPO state8
Next state depends on T C T X T —

RegWrite stated + state?

RegDst state7

MextStated stated + stateb + state7 + state8 + state8
MextStatel state(

MextState2 stated Op="Tw"]+(0p="3u")
MNextState3 state2 Op="Tw")

MextStated state3
MextStates state2 Op="sw")
MNextStated statel Op = "Rtype")
MextState? stated
MextStated stated {Op="beqg")
MNextStateS statel {Op="Jmp")

NSO Example (1)

Give the logic equation for the NSO bit for the FSM

* NSO is true for states 1(0001,,,.), 3 (0011,,,,.), 5 (0101,,,,),

7 (0111,,,.), 9 (1001,,,,)
* Referring to the truth table...

N30, = staté) =0 | owt | comemteatw | o»

MNextStatel stated + statel + state7 + state8 + state®
\<mae1 state0
. MNextState2 stated Op="Tw'")+(0p="3w")
T k / — [MextState3 state? Op="Tw")
a e a CO up e Of m In u tes MextStated state3
. < [MextStateb state? Op="sw')
tO thlnk abOUt the Other MextStatet statel (Op="Rtype')
. . < | MextState7 stateB
d MextState8 statel (Op="beq")
Con Itlons'" — [MextStated statel (Op="jmp")

W11-W

NSO Example (2)

Give the logic equation for the NSO
bit for the FSM

" oumt | cunentstates | o

V\<

]

|

MextStated stated + stateb + state7 + state8 + state@

MextStatel state

MextState2 statel Op="1w")+{0p="5u
[TextState3 state2 Op="1w")

MextStated state3

MextStateb state2 Op="sw'")

MextStated statel (Op = "Rtype')

extState7 stated

MextStates statel (Op="beq")

NextStated statel {Op="jmp")

NSO, = state [Dp='Iw '(23..,) = SO[BLI52 [3[Op5[DOp4 [Dp3[Op2 O[O0

NextState5 = State2 - (Op[5-0]=sw)
=S3. ﬁ%- Op5-Op4-Op3 - Op2-Opl -0p0

NextState7 = State6 = S3 - $2 - S1 - SO
NextState9 = Statel - (Op[5-0]=jmp)

=83.52-S1-S0- Op5- Op4 - Op3 - Op2-Opl - Op0

VVTT-VV

Agenda

Topics:
1. Pipeline implementation

Patterson: 4.5

Pipelining is an implementation technique in whmshltiple instructions are overlapped
during execution.

Pipelining enhances the throughput of the processor

To explain pipelining, consider an analogy wittaarldry example where 4 users are aske
wash, dry, fold, and store several loads of clathes

6 PM 7 8 9 10 11 12 1 2 AM

T e — [—

Task
order
o] | n@
» o El
- o) 2
B O
= 3 =
c o EM
= 5]~
D @)

Sequential Laundry

6 PM 7 8 9 10 11 12 1 2 AM

=

3

(]
4

C

o [o /;@_
= O

v

Pipelined Laundryassume equal time at each stage with 4 users:Bwam, Cathy, and Don).

A.
B.

C.

Ann places dirty load # 1 in the washer

When washer is finished, Brian places wet loddi#the dryer. Ann loads the washer with load # 2
of dirty clothes.

When load # 1 is dried, Cathy takes dried loddo#t of the dryer and starts folding. Brian lo#uks
dryer with wet load # 2. Ann loads the washer Woidd # 3 of dirty clothes.

When load # 1 is folded, Don starts storing fdld@ad # 1 in the storer. Cathy takes dried lo&d #
out of the dryer and starts folding. Brian loads dnyer with wet load # 3. Ann loads the washehwit
load # 4 of dirty clothes. Process continues.

=

MIPS pipelining has the following five stages:

1. Instruction Fetch (IF)Eetch instruction from memory.

Instruction Decode (ID)Read registers while decoding the instruction.
Execution (EX):Execute the operation or calculate the address.
Memory Access (MEM)Access an operand in data memory.

Write Back Stage (WB)Write the result into a register.

S 0 1N

Activity: Compare the non-pipelined execution timih the pipelined execution time for the instrocis:
| w $1, 100($0)
|l w $2, 200($0)
| w $3, 300($0)

assuming the following delays at different funcabuanits.

Instruction Class | Instruction fetch | Register read ALU Data access | Register write Total
Load word (lw) 200 ps 100 ps 200 ps 200 ps 100 ps 800 ns
Store word (sw) 200 ps 100 ps 200 ps 200 ps 700 ns
R-format 200 ps 100 ps 200 ps 100 ps 600 ns
Branch (beq) 200 ps 100 ps 200 ps 500 ns

AT

Program
execution _ 2 4 6 8 10 12 14 16 18
order Time T T | | | | | | —*
(in instructions)
Instruction Data
Iw $1, 100(%0) fetch Reg ALU access Reg
. > Instruction Data
lw $2, 200($0) 800 ps eten | Re9[ALY aceess | R€9
< > Instruction
lw $3, 300($0) Non-pipelined Execution 800 ps fetch
A 4
«— i D
800 ps
Program
execution . 2 4 6 8 10 12 14
order Time T T | | | | | >
(in instructions)
Instruction Data
lw $1, 100($0) tetch Reg| ALU access | R€9
<+——P|nstruction Data
lw $2, 200($0) 200 PS| foich Reg| ALU access | R€9
<+——¥|nstruction Data
| lw $3, 300($0) 200 ps| fereh Reg| ALU access | Re€9
+“— P ¢— P 4¢+——— P ¢——hr<+—»
200ps 200ps 200ps 200ps 200 ps

Pipelined Execution

— Speedup obtained through pipelining equals the eumbpipe stages if execution time of
each stage is the same.

— In our previous example, speedup should be 5.

Actual speedup in our previous example = 24 / 1474

Why? Number of instructions are too small.

Increase the number of instructions to 1003.

Then speedup = (1003 x 8)%21003 + 8) = 8024/2014 = 3.98

— Pipelining added some overhead (additional 100pRé&gister read)

— Note that pipelining increases the overall throughphe execution time for each instructic
stays the same.

1. All MIPS instructions are of the same length.
Instruction fetch (IF) in the first pipeline stage
and decoding in the second stage is easier.

i

1. Instructions in 80x86 have variable length
from 1 byte to 17 bytes. This makes the first
two stages (instruction fetch and decoding)

more challenging making pipelining difficult.

2. MIPS instructions have a limited number of
formats with registers staying specified at
almost the same bit positions. This allows the
decoding stage to start reading the registers at
the same time as HW is determining the type
of instruction.

2. Due to variable instruction length in 80x86,
the registers are specified at different bit
positions.

3. MIPS do not allow operands to be directly
used from the memory. Operands are first
loaded into the registers.

3. 80x86 allows direct operation on operands
while in memory. An additional address stage
is therefore needed in 80x86.

4. Since operands are aligned in memory, data
can be transferred from memory to registers
in a single data transfer command.

CSE
mnn

1o

HazardsPipelining hazards occur when the next instrucioa pipelined program can not
executed until the prior instruction has been etextu

Structural Hazardsccur when hardware does not support combinationstfuctions to be
executed in the same clock cycle.

Laundry analogyA washer-dryer combo is used where a load ohelois washed and thel
dried in the same machine.

MIPS: A single memory used for data and instructiomssilts in structural hazard below.

Program
order Time | | | l l I | -
(in instructions) _

w $1, 100(80) | Reg| ALU Reg

<+“—p ;
w$2,200$0) 2ns | Reg| AU | D% |Reg
+—Pp ;

Iw $3, 300($0) 2ns InS]E;utgaon Reg ALU alc?cac;tzs Reg
v

lw $4, 400($0) 2 s Reg| ALU agcifs Reg

“— Pt —rP4t—rP ¢ ————r4¢—>
2ns 2ns 2ns 2ns 2ns
Pipelined Execution

CSE
mnn

2. Control Hazardsoccur when the execution of the next instructiopases upon a decision
the previous instruction.

Laundry analogyLaundry crew is required to determine the cordetergent and temperat
setting for perfect cleaning.

MIPS: Branch instruction can cause a control hazard.

Maodification: Add extra HW such that: (1) registers are loadatitasted for equality and (-
PC is updated with the branch target address is¢bend step.

Program
execution _ 2 4 6 8 10 12 14 16
order Time I I I I I I] I >
(in instructions)

Instruction Data

add $4, $5, $6 fetch Reg| ALU access | Y
Instruction Data
«—>
beq $1, $2, 40 ons fetch Reg| ALU access | ~¢9
Instruction Data

| lw $3, 300($0) < . > i Reg| ALU access | R€9

/
2ns

Even with added HW, there is still a delay of an additional 2ns

o 2071

Solution # 1 to
Control Hazards:
Always predict that
the branch will fail
and keep executing
the program

Registers must be cleared
and

an additional delay of 2ns

4 ns

Program
execution _ 2 4 10 12 14
order Time T T T T |
(in instructions) | . > Branch is not tak
nstruction ata
add $4, $5, $6 tetch Reg ALU access | R€Y
beq $1, $2, 40 «—|IMstucion J o ALU el
2ns fetch access
Instruction Data
| lw $3, 300($0) <—2 r? tetch Reg ALU acess | R€Y

Program
execution _ 2 4 10 12 14
order Time ' ' ' ' !
(in instructions) — — B

add $4, $5 ,$6 Sf Uelon | peg ALU a Reg

etch access
Instruction Data
beq $1, $2, 40 3 2 ’ fetch J access XL
ns
{“9@(‘9@{”‘;
Instruction Data

v or $7, $8, $9 < fetch AL access | e

Pipelining Hazards (4)

Solution # 2 to Control Hazardsert an additional instruction that is not afézl by the branch
instruction. This solution is calledklayed branch

Program
execution | 2 4 6 8 10 12 14
order Time T T T T T T T >
(in instructions)
beq $1, $2, 40 Ins:ruction Reg ALU Data Reg
etch access
[add $4, $5, $6 : »| Instruction Reg ALU Data Reg
(Delayed branch slot) 2 ns IS access
I Instruction Data
¢ lw $3, 300($0) ‘W fetch Reg| ALU access | R€9
«—>

2 ns

Pipelining Hazards (5)

3. Data Hazardsoccurs when an operand used in the next instrucdiapdated in the prior
instruction.
add $s0, $sl1, $s2
sub $t0, $s0, $t1

Solution:As soon as ALU generates data ($s0), it makesaitable to the next instruction
before storing it in the register file.

Program

execution 2 4 6 8 10
order Time T T T T T >

(in instructions)
add $s0, $t0, $t1 MEMI— wWB

$s0 made available to the n

! sub $t2, $s0, $t3 MEM}— WBI

_ 2 4 6 8 10
Time I I I T T >
add $s0. $t0, $t1 IF D ID >EX MEM WB
Instruction Instruction Decode / Execute Memory Write Back
fetch from Register Read Read/Write stage into the
instruction memory register file

Shading in each block indicates the elementas @igr in the instruction. Since memory is n
accessed in an add instruction, it is not shaded.

Shading on the left half of the block indicatiesttthe element is being written. During
instruction fetch, the instruction memory is readlse right half of IF block is shaded.

Shading on the right half of the block indicatest the element is being read. During write
back stage, the register file is written so thehetf of the WB block is shaded.

Activity 2

Using the graphical representation, show thataHewing swap procedure has a pipeline hazard
Reorder the instructions to avoid pipeline stalls.

lw $t0, O(S$t1)
lw $t2, 4($t1)
sw $t2, O($t1)
sw $t0, 4(S$t1)

