E AENRY BT 8

hE S¥e B4

o <l o B

wik = =u Y e i i

HE N B Uy 8 DS H

W
13

O-N-

ZAFEl

WURY BB DE

- e

BECE AEMWV

m@ECNE & »

m

P O LAE WUKY B U.ﬂt. &8

s nm s XAER
w7k

S HESN LFE wURY BB

3

U

e NE ECE

:
o
:

m
m
o
:
:

-E-S-S'ER,

ICE
ICNTE B U

HUGH

_ 2 4 6 8 10
Time I I I T T >
add $s0, $t0, $t1 IF |—4 ID SEX——MEM— WB
Instruction Instruction Decode / Execute Memory Write Back
fetch from Register Read Read/Write stage into the
instruction memory register file

Shading in each block indicates the elementasl fir in the instruction. Since memory is not
accessed in an add instruction, it is not shaded.

Shading on the left half of the block indicatiesttthe element is being written. During
instruction fetch, the instruction memory is readlse right half of IF block is shaded.

Shading on the right half of the block indicatest the element is being read. During write
back stage, the register file is written so thehetf of the WB block is shaded.

Activity 2

Using the graphical representation, show thataHewing swap procedure has a pipeline hazard.
Reorder the instructions to avoid pipeline stalls.

lw $t0, O(S$t1)
lw $t2, 4($t1)
sw $t2, O($t1)
sw $t0, 4(S$t1)

Agenda

Topics:
1. Pipeline Datapath and Control

Patterson: 4.5

=

| \
Add | |
% % | |
Add N
i > result : :
Shift \ \
eft 2 |
s Read
Address 2! Regsiterl paagl__. \
Z4—|Read datal ALUZ l B
Inns{grl#glirgn — = \Ijve_gilsterz Read - > Ae|_r8 -
rite ea
—|Register data 2 M result Address daia Ilvl
Write u / Data v
Data Register 1 memory 8(
Write
m data
» Sign 32 ,
extend|

EX: Execute /
Address Calculation

ID: Instruction Decode /
Reqister file read

IF: Instruction Fetch

o T T T
1
I
1
1
|
|

i

MEM: Memory Access | WB: Write back
|
1

In pipelined datapath, each instruction is brokefive steps:

IF (Instruction Fetch), ID (Instruction Decode awrdister file read), EX (Execution or address
calculation), MEM (Data Memory Access), and WB (WrBack).

Each of the above step takes one clock cycle.
Instructions and data advance forward by fromt&efight.
Data flows from right to left only in two cases

1. Write back stage placing the data in the regidter

2. Selection of the value for PC between (PC + d))lmanch target address
Registers in between different stages store the stues to be used by next stage
Name of registers are based on the two pipelireagestthat the registers separate

Each pipelining register has a different size:DAgister is 64 bits wide; ID/EX register is 128
bits wide; EX/MEM register is 97 bits wide; and MIBMB is 64 bits wide

There are no pipeline registers at the end of theswack stage as data is written directly into
memory or register file or the PC.

How pipelining works (1): Example | w $s1, 0($s2)

IF/ID IC/EX EX/MEM VEVMWB
. | |
' | Add | |
Add X
) > result : :
' \
| \
! \
5 ,|Read | |
> Address g Regsiterl Read | |
i .|Read datal ALU | |
Instr N = Register2 i?_rﬁ N 1
me e data 2 resul Address

Register

Write]
Data Register

Data
memory

Write
data

How pipelining works (2): Example | w $s1, 0($s2)

]
1
|
1
T
|
\ IF/ID IC/EX EX_{MEM MEMN\B
| |
pra Add | |
Add
M > result T : :
| \
\ \
5 [Read : }
Address I3} "|Regsiterl | |
3 ,|Read \ |
Instruction Register2 | |

memory Write
Register

Write
Data

result Address

Data
memory

Write
data

How pipelining works (3): Example | w $s1, 0($s2)

> \ IF/1D IC/EX EX/MEM VEMWB

Add
% Add |
4 — > Add > |
y |
\
\
\
\
\
\
\
|

5 ,|Read
Address g Regsiterl Read >
3 ,|Read datal -
i = Register2
Instruction g Read I

memory Write
Register data 2 Adress
Data

Write
Data Register memory
Write

data

How pipelining works (4): Example | w $s1, 0($s2)

\ IF/ID ID/EX EXIMEM VEVWB

Add
Add
- S add X
y

Read
‘|Regsiterl paoq

|Read datal
Zero

: Register2
Instruction 9 Read ALU
memory Write data 2 result
Register
Write .
Data Register

ALU

—H Address

Instruction

How pipelining works (5): Example | w $s1, 0($s2)

DA ' ' | Add
%ﬂ |
Read

datal ALU

[
I
I
[
I
I
IE/ID IC/EX EX/MEM VEVWB
!
!
!
!
!
!
\
\
\
\
\
\

—H Address

Zero

Instruction

Instruction
Read ALU
memory data 2 result Address

Data
memory

Write
data

Register

How pipelining works (6): Example | w $s1, 0($s2)

> Address

Instri
me

=
8
©
=
=
0
£

-

=

Time (in clock cycles)

Program cC1 CC 2 CcC 3 CC 4 CC5 CC6
execution
order — — __ __
w$s1, 0($s2) IM [Reg ALU DM Reg
IF/ID IC/EX EX/IMEM VEMMB
Instruction | Instruction | g 400 Data Write back
fetch decode access

Activity 3: Using the graphical representation, whbat the multiple clock cycle pipeline diagram of
the following two instructions

| w $t 0, O($t 1)

sub $s0, $s1, $s2 »

T g

|

ID/EX

IF/ID
> Add - \‘
Add
4 — / >Add result
Shift
left 2
Read
> Address § register 1 Read
7 R eacti , data 1
Instruction | = register)
. Reglsters Read ALU ALU
memory Write data 2 0 result Address R(’jead
register M Data ata
u
\éV([i"t;‘e X memory
a 1
Wirite
data
Instruction
50l 1 [gign |22 $
N “lextend N
Instruction
20— 16] 0
M
Instruction u
[15—11] Lz

EX/MEM

MEM/WB

OXCKH

.

Control lines in pipelined implementation is divibimto five groups according to the pipeline
stage

Instruction Fetch: No control needed as the ‘evchntrol” of PC and “read control” of
Instruction memory is always asserted.

Instruction Decode/Register File Read: No costndleded as the register file in being read
during each instruction.

Execution/Address Calculation: Control signaks/arUSrc, RegDstandALUOp.
For lw/sw instructionsALUSrc = 1, RegDst = @ndALUOp = 00. For R-type instructions,
ALUSrc = 0 RegDst = 1andALUOp = 10.

Memory Access: Control signals @& eanch, MemWritgandMemRead For Iw instruction,
MemRead = JandBranch = MemWrite = OFor sw instructionMemWrite = 1landBranch =
MemRead = OFor branch instructiongjranch = landMemwrite = MemRead = (For R-type
instructionsBranch = MemWrite = MemRead = 0.

Write Back: Control signals are MemtoReg. Formstructions)ViemtoReg = 1For R-type
instructions)MemtoReqg = 0

Pipeline registers are extended to include therobsignals for each stage of an instruction.

15

Activity 4

Show the following instructions going through thpgine:
| w $10, 20($1)
sub $11, $2, $3
and $12, $4, $5
or $13, $6, $7
and $14, $8, $9

Activity 4: Clock Cycle # 1

IF: lw $10, 20($1)

Address

Clock 1

ID: before<1> ‘EX: before<2> TAEM: before<3> WB: before<4>
IFID ID/IEX EXIMEM MEMMWB
00 WB 00
Control 00Q M 000 WB 00
0000 3 S Q
00 0
B EX 0 M 0 WB 0
o
Branch
%
Read
g register 1 Read - §,
g Read data 1l E
= registe{2 2 ist
. egisters Read
Write data 2 Address %e?d 1
register Data alta M
Write memo u
| data i 6(
Write ‘
data
Instruction /\
[1>-0] Sign ALU MemRead
extend control
Instruction
[20-16]
q ALUOp
i
Instruction
X
[15-11] B d _J _A
RegDst

Activity 4: Clock Cycle # 2

IF:sub $11, $2, $3 ID:Ilw $10, 20($1) EX: before<1> ’\AEM:before<2> WB: before<3 >
IF/ID ID/EX Ex/| EM MEM/WB
. T
= Ly > Control _IVI
, L

Add result

Read
register 1
Read
reg?sterZ .
Regi

Write
register

data

Instruction

Read
Address data
Data
memory

OXCzl—‘

Write
data

Instruction
[15-0]

Instruction
10 | [20-16] ﬂ
M
Instruction u
X [15-11] X

Clock 2

Activity 4: Clock Cycle # 3

Clock 3

IF:and $12, $4, $5 ID: sub $11, $2, $3 ‘EX:IW $10, ... r\AEM:before<1> WB: before<2 >=
IF/ID ID/EX EX/IMEM MEM/WB
10 WH 11 L
sub > Control M 010 WB
0 l
Ex20 M
542 »| Read
> Address B register 1
g Read
=1 register 2
Wiite Regl Add Read
register ress Data data IlVI
Wit memor u
| dartlae y 6(
Write ‘
data
Instruction
X 1 [15_0f ' 20 ALU
control
Instruction
X [161 X
Instruction g
11 1 [15-11] 11 “

RegDst

Activity 4: Clock Cycle # 4

IF:or $13, $6, $7 ID: and $12, $2, $3 ‘EX:sub $11, ... r\AEM:IW $10, . .. WB: before< 1>~
IF/ID IDIEX EX/MEM MEMMWB
10 [l 10
and Control M LoD Wi L
— 1
EX M H W
—» Read
register 1
o rRee?sqterZ
O g $5
Write > Address
register
D
150 X MemRead

Activity 4: Clock Cycle # 5

IF: add $14, $8, $9 ID: or $13, $6, $7 EX:and $12, . .. MEM: sub $11, ... ‘WB: lw $10, ... =
|
IF/ID ID/EX EX/MEM MEM/WB
10 Wl

or 000 10

L L.
Control M | LMIB L)
EXpE2 M M 1

> Add result
Shift
left 2

ALUSIC

Reg\ite

S4o—0
> Address 8 6 > g
8l ;
= o ero
10 I Read
> Address mEnd
Data data
memory
L Write
data
Instruction /\
X_1[15-0] Sign X - ALU
extend control
Instruction
X | [20-16] X
ALUO
o~ o~ 0
13 }rfgtiulclt%on 13 12
Clock 5 >
RegDst

