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ILP Concept

°Data and control hazards put a limit on 
the ability of the processor to exploit 
parallelism.

°There are two approaches to exploit ILP, 
software and hardware based.

• Hardware: Depends on the hardware to 
locate and exploit parallelism between the 
instructions, scoreboard and Tomasulo’s
algorithm( dynamic)

• Software: Depends on the compiler to 
exploit ILP (static)
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Vector Processing

°Consider the following loop
for(i=1; i<=1000;i++)

x[i]=x[i]+y[i]

°No dependence between iterations.
°All iterations can be done in parallel (if no 
structural hazards).

°Vector processing is ideal for such a 
case.

°Not widely used in general purpose 
applications.
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Data Dependences and Hazards

°The Objective is to determine parallel 
instructions, those instructions that can 
run in parallel.

° If they can run in parallel, then they can 
overlap in a pipeline.

°There are three different type of 
dependence, data dependence, name 
dependence, and control dependence.
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Data Dependence

°An instruction j is data dependent on 
instruction i, if either

• instruction i produces a data that is used by 
j,

• Instruction j is data dependent on k, and k is 
data dependent on I

°True dependence, we cannot ignore or 
avoid, data must be produced before it is 
consumed.
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Data Dependence

° The arrows show the data 
dependence.

° Either the compiler must not 
schedule the instruction this 
way, or the processor 
interlock detects it and stall.

° Dependence is a property of 
the program, whether it 
results in a hazard or not, 
that depends on the pipeline 

° Much more difficult is data 
passed through memory 
rather than registers

LOAD F0,0(R1)

ADD F4,F0,F2

SD F4,0(R1)

ADD R1,R1,#-8

BNE R1,R2,Loop

Loop:
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Data Dependence

1 ADD.D        F2, F4, F6
2 ADD.D        F10, F6, F8
3 ADD.D        F12, F12, F14

1 ADD.D        F2, F4, F6
2 ADD.D        F10, F2, F8
3 ADD.D        F12, F10, F2
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Name Dependence

°There are two types of name 
dependence, antidependence, and name 
dependence.

• Anitdependence between instructions i, and 
j when j writes a register or memory location 
that i reads.

• An output dependence is when two 
instructions write to the same register or 
memory location.

°There is no value being transmitted 
between instructions, could be solved by 
register renaming
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Data Hazard

°A dependence may result in a data 
hazard

°RAW (read After Write)

°WAW (Write After Write )

°WAR (Write After Read)
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Conrol Dependence

°S1 is control dependent on p1
°Can not move S1 before if, and can not 
move another instruction in the loop.

°We can violate control dependence and 
execute instruction that is not suppose to, 
if that will maintain the program 
correctness. 

°We mostly care about exceptions behavior
and data flow

If p1 {

S1;

};
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Control Dependence

ADD R2,R3,R4

BEQZ R2,L1

LW R1,0(R2)

L1: ….

ADD R1,R2,R2

BEQZ R12,L1

SUB R4,R5,R6

ADD R5,R4,R9

L1: OR R7,R8,R9

What if R4 is not used 
after L1, can we move it 
up before branch

No data dependence, 
can we move LW 
before BEQZ?
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Control Dependence

ADD R1,R2,R3

BEQZ R4,L

SUB R1,R5,R6

L: OR R7,R1,R8

The value of R1 depends on the BEQZ.

Data dependence by itself is not sufficient to 
maintain correctness of the program

14

Outline

°Data dependence and hazards

°Exposing parallelism (loop unrolling and 
scheduling)

°Reducing branch costs (prediction)

°Dynamic scheduling

°Speculation

°Multiple issue and static scheduling

°Advanced techniques

°Example



15

Loop Unrolling

°Consider the following loop X=X+s

for (i=1; i<=1000; i=i+1;)

x[i] = x[i] + s;

Loop:  L.D             F0, 0 (R1)           ;F0=array element

ADD.D        F4, F0, F2           ;add scalar in F2  (constant)

S.D               F4, 0(R1)            ;store result

DADDUI     R1, R1, # -8        ;decrement pointer 8 bytes

BNE             R1, R2,Loop      ;branch R1!=R2
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Loop Unrolling

Instruction 
Producing Result

FP ALU Op

FP ALU Op

Load Double

Load Double

Instruction 
Using Result

Another FP ALU Op

Store Double

FP ALU Op

Store Double

Latency In
Clock Cycles

3

2

1

0

i.e followed immediately by ..
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Loop Unrolling

No scheduling
Clock cycle

Loop:    L.D            F0, 0(R1)                 1
stall                                             2
ADD.D       F4, F0, F2               3
stall                                             4
stall                                             5
S.D               F4, 0 (R1)              6
DADDUI     R1, R1, # -8           7
stall                                             8
BNE             R1,R2, Loop          9
stall                                            10

10(9) cycles per iteration

Scheduling
Clock cycle

Loop:    L.D            F0, 0(R1)                 1
DADDUI     R1, R1, # -8 2
ADD.D       F4, F0, F2               3
stall                                             4
stall                                             5
S.D               F4, 0 (R1)              6
BNE             R1,R2, Loop          7
stall                                            8

8(7) cycles per iteration
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Loop Unrolling
No scheduling

Loop:    L.D         F0, 0(R1)
Stall

ADD.D   F4, F0, F2
Stall
Stall

SD          F4,0 (R1) ; drop DADDUI & BNE

LD         F6, -8(R1)
Stall

ADDD   F8, F6, F2
Stall
Stall

SD          F8, -8 (R1), ; drop DADDUI & BNE

LD         F10, -16(R1)
Stall

ADDD   F12, F10, F2
Stall
Stall

SD          F12,  -16 (R1) ; drop DADDUI  & BNE

LD         F14, -24 (R1)
Stall

ADDD   F16, F14, F2
Stall
Stall

SD          F16, -24(R1)
DADDUI     R1, R1, # -32
Stall

BNE         R1, R2,  Loop
Stall

Assuming the array size 
is multiple of 2, i.e. the 
number of loop iterations 
is a multiple of 4

We eliminated the stalls 
because of the branching

28 cycles for 4 iterations 
(7 per iteration)
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Loop Unrolling
When scheduled for pipeline

Loop:     L.D             F0, 0(R1)
L.D             F6,-8 (R1)
L.D             F10, -16(R1)
L.D             F14, -24(R1)
ADD.D       F4, F0, F2
ADD.D       F8, F6, F2
ADD.D       F12, F10, F2
ADD.D       F16, F14, F2
S.D             F4, 0(R1)
S.D             F8, -8(R1)
DADDUI   R1, R1,# -32
S.D             F12, 16(R1),F12
BNE           R1,R2, Loop
S.D             F16, 8(R1), F16    ;8-32 = -24
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Loop Unrolling

°A basic instruction block is a straight-line 
code sequence with no branches in, 
except at the entry point,  and no 
branches out except at the exit point of 
the sequence.

°The amount of parallelism in the basic 
block is limited by the dependence and 
the size of the block

°Loop unrolling is increasing the size of 
the block, decreasing the “control”
dependence by eliminating branches.
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Loop Unrolling

• Determine that unrolling the loop would be useful 
by finding that the loop iterations where 
independent.

• Determine that it was legal to move S.D after 
DADDUI  and BNE; find the correct S.D offset.

• Use different registers (rename registers) to avoid 
constraints of using the same register for different 
computations 

• Eliminate extra tests and branches and adjust 
loop maintenance code.

• Determine that loads and stores can be 
interchanged by observing that loads and stores 
in different iterations are inependent..

• Schedule the code, preserving any dependencies 
needed to give the same result as the original 
code.
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Introduction
°Dynamic scheduling deals with data 
dependence improving, the limiting factor 
is the control dependence.

°Branch prediction is important for 
processors that maintains a CPI of 1, but 
it is crucial for processors who tries to 
issue more than one instruction per cycle 
(CPI < 1).

°We have already studied some 
techniques (delayed branch, predict not 
taken), but these do not depend on the 
dynamic behavior of the code.
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Branch History Table
° A small memory indexed by the lower portion of 

the address of the branch instruction.

° The memory contains only 1-bit, to predict 
taken or untaken

° If the prediction is incorrect, the prediction bit is 
inverted.

° In a loop, it mispredicts twice
• End of loop case, when it exits instead of  looping 

as before
• First time through loop on next time through code, 

when it predicts exit instead of looping
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BTB

Branch PC Predicted PC

=?

PC of instruction
FETCH

Extra 
prediction state

bits
Yes: instruction is 
branch and use 
predicted PC as 
next PC

No: branch not 
predicted, proceed normally

(Next PC = PC+4)
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Branch Target Buffer

° Predicting by itself is not that useful unless we know 
the target address.

° We access the buffer in the IF stage.

° We must know if that entry is for that particular branch 
or not (unlike the prediction, we send the target PC 
address before we know if the instruction is a branch or 
not.

° We only need to store the predicted taken branch 
(untaken is similar to no branch). That might cause 
complication when we use a 2-bit predictor since we 
have to store information for taken and untaken (mat 
use two separate buffers).
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2-bit Predictor
T

T NT

NT

Predict Taken

Predict Not 
Taken

Predict Taken

Predict Not 
TakenT

NT
T

NT

Red: stop, not taken
Green: go, taken
Adds hysteresis to decision 
making process
How many misses per loop ?
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2-bit Prediction
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•Wrong guess for that branch
•Got branch history of wrong 
branch when index the table
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Correlating Branch Predictors

°The 2-bit predictor uses the recent 
behavior of the branch to predict the 
behavior of this branch in the future.

°Sometimes, it is useful to look at the 
recent behavior of other branches

°Consider the following example
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Correlating Branch Predictors

B1 if (aa==2)
aa=0;

B2 if (bb==2)
bb=0;

B3 if (aa!==bb){

DSUBUI     R3, R1, #2
BENZ R3, L1           ;  b1   (aa!=2)
DADD R1, R0, R0    ;  aa==0

L1:     DSUBUI R3, R1, #2
BNEZ R3, L2           ; b2  (bb!=2)
DADD R2, R0, R0    ; bb==0

L2:     DSUBUI R3, R1, R2    ; R3=aa-bb
BEQZ R3, L3           ; b3   (aa==bb)
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Correlating Branch Predictor Ex:

B1 if (d==0)
d=1;

B2 if (d==1)
{

BNEZ R1, L1 ;  d == 0 ?
DADD R1, R0, #1    ;  YES d==1

L1:     DADD R3, R1, #-1
BNEZ R3, L2           ; b2  (bb!=2)

L2:     

Initial d       d==0?             B1                d befoe b2       d==1      b2

0                   Y             NO                         1                   Y         NO

1                   N            Taken                     1 Y         NO

2                   N            Taken                     2 N        Taken        

d

If b1 not taken, b2 is 
not taken for sure
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1-bit Predictor Ex:
Initial d       d==0?             B1                d befoe b2       d==1      B2

0                   Y             NO                         1                   Y         NO

1                   N            Taken                     1 Y         NO

2                   N            Taken                     2 N        Taken        

d        B1            B1 newB1          B2               B2 new B2
Pred action      pred pred action           pred

2       NT             T            T                   NT   T                 T

0       T                NT         NT                 T     NT            NT

2       NT             T            T                   NT   T                 T

0       T                NT         NT                 T     NT            NT

Miss on every prediction
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Correlating Branch Predictor

°Consider a branch that uses 1-bit for 
correlation.

°Every branch have 2 separate prediction, 
one if the previous one is taken, and 
another if not taken

°The prediction is on the form of NT/T

°What will be the result of such a predictor 
on the previous example.



35

Correlating Branch Predictor Ex:
Initial d       d==0?             B1                d befoe b2       d==1      b2

0                   Y             NO                         1                   Y         NO

1                   N            Taken                     1 Y         NO

2                   N            Taken                     2 N        Taken        

d        b1            b1         newb1          b2           b2            new b2
Pred action      pred pred action           pred

2     NT/NT         T         T/NT             NT/NT T            NT/T

0     T/NT NT         T/NT           NT/T                NT            NT/T

2     T/NT             T          T/NT          NT/T T               NT/T

0     T /NT NT         T/NT          NT/T                NT            NT/T

Misprediction on first try 
only

X X

√ √

√ √

√ √
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Correlating Branch Predictor

°The previous predictor is called (1,1) 
predictor.

° It uses one bit for history (last branch), to 
choose among two I-bit branch 
predictors.

°In general a predictor could me (m,n)
predictor.

° It uses the last m branch to choose 
among 2m branch predictors each is n-bit 
predictor.
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(2,2) Predictor

(2,2) predictor

– Behavior of recent 
branches selects 
between four 
predictions of next 
branch, updating just 
that prediction

Branch address

2-bits per branch predictor

Prediction

2-bit global branch history

4

0          1
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Tournament Predictors

°Our first predictor, used only local 
information for prediction.

°The Correlating branch predictor used 
global information to improve 
performance.

°Tournament predictors uses more than 
one predictor (usually one local and 
another global), and use a selector to 
choose among these 2 predictors.
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Tournment Predictor – Example Alpha 21264
Tournament predictor using, 4K 2-bit counters 

indexed by local branch address, based on 
which predictor was most effective recently.  
Chooses between:

° Global predictor
• 4K entries index by history of last 12 branches (212 = 

4K)
• Each entry is a standard 2-bit predictor

° Local predictor
• Local history table: 1024 10-bit entries recording 

last 10 branches, index by branch address
• The pattern of the last 10 occurrences of that 

particular branch used to index table of 1K entries 
with 3-bit saturating counters
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Accuracy of Prediction
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Prediction in MIPS Pipeline

Taken

Branch?

Entry found 
in branch-

target 
buffer?

Send out predicted 
PC

Is 
instruction  
a taken 
branch?

Send PC to memory 
and  branch-target 

buffer

Enter branch 
instruction address 
and next PC into 
branch-target 

buffer

Mispredicted branch, 
kill fetched 

instruction; restart 
fetch at other 

target; delete entry 
from target buffer

Normal 
instruction 
execution

Branch correctly 
predicted; continue 
execution with no 

stalls

No

Yes

Yes

Yes

No

No
ID

IF

EX
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Integrated Instruction Fetch Unit

° Considering fetch as a single stage in a 
pipeline is no longer valid.

° An integrated instruction fetch unit is a part of 
many modern processors.

° The instruction fetch unit integrates several 
functions.

• Integrated branch prediction
• Instruction fetch (for multiple instruction per clock)
• Instruction memory access and buffering to deal 

with the complication of multiple fetches and 
crossing cache lines, …


