
1

COSC4201
Instruction Level Parallelism

Prof. Mokhtar Aboelaze

York University
Based on Slides by

Prof. L. Bhuyan (UCR)
Prof. M. Shaaban (RIT)

2

Outline

°Data dependence and hazards

°Exposing parallelism (loop unrolling and
scheduling)

°Reducing branch costs (prediction)

°Dynamic scheduling

°Speculation

°Multiple issue and static scheduling

°Advanced techniques

°Example

3

ILP Concept

°Data and control hazards put a limit on
the ability of the processor to exploit
parallelism.

°There are two approaches to exploit ILP,
software and hardware based.

• Hardware: Depends on the hardware to
locate and exploit parallelism between the
instructions, scoreboard and Tomasulo’s
algorithm(dynamic)

• Software: Depends on the compiler to
exploit ILP (static)

4

Vector Processing

°Consider the following loop
for(i=1; i<=1000;i++)

x[i]=x[i]+y[i]

°No dependence between iterations.
°All iterations can be done in parallel (if no
structural hazards).

°Vector processing is ideal for such a
case.

°Not widely used in general purpose
applications.

5

Data Dependences and Hazards

°The Objective is to determine parallel
instructions, those instructions that can
run in parallel.

° If they can run in parallel, then they can
overlap in a pipeline.

°There are three different type of
dependence, data dependence, name
dependence, and control dependence.

6

Data Dependence

°An instruction j is data dependent on
instruction i, if either

• instruction i produces a data that is used by
j,

• Instruction j is data dependent on k, and k is
data dependent on I

°True dependence, we cannot ignore or
avoid, data must be produced before it is
consumed.

7

Data Dependence

° The arrows show the data
dependence.

° Either the compiler must not
schedule the instruction this
way, or the processor
interlock detects it and stall.

° Dependence is a property of
the program, whether it
results in a hazard or not,
that depends on the pipeline

° Much more difficult is data
passed through memory
rather than registers

LOAD F0,0(R1)

ADD F4,F0,F2

SD F4,0(R1)

ADD R1,R1,#-8

BNE R1,R2,Loop

Loop:

8

Data Dependence

1 ADD.D F2, F4, F6
2 ADD.D F10, F6, F8
3 ADD.D F12, F12, F14

1 ADD.D F2, F4, F6
2 ADD.D F10, F2, F8
3 ADD.D F12, F10, F2

9

Name Dependence

°There are two types of name
dependence, antidependence, and name
dependence.

• Anitdependence between instructions i, and
j when j writes a register or memory location
that i reads.

• An output dependence is when two
instructions write to the same register or
memory location.

°There is no value being transmitted
between instructions, could be solved by
register renaming

10

Data Hazard

°A dependence may result in a data
hazard

°RAW (read After Write)

°WAW (Write After Write)

°WAR (Write After Read)

11

Conrol Dependence

°S1 is control dependent on p1
°Can not move S1 before if, and can not
move another instruction in the loop.

°We can violate control dependence and
execute instruction that is not suppose to,
if that will maintain the program
correctness.

°We mostly care about exceptions behavior
and data flow

If p1 {

S1;

};

12

Control Dependence

ADD R2,R3,R4

BEQZ R2,L1

LW R1,0(R2)

L1: ….

ADD R1,R2,R2

BEQZ R12,L1

SUB R4,R5,R6

ADD R5,R4,R9

L1: OR R7,R8,R9

What if R4 is not used
after L1, can we move it
up before branch

No data dependence,
can we move LW
before BEQZ?

13

Control Dependence

ADD R1,R2,R3

BEQZ R4,L

SUB R1,R5,R6

L: OR R7,R1,R8

The value of R1 depends on the BEQZ.

Data dependence by itself is not sufficient to
maintain correctness of the program

14

Outline

°Data dependence and hazards

°Exposing parallelism (loop unrolling and
scheduling)

°Reducing branch costs (prediction)

°Dynamic scheduling

°Speculation

°Multiple issue and static scheduling

°Advanced techniques

°Example

15

Loop Unrolling

°Consider the following loop X=X+s

for (i=1; i<=1000; i=i+1;)

x[i] = x[i] + s;

Loop: L.D F0, 0 (R1) ;F0=array element

ADD.D F4, F0, F2 ;add scalar in F2 (constant)

S.D F4, 0(R1) ;store result

DADDUI R1, R1, # -8 ;decrement pointer 8 bytes

BNE R1, R2,Loop ;branch R1!=R2

16

Loop Unrolling

Instruction
Producing Result

FP ALU Op

FP ALU Op

Load Double

Load Double

Instruction
Using Result

Another FP ALU Op

Store Double

FP ALU Op

Store Double

Latency In
Clock Cycles

3

2

1

0

i.e followed immediately by ..

17

Loop Unrolling

No scheduling
Clock cycle

Loop: L.D F0, 0(R1) 1
stall 2
ADD.D F4, F0, F2 3
stall 4
stall 5
S.D F4, 0 (R1) 6
DADDUI R1, R1, # -8 7
stall 8
BNE R1,R2, Loop 9
stall 10

10(9) cycles per iteration

Scheduling
Clock cycle

Loop: L.D F0, 0(R1) 1
DADDUI R1, R1, # -8 2
ADD.D F4, F0, F2 3
stall 4
stall 5
S.D F4, 0 (R1) 6
BNE R1,R2, Loop 7
stall 8

8(7) cycles per iteration

18

Loop Unrolling
No scheduling

Loop: L.D F0, 0(R1)
Stall

ADD.D F4, F0, F2
Stall
Stall

SD F4,0 (R1) ; drop DADDUI & BNE

LD F6, -8(R1)
Stall

ADDD F8, F6, F2
Stall
Stall

SD F8, -8 (R1), ; drop DADDUI & BNE

LD F10, -16(R1)
Stall

ADDD F12, F10, F2
Stall
Stall

SD F12, -16 (R1) ; drop DADDUI & BNE

LD F14, -24 (R1)
Stall

ADDD F16, F14, F2
Stall
Stall

SD F16, -24(R1)
DADDUI R1, R1, # -32
Stall

BNE R1, R2, Loop
Stall

Assuming the array size
is multiple of 2, i.e. the
number of loop iterations
is a multiple of 4

We eliminated the stalls
because of the branching

28 cycles for 4 iterations
(7 per iteration)

19

Loop Unrolling
When scheduled for pipeline

Loop: L.D F0, 0(R1)
L.D F6,-8 (R1)
L.D F10, -16(R1)
L.D F14, -24(R1)
ADD.D F4, F0, F2
ADD.D F8, F6, F2
ADD.D F12, F10, F2
ADD.D F16, F14, F2
S.D F4, 0(R1)
S.D F8, -8(R1)
DADDUI R1, R1,# -32
S.D F12, 16(R1),F12
BNE R1,R2, Loop
S.D F16, 8(R1), F16 ;8-32 = -24

20

Loop Unrolling

°A basic instruction block is a straight-line
code sequence with no branches in,
except at the entry point, and no
branches out except at the exit point of
the sequence.

°The amount of parallelism in the basic
block is limited by the dependence and
the size of the block

°Loop unrolling is increasing the size of
the block, decreasing the “control”
dependence by eliminating branches.

21

Loop Unrolling

• Determine that unrolling the loop would be useful
by finding that the loop iterations where
independent.

• Determine that it was legal to move S.D after
DADDUI and BNE; find the correct S.D offset.

• Use different registers (rename registers) to avoid
constraints of using the same register for different
computations

• Eliminate extra tests and branches and adjust
loop maintenance code.

• Determine that loads and stores can be
interchanged by observing that loads and stores
in different iterations are inependent..

• Schedule the code, preserving any dependencies
needed to give the same result as the original
code.

22

Outline

°Data dependence and hazards

°Exposing parallelism (loop unrolling and
scheduling)

°Reducing branch costs (prediction)

°Dynamic scheduling

°Speculation

°Multiple issue and static scheduling

°Advanced techniques

°Example

23

Introduction
°Dynamic scheduling deals with data
dependence improving, the limiting factor
is the control dependence.

°Branch prediction is important for
processors that maintains a CPI of 1, but
it is crucial for processors who tries to
issue more than one instruction per cycle
(CPI < 1).

°We have already studied some
techniques (delayed branch, predict not
taken), but these do not depend on the
dynamic behavior of the code.

24

Branch History Table
° A small memory indexed by the lower portion of

the address of the branch instruction.

° The memory contains only 1-bit, to predict
taken or untaken

° If the prediction is incorrect, the prediction bit is
inverted.

° In a loop, it mispredicts twice
• End of loop case, when it exits instead of looping

as before
• First time through loop on next time through code,

when it predicts exit instead of looping

25

26

BTB

Branch PC Predicted PC

=?

PC of instruction
FETCH

Extra
prediction state

bits
Yes: instruction is
branch and use
predicted PC as
next PC

No: branch not
predicted, proceed normally

(Next PC = PC+4)

27

Branch Target Buffer

° Predicting by itself is not that useful unless we know
the target address.

° We access the buffer in the IF stage.

° We must know if that entry is for that particular branch
or not (unlike the prediction, we send the target PC
address before we know if the instruction is a branch or
not.

° We only need to store the predicted taken branch
(untaken is similar to no branch). That might cause
complication when we use a 2-bit predictor since we
have to store information for taken and untaken (mat
use two separate buffers).

28

2-bit Predictor
T

T NT

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
TakenT

NT
T

NT

Red: stop, not taken
Green: go, taken
Adds hysteresis to decision
making process
How many misses per loop ?

29

2-bit Prediction

18%

5%

12%
10% 9%

5%

9% 9%

0% 1%

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

eq
nto

tt

es
pre

ss
o gc

c li
sp

ice
do

du
c

sp
ice

fpp
pp

matr
ix3

00
na

sa
7

M
is

pr
ed

ic
tio

n
R

at
e

4096-entry 2-bit
predictor

Mispredict because either:
•Wrong guess for that branch
•Got branch history of wrong
branch when index the table

30

Correlating Branch Predictors

°The 2-bit predictor uses the recent
behavior of the branch to predict the
behavior of this branch in the future.

°Sometimes, it is useful to look at the
recent behavior of other branches

°Consider the following example

31

Correlating Branch Predictors

B1 if (aa==2)
aa=0;

B2 if (bb==2)
bb=0;

B3 if (aa!==bb){

DSUBUI R3, R1, #2
BENZ R3, L1 ; b1 (aa!=2)
DADD R1, R0, R0 ; aa==0

L1: DSUBUI R3, R1, #2
BNEZ R3, L2 ; b2 (bb!=2)
DADD R2, R0, R0 ; bb==0

L2: DSUBUI R3, R1, R2 ; R3=aa-bb
BEQZ R3, L3 ; b3 (aa==bb)

32

Correlating Branch Predictor Ex:

B1 if (d==0)
d=1;

B2 if (d==1)
{

BNEZ R1, L1 ; d == 0 ?
DADD R1, R0, #1 ; YES d==1

L1: DADD R3, R1, #-1
BNEZ R3, L2 ; b2 (bb!=2)

L2:

Initial d d==0? B1 d befoe b2 d==1 b2

0 Y NO 1 Y NO

1 N Taken 1 Y NO

2 N Taken 2 N Taken

d

If b1 not taken, b2 is
not taken for sure

33

1-bit Predictor Ex:
Initial d d==0? B1 d befoe b2 d==1 B2

0 Y NO 1 Y NO

1 N Taken 1 Y NO

2 N Taken 2 N Taken

d B1 B1 newB1 B2 B2 new B2
Pred action pred pred action pred

2 NT T T NT T T

0 T NT NT T NT NT

2 NT T T NT T T

0 T NT NT T NT NT

Miss on every prediction

34

Correlating Branch Predictor

°Consider a branch that uses 1-bit for
correlation.

°Every branch have 2 separate prediction,
one if the previous one is taken, and
another if not taken

°The prediction is on the form of NT/T

°What will be the result of such a predictor
on the previous example.

35

Correlating Branch Predictor Ex:
Initial d d==0? B1 d befoe b2 d==1 b2

0 Y NO 1 Y NO

1 N Taken 1 Y NO

2 N Taken 2 N Taken

d b1 b1 newb1 b2 b2 new b2
Pred action pred pred action pred

2 NT/NT T T/NT NT/NT T NT/T

0 T/NT NT T/NT NT/T NT NT/T

2 T/NT T T/NT NT/T T NT/T

0 T /NT NT T/NT NT/T NT NT/T

Misprediction on first try
only

X X

√ √

√ √

√ √

36

Correlating Branch Predictor

°The previous predictor is called (1,1)
predictor.

° It uses one bit for history (last branch), to
choose among two I-bit branch
predictors.

°In general a predictor could me (m,n)
predictor.

° It uses the last m branch to choose
among 2m branch predictors each is n-bit
predictor.

37

(2,2) Predictor

(2,2) predictor

– Behavior of recent
branches selects
between four
predictions of next
branch, updating just
that prediction

Branch address

2-bits per branch predictor

Prediction

2-bit global branch history

4

0 1

38

Accuracy

0%

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

0%
1%

5%
6% 6%

11%

4%

6%
5%

1%2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

na
sa

7

m
at

rix
30

0

do
du

cd

sp
ic

e

fp
pp

p

gc
c

ex
pr

es
so

eq
nt

ot
t li

to
m

ca
tv

39

Tournament Predictors

°Our first predictor, used only local
information for prediction.

°The Correlating branch predictor used
global information to improve
performance.

°Tournament predictors uses more than
one predictor (usually one local and
another global), and use a selector to
choose among these 2 predictors.

40

Tournment Predictor – Example Alpha 21264
Tournament predictor using, 4K 2-bit counters

indexed by local branch address, based on
which predictor was most effective recently.
Chooses between:

° Global predictor
• 4K entries index by history of last 12 branches (212 =

4K)
• Each entry is a standard 2-bit predictor

° Local predictor
• Local history table: 1024 10-bit entries recording

last 10 branches, index by branch address
• The pattern of the last 10 occurrences of that

particular branch used to index table of 1K entries
with 3-bit saturating counters

41

98%
100%

94%
90%

55%
76%

72%
63%

37%
69%

0% 20% 40% 60% 80% 100%

nasa7

matrix300
tomcatv

doduc
spice

fpppp
gcc

espresso
eqntott

li

Percentage of prediction by local predictor

42

Accuracy of Prediction

94%

96%

98%

98%

97%

100%

70%

82%

77%

82%

84%

99%

88%

86%

88%

86%

95%

99%

0% 20% 40% 60% 80% 100%

gcc

espresso

li

fpppp

doduc

tomcatv

Profile-based
2-bit counter
Tournament

43

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Total predictor size (Kbits)

C
on

di
tio

na
l b

ra
nc

h
m

is
pr

ed
ic

tio
n

ra
te

Local - 2 bit counters

Correlating - (2,2) scheme

Tournament

44

Prediction in MIPS Pipeline

Taken

Branch?

Entry found
in branch-

target
buffer?

Send out predicted
PC

Is
instruction
a taken
branch?

Send PC to memory
and branch-target

buffer

Enter branch
instruction address
and next PC into
branch-target

buffer

Mispredicted branch,
kill fetched

instruction; restart
fetch at other

target; delete entry
from target buffer

Normal
instruction
execution

Branch correctly
predicted; continue
execution with no

stalls

No

Yes

Yes

Yes

No

No
ID

IF

EX

45

Integrated Instruction Fetch Unit

° Considering fetch as a single stage in a
pipeline is no longer valid.

° An integrated instruction fetch unit is a part of
many modern processors.

° The instruction fetch unit integrates several
functions.

• Integrated branch prediction
• Instruction fetch (for multiple instruction per clock)
• Instruction memory access and buffering to deal

with the complication of multiple fetches and
crossing cache lines, …

