
Fall 2009 CSE4201

CSE4201
Computer Architecture

Chapter 5
Caches

Slides are based on slides by Prof.
Shaaban (RIT) and Prof. Paterson

(UCB)

Fall 2009 CSE4201

Introduction

1

10

100

1,000

10,000

100,000

1980 1985 1990 1995 2000 2005 2010

Year

Pe
rf

or
m

an
ce

Memory

Processor

The gap between the processor speed and memory speed

Locality: Spatial and Temporal

caches

Fall 2009 CSE4201

Terminology

° A Block: The smallest unit of information
transferred between two levels.

° Hit: Item is found in some block in the
upper level (example: Block X)

• Hit Rate: The fraction of memory access found in the upper
level.

• Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

° Miss: Item needs to be retrieved from a
block in the lower level (Block Y)

• Miss Rate = 1 - (Hit Rate)

• Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block the processor

Fall 2009 CSE4201

Cache Operation

° Questions
1. Where a block be placed in the cache

(placement)
2. How is a block is found if it is in the cache

(identification)
3. Which block should be replaced on a miss

(replacement)
4. What happens on a write (write strategy)

Fall 2009 CSE4201

Cache Organization: Placement

1Direct mapped cache: A block can be placed in only
one location (cache block frame), given by the mapping
function:

index= (Block address) MOD (Number of blocks in
cache)

2Fully associative cache: A block can be placed
anywhere in cache. (no mapping function).

3Set associative cache: A block can be placed in a
restricted set of places, or cache block frames. A set is
a group of block frames in the cache. A block is first
mapped onto the set and then it can be placed
anywhere within the set. The set in this case is chosen
by:

index = (Block address) MOD (Number of sets in
cache)
If there are n blocks in a set the cache placement is

called n-way set-associative.

Fall 2009 CSE4201

Direct Mapped Cache

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

0
0

0

C a c h e

M e m o ry

0
01

0
1

0
0

1
1

1
0

0
1

0
1

1
1

0

1
1

1

Fall 2009 CSE4201

Direct Mapped Cache
A d d re s s (s h o w in g b it p o s i t io n s)

2 0 1 0

B y te
o ffs e t

V a l id T a g D a taIn d e x

0

1

2

1 0 2 1

1 0 2 2

1 0 2 3

T a g

In d e x

H it D a t a

2 0 3 2

3 1 3 0 1 3 1 2 1 1 2 1 0

1K = 1024 Blocks
Each block = one word

Can cache up to
232 bytes = 4 GB
of memory

Mapping function:

Cache Block frame number =
(Block address) MOD (1024)

i.e. index field or
10 low bit of block address

Block offset
= 2 bits

Block Address = 30 bits
Tag = 20 bits Index = 10 bits

Fall 2009 CSE4201

Direct mapped Cache
A d d re s s (s ho w in g b it p o s ition s)

1 6 1 2 B yte
o ffs e t

V T a g D a ta

H it D a ta

1 6 32

4 K
e n trie s

1 6 b its 12 8 b its

M u x

3 2 3 2 3 2

2

3 2

B lo c k o f fs e tIn d ex

T ag

3 1 16 1 5 4 3 2 1 0

Block Address = 28 bits

Tag = 16 bits Index = 12 bits
Block offset
= 4 bits

Fall 2009 CSE4201

Cache Organization

Fall 2009 CSE4201

Cache Organization

° Each block frame in cache has an address tag.
° The tags of every cache block that might contain the required

data are checked in parallel.
° A valid bit is added to the tag to indicate whether this entry

contains a valid address.
° The address from the CPU to cache is divided into:

• A block address, further divided into:
- An index field to choose a block set in cache.
- (no index field when fully associative).
- A tag field to search and match addresses in the selected set.

• A block offset to select the data from the block.

Block Address Block
OffsetTag Index

Fall 2009 CSE4201

Cache Organization

Block Address Block
OffsetTag Index

Block offset size = log2(block size)

Index size = log2(Total number of blocks/associativity)

Tag size = address size Tag size = address size -- index size index size -- offset sizeoffset size

Physical Memory Address Generated by CPU

Mapping function:
Cache set or block frame number = Index =

= (Block Address) MOD (Number of Sets)

Number of Sets

Fall 2009 CSE4201

Set Associative: 4K 4Way

Ad dress

2 2 8

V TagIndex

0
1
2

253
254
255

Data V Tag D ata V Tag D ata V Tag D ata

3222

4 - to -1 m ultip lexo r

H it D a ta

123891011123031 0

1024 block frames
Each block = one word
4-way set associative
1024 / 4= 256 sets

Can cache up to
232 bytes = 4 GB
of memory

Block Address = 30 bits

Tag = 22 bits Index = 8 bits
Block offset
= 2 bits

Mapping Function: Cache Set Number = index= (Block address) MOD (256)

Fall 2009 CSE4201

Cache Replacement Policy

° If a miss, we might have to choose a block
ot be replaced

• Random:
- Any block is randomly selected for replacement

providing uniform allocation.
- Simple to build in hardware.
- The most widely used cache replacement strategy.

• Least-recently used (LRU):
- Accesses to blocks are recorded and the block

replaced is the one that was not used for the longest
period of time.

- Full LRU is expensive to implement, as the number of
blocks to be tracked increases, and is usually
approximated by block usage bits that are cleared at
regular time intervals.

Fall 2009 CSE4201

Cache Operation

° Associativity: 2-way 4-way 8-way
° Size LRU Random LRU Random LRU Random
° 16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%
° 64 KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%
° 256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Fall 2009 CSE4201

Cache Performance

° CPUtime = Instruction count x CPI x Clock cycle time
° CPIexecution = CPI with ideal memory
° CPI = CPIexecution + Mem Stall cycles per instruction
° Mem Stall cycles per instruction =
Mem accesses per instruction x Miss rate x Miss penalty

° CPUtime = Instruction Count x (CPIexecution +
Mem Stall cycles per instruction) x Clock cycle time

° CPUtime = IC x (CPIexecution + Mem accesses per instruction x
Miss rate x Miss penalty) x Clock cycle time

° Misses per instruction = Memory accesses per instruction x Miss rate
° CPUtime = IC x (CPIexecution + Misses per instruction x Miss penalty) x

Clock cycle time

Fall 2009 CSE4201

Cache Performance

° Assuming the following execution and cache parameters:
• Cache miss penalty = 50 cycles
• Normal instruction execution CPI ignoring memory stalls = 2.0 cycles
• Miss rate = 2%
• Average memory references/instruction = 1.33

° CPU time = IC x [CPI execution + Memory
accesses/instruction x Miss rate x
Miss penalty] x Clock cycle time

° CPUtime with cache = IC x (2.0 + (1.33 x 2% x 50)) x clock
cycle time

° = IC x 3.33 x Clock cycle time

° Lower CPI execution increases the impact of cache miss clock
cycles

Fall 2009 CSE4201

Cache Performance
° Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle)

with a single level of cache.
° CPIexecution = 1.1
° Instruction mix: 50% arith/logic, 30% load/store, 20% control
° Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.
° CPI = CPIexecution + mem stalls per instruction
° Mem Stalls per instruction =
° Mem accesses per instruction x Miss rate x Miss

penalty
° Mem accesses per instruction = 1 + .3 = 1.3
° Mem Stalls per instruction = 1.3 x .015 x 50 = 0.975
° CPI = 1.1 + .975 = 2.075
° The ideal memory CPU with no misses is 2.075/1.1 = 1.88 times

faster

Fall 2009 CSE4201

Cache Performance

° Suppose for the previous example we double the clock rate to 400
MHZ, how much faster is this machine, assuming similar miss rate,
instruction mix?

° Since memory speed is not changed, the miss penalty takes more
CPU cycles:

° Miss penalty = 50 x 2 = 100 cycles.
° CPI = 1.1 + 1.3 x .015 x 100 = 1.1 + 1.95 = 3.05
° Speedup = (CPIold x Cold)/ (CPInew x Cnew)
° = 2.075 x 2 / 3.05 = 1.36
° The new machine is only 1.36 times faster rather than 2
times faster due to the increased effect of cache misses.
° CPUs with higher clock rate, have more cycles per cache miss and

more memory impact on CPI.

Fall 2009 CSE4201

Cache Performance

° Suppose a CPU uses separate level one (L1) caches for instructions and
data (Harvard memory architecture) with different miss rates for instruction and
data access:

• CPIexecution = 1.1
• Instruction mix: 50% arith/logic, 30% load/store, 20% control
• Assume a cache miss rate of 0.5% for instruction fetch and a cache data miss rate of 6%.
• A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles for both memory reads and

writes. Find the resulting CPI using this cache? How much faster is the CPU with ideal memory?

CPI = CPIexecution + mem stalls per instruction

Mem Stall cycles per instruction = Instruction Fetch Miss rate x Miss Penalty +
Data Memory Accesses Per Instruction x Data Miss Rate x Miss Penalty

Mem Stall cycles per instruction = 1 x 0.5/100 x 200 + 0.3 x 6/100 x 200 = 1 +
3.6 = 4.6

CPI = CPIexecution + mem stalls per instruction = 1.1 + 4.6 = 5.7

The CPU with ideal cache (no misses) is 5.7/1.1 = 5.18 times faster
With no cache the CPI would have been = 1.1 + 1.3 X 200 = 261.1

Fall 2009 CSE4201

Cache Performance

Fall 2009 CSE4201

Cache Read/Write

° Statistical data suggest that reads (including instruction
fetches) dominate processor cache accesses (writes account
for 25% of data cache traffic).

° In cache reads, a block is read at the same time while the tag
is being compared with the block address. If the read is a hit
the data is passed to the CPU, if a miss it ignores it.

° In cache writes, modifying the block cannot begin until the tag
is checked to see if the address is a hit.

° Thus for cache writes, tag checking cannot take place in
parallel, and only the specific data (between 1 and 8 bytes)
requested by the CPU can be modified.

° Cache can be classified according to the write and memory
update strategy in place: write through, or write back.

Fall 2009 CSE4201

Write Policy

1Write Though: Data is written to both the cache block
and to a block of main memory.

• The lower level always has the most updated data; an important feature for
I/O and multiprocessing.

• Easier to implement than write back.
• A write buffer is often used to reduce CPU write stall while data is written to

memory.

2Write back: Data is written or updated only to the
cache block. The modified or dirty cache block is
written to main memory when it’s being replaced from
cache.

• Writes occur at the speed of cache
• A status bit called a dirty or modified bit, is used to indicate whether the block

was modified while in cache; if not the block is not written back to main
memory when replaced.

• Uses less memory bandwidth than write through.

Fall 2009 CSE4201

Write Policy

Write Allocate:
The cache block is loaded on a write miss
followed by write hit actions.

No-Write Allocate:
The block is modified in the lower level
(lower cache level, or main

memory) and not loaded into cache.

Fall 2009 CSE4201

Example

° Which has a lower miss rate 16KB cache for both
instruction or data, or a combined 32KB cache?
(0.64%, 6.47%, 1.99%).

° Assume hit=1cycle and miss =50 cycles. 75% of
memory references are instruction fetch.

° Miss rate of split cache=0.75*0.64%+0.25*6.47%=2.1%
° Slightly worse than 1.99% for combined cache. But,

what about average memory access time?
° Split cache: 75%(1+0.64%*50)+25%(1+6.47%*50) =

2.05 cycles.
° Combined cache:

75%(1+1.99*50)+25%(1+1+1.99%*50) = 2.24
Extra cycle for load/store

Fall 2009 CSE4201

Example

° A CPU with CPIexecution = 1.1 Mem accesses per instruction = 1.3
° Uses a unified L1 Write Through, No Write Allocate, with:

• No write buffer.
• Perfect Write buffer
• A realistic write buffer that eliminates 85% of write stalls

° Instruction mix: 50% arith/logic, 15% load, 15% store, 20% control
° Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

CPI = CPIexecution + mem stalls per instruction
% reads = 1.15/1.3 = 88.5% % writes = .15/1.3 = 11.5%

Fall 2009 CSE4201

Example

° A CPU with CPIexecution = 1.1 uses a unified L1 with
with write back, with write allocate, and the
probability a cache block is dirty = 10%

° Instruction mix: 50% arith/logic, 15% load, 15%
store, 20% control

° Assume a cache miss rate of 1.5% and a miss
penalty of 50 cycles.

Fall 2009 CSE4201

Example

° CPU with CPIexecution = 1.1 running at clock rate = 500 MHz
° 1.3 memory accesses per instruction.
° L1 cache operates at 500 MHz with a miss rate of 5%
° L2 cache operates at 250 MHz with local miss rate 40%, (T2 =

2 cycles)

° Memory access penalty, M = 100 cycles. Find CPI.

Fall 2009 CSE4201

Example

° CPU with CPIexecution = 1.1 running at clock rate = 500 MHz
° 1.3 memory accesses per instruction.
° For L1 :

• Cache operates at 500 MHz with a miss rate of 1-H1 = 5%
• Write though to L2 with perfect write buffer with write allocate

° For L2:
• Cache operates at 250 MHz with local miss rate 1- H2 = 40%, (T2 = 2 cycles)
• Write back to main memory with write allocate
• Probability a cache block is dirty = 10%

° Memory access penalty, M = 100 cycles. Find CPI.

Fall 2009 CSE4201

Example

° CPU with CPIexecution = 1.1 running at clock rate = 500 MHz
° 1.3 memory accesses per instruction.
° L1 cache operates at 500 MHz with a miss rate of 5%
° L2 cache operates at 250 MHz with a local miss rate 40%, (T2

= 2 cycles)
° L3 cache operates at 100 MHz with a local miss rate 50%, (T3 =

5 cycles)
° Memory access penalty, M= 100 cycles. Find CPI.

Fall 2009 CSE4201

Caches -- Performance

° Classification of misses
• Compulsory
• Capacity
• Conflict

° How to Improve Cache Performance
• Reduce miss rate
• Reduce miss penalty
• Reduce hit time

Fall 2009 CSE4201

11Compulsory:Compulsory: On the first access to a block; the
block must be brought into the cache; also called
cold start misses, or first reference misses.

22Capacity:Capacity: Occur because blocks are being
discarded from cache because cache cannot
contain all blocks needed for program execution
(program working set is much larger than cache
capacity).

33Conflict:Conflict: In the case of set associative or direct
mapped block placement strategies, conflict
misses occur when several blocks are mapped to
the same set or block frame; also called collision
misses or interference misses.

Fall 2009 CSE4201

Improving Cache Performance
° Reducing hit time

1. Giving Reads Priority over Writes
E.g., Read complete before earlier writes in write buffer

2. Avoiding Address Translation during Cache Indexing

° Reducing Miss Penalty
3. Multilevel Caches

° Reducing Miss Rate
4. Larger Block size (Compulsory misses)
5. Larger Cache size (Capacity misses)
6. Higher Associativity (Conflict misses)

Fall 2009 CSE4201

° Larger Block Size
° Larger block size reduces misses up to a point, then start to

increase it (larger block size takes advantage of spatial
locality, but it decrease the number of different block in the
cache and increases the miss penalty since it will take longer
to load the block from the memory to the cache)

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

16 32 64

12
8

25
6

1K

4K

16K

64K

256K

Fall 2009 CSE4201

Larger Block Size

°Larger block size
° From the last graph, if the memory takes 40

cycles overhead and then deliver 16 bytes
every 2 cycle. Compare between 16,128
block size for 64K cache.

° 16 byte block access time =
1+(1.06%*42)=1.5088

° 128 bytes block access time =
1+(1.02*56)=1.5712

Fall 2009 CSE4201

Reducing Cache Miss

°Higher Associativity
° Practically 8-way set associative is as god as a fully

associative
° The 2:1 cache rule of thumb states that a direct-

mapped cache of size N has the same miss rate as a
2-way set associative of size N/2

° One problem with associative caches is that we need to
increase the clock cycle (at least, we need a MUX to
choose which set)

° Practically 10% increase in clock time for TTL, or ECL,
and 2% for custom CMOS (when we go from direct
mapped to 2-way set associative).

Fall 2009 CSE4201

Reducing Cache Miss

° Victim Caches
° Add a small fully associative cache between the cache

and the memory.
° This victim cache contain only blocks that were

discarded from the original cache.
° The victim cache is checked on miss, if the data is

found there, it will be swapped with the data in the
cache.

° A small victim cache of 1-5 blocks is sufficient (4-block
victim cache removed 20% to 95% of conflict misses.

Fall 2009 CSE4201

Pseudo Associative Caches

° Pseudo-Associative Cache
° This cache behaves like direct-mapped
° On a miss, before going to the main memory, check another

cache entry
° 2 hit times, one slow and one fast
° Example
° Compare between direct-mapped, 2-way set associative and

pseudo associative (2 extra cycles fro pseudo hit)
° Direct = 1+9.8%*50 = 5.9
° 2-way = 1.1 +7.6%*50 = 4.9 (10% increase in Tc)
° Pseudo = 1 + (9.8%-7.6%)*2 + 7.6%*50 = 4.844

Fall 2009 CSE4201

Advanced Optimization Techniques

° Way prediction
° Trace caches
° Pipelined cache access
° Nonblocking caches
° Multibanked caches
° Early start and critical word first
° Merging Write Buffers
° Compiler optimizations to reduce miss rate
° Prefetching

Fall 2009 CSE4201

Way Prediction

° How to combine fast hit time of Direct Mapped and have the
lower conflict misses of 2-way SA cache?

° Way prediction: keep extra bits in cache to predict the “way,”
or block within the set, of next cache access.

• Multiplexor is set early to select desired block, only 1 tag
comparison performed that clock cycle in parallel with reading
the cache data

• Miss ⇒ 1st check other blocks for matches in next clock cycle

° Accuracy ≈ 85%
° Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

• Used for instruction caches vs. data caches

Hit Time

Way-Miss Hit Time Miss Penalty

Fall 2009 CSE4201

Trace Caches

° Find more instruction level parallelism?
How avoid translation from x86 to microops?

° Trace cache in Pentium 4
1.Dynamic traces of the executed instructions vs. static

sequences of instructions as determined by layout in memory
• Built-in branch predictor

2.Cache the micro-ops vs. x86 instructions
• Decode/translate from x86 to micro-ops on trace cache

miss

+1. ⇒ better utilize long blocks (don’t exit in middle
of block, don’t enter at label in middle of block)

- 1. ⇒ complicated address mapping since
addresses no longer aligned to power-of-2
multiples of word size

Fall 2009 CSE4201

Pipelined Cache Access

° Pipeline cache access to maintain bandwidth, but
higher latency

° Instruction cache access pipeline stages:
1: Pentium
2: Pentium Pro through Pentium III
4: Pentium 4

- ⇒ greater penalty on mispredicted branches
(increases the number of pipeline stages)

- ⇒ more clock cycles between the issue of the load
and the use of the data

Fall 2009 CSE4201

Nonblocking Caches

° Non-blocking cache or lockup-free cache allow data cache to
continue to supply cache hits during a miss

• requires F/E bits on registers or out-of-order execution
• requires multi-bank memories

° “hit under miss” reduces the effective miss penalty by
working during miss vs. ignoring CPU requests

° “hit under multiple miss” or “miss under miss” may further
lower the effective miss penalty by overlapping multiple
misses

• Significantly increases the complexity of the cache controller as
there can be multiple outstanding memory accesses

• Requires muliple memory banks (otherwise cannot support)
• Penium Pro allows 4 outstanding memory misses

Fall 2009 CSE4201

Multiple Banks

° Rather than treat the cache as a single monolithic
block, divide into independent banks that can
support simultaneous accesses

• E.g.,T1 (“Niagara”) L2 has 4 banks

° Banking works best when accesses naturally
spread themselves across banks ⇒ mapping of
addresses to banks affects behavior of memory
system

° Simple mapping that works well is “sequential
interleaving”

• Spread block addresses sequentially across banks
• E,g, if there 4 banks, Bank 0 has all blocks whose address

modulo 4 is 0; bank 1 has all blocks whose address
modulo 4 is 1; …

Fall 2009 CSE4201

Early Start and Critical Word First

° Don’t wait for full block before restarting CPU
° Early restart—As soon as the requested word of the

block arrives, send it to the CPU and let the CPU
continue execution

• Spatial locality ⇒ tend to want next sequential word, so not clear
size of benefit of just early restart

° Critical Word First—Request the missed word first
from memory and send it to the CPU as soon as it
arrives; let the CPU continue execution while filling the
rest of the words in the block

• Long blocks more popular today ⇒ Critical Word 1st Widely
used

block

Fall 2009 CSE4201

Merging Write Buffers

° Write buffer to allow processor to continue
while waiting to write to memory

° If buffer contains modified blocks, the
addresses can be checked to see if address of
new data matches the address of a valid write
buffer entry

° If so, new data are combined with that entry
° Increases block size of write for write-through

cache of writes to sequential words, bytes
since multiword writes more efficient to memory

° The Sun T1 (Niagara) processor, among many
others, uses write merging

Fall 2009 CSE4201

Compiler Optimization

° Compiler can help in reducing cache miss
° Merging Arrays: Improve spatial locality by single

array of compound elements vs. 2 arrays.

° Loop Interchange: Change nesting of loops to
access data in the order stored in memory.

° Loop Fusion: Combine 2 or more independent
loops that have the same looping and some
variables overlap.

° Blocking: Improve temporal locality by accessing
“blocks” of data repeatedly vs. going down whole
columns or rows

Fall 2009 CSE4201

Merging Arrays

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reduces conflict between val and key and reduces compulsory
misses if they are accessed in the same pattern

Fall 2009 CSE4201

Interchanging Loops

° Assume row-major matrix allocation
/* Before */

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through
memory every 100 words in this case improves
spatial locality (reduces compulsory misses)

Fall 2009 CSE4201

Loop Fusion

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

Fall 2009 CSE4201

Blocking

for (i = 0; i < 12; i = i+1)
for (j = 0; j < 12; j = j+1)

{r = 0;
for (k = 0; k < 12; k = k+1){

r = r + y[i][k]*z[k][j];};
x[i][j] = r;
};

/* After Blocking */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B,N); k = k+1) {

r = r + y[i][k]*z[k][j];};
x[i][j] = x[i][j] + r;
};

