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Terminology

° A Block: The smallest unit of information 
transferred between two levels.

° Hit: Item is found in some block in the 
upper level (example: Block X) 

• Hit Rate: The fraction of memory access found in the upper 
level.

• Hit Time: Time to access the upper level which consists of

RAM access time   +   Time to determine hit/miss

° Miss: Item needs to be retrieved from a 
block in the lower level (Block Y)

• Miss Rate  = 1 - (Hit Rate)

• Miss Penalty: Time to replace a block in the upper level  + 
Time to deliver the block the processor
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Cache Operation

° Questions
1. Where a block be placed in the cache 

(placement)
2. How is a block is found if it is in the cache 

(identification)
3. Which block should be replaced on a miss 

(replacement)
4. What happens on a write (write strategy)
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Cache Organization: Placement

1Direct mapped cache: A block can be placed in only 
one location (cache block frame), given by the mapping 
function:

index=  (Block address)  MOD  (Number of blocks in 
cache)

2Fully associative cache: A block can be placed 
anywhere in cache. (no mapping function).

3Set associative cache: A block can be placed in a 
restricted set of places, or cache block frames.   A set is 
a group of block frames in the cache.   A block is first 
mapped onto the set and then it can be placed 
anywhere within the set.   The set in this case is chosen 
by:

index =  (Block address)  MOD  (Number of sets in 
cache)
If there are  n blocks in a set the cache placement is 

called  n-way set-associative.
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Direct Mapped Cache
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Direct Mapped Cache
A d d re s s (s h o w in g b it p o s i t io n s )
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1K = 1024 Blocks
Each block = one word

Can cache up to
232 bytes =  4 GB
of memory

Mapping function:

Cache Block frame number =
(Block address) MOD (1024)

i.e. index field or 
10 low bit of block address

Block offset 
=  2 bits

Block Address  = 30 bits 
Tag  =  20 bits Index  = 10 bits
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Direct mapped Cache
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Block Address  =  28 bits 

Tag  =  16 bits Index  = 12 bits
Block offset 
=  4 bits
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Cache Organization
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Cache Organization

° Each block frame in cache has an address tag.
° The tags of every cache block that might contain the required 

data are checked in parallel.
° A valid bit is added to the tag to indicate whether this entry 

contains a valid address.
° The address from the CPU to cache is divided into:

• A block address, further divided into:
- An index field to choose  a block set in cache.
- (no index field when fully associative).
- A tag field to search and match addresses in the selected set.

• A block offset to select the data from the block.

Block Address Block
OffsetTag Index
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Cache Organization

Block Address Block
OffsetTag Index

Block offset size = log2(block size)

Index size = log2(Total number of blocks/associativity)

Tag size = address size Tag size = address size -- index size index size -- offset sizeoffset size

Physical Memory Address Generated by CPU

Mapping function:
Cache set or block frame number =   Index  =  

=  (Block Address) MOD (Number of Sets)

Number of Sets
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Set Associative: 4K 4Way

Ad dress
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1024 block frames
Each block = one word
4-way set associative
1024 / 4=  256 sets

Can cache up to
232 bytes =  4 GB
of memory

Block Address  =  30 bits 

Tag  =  22 bits Index  = 8 bits
Block offset 
=  2 bits

Mapping Function:     Cache Set Number = index= (Block address) MOD (256)
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Cache Replacement Policy

° If a miss, we might have to choose a block 
ot be replaced

• Random:  
- Any block is randomly selected for replacement 

providing uniform allocation.
- Simple to build in hardware.
- The most widely used cache replacement strategy.

• Least-recently used (LRU):
- Accesses to blocks are recorded and the block 

replaced is the one that was not used for the longest 
period of time.

- Full LRU is expensive to implement, as the number of 
blocks to be tracked increases, and is usually 
approximated by block usage bits that are cleared at 
regular time intervals.
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Cache Operation

° Associativity: 2-way 4-way 8-way
° Size LRU Random LRU    Random LRU Random
° 16 KB 5.18% 5.69% 4.67%    5.29% 4.39% 4.96%
° 64 KB 1.88% 2.01% 1.54%    1.66% 1.39% 1.53%
° 256 KB 1.15% 1.17% 1.13%    1.13% 1.12% 1.12%
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Cache Performance

° CPUtime =   Instruction count x  CPI  x  Clock cycle time
° CPIexecution =   CPI with ideal memory
° CPI =    CPIexecution +   Mem Stall cycles per instruction 
° Mem Stall cycles per instruction =  
Mem accesses per instruction  x   Miss rate x  Miss penalty

° CPUtime =  Instruction Count x   (CPIexecution +  
Mem Stall  cycles per instruction)    x   Clock cycle time

° CPUtime =  IC x  (CPIexecution +  Mem accesses per instruction  x                            
Miss rate x Miss penalty)  x   Clock cycle time

° Misses per instruction =  Memory accesses per instruction  x  Miss rate
° CPUtime =  IC x (CPIexecution + Misses per instruction  x  Miss penalty) x  

Clock cycle time
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Cache Performance

° Assuming the following execution and cache parameters:
• Cache miss penalty =  50 cycles
• Normal instruction execution CPI ignoring memory stalls  =  2.0 cycles
• Miss rate  = 2%
• Average memory references/instruction  =  1.33

° CPU time  =  IC x [CPI execution  +  Memory 
accesses/instruction x Miss rate  x                             
Miss penalty ]  x  Clock cycle time 

° CPUtime with cache  =  IC  x  (2.0 + (1.33 x 2% x 50)) x  clock 
cycle time

° =  IC  x  3.33  x  Clock cycle time

° Lower CPI execution increases the impact of cache miss clock 
cycles
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Cache Performance
° Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle) 

with a single level of cache.
° CPIexecution =  1.1
° Instruction mix:   50% arith/logic,  30% load/store, 20% control
° Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.
° CPI =   CPIexecution +   mem stalls per instruction
° Mem Stalls per instruction =  
° Mem accesses per instruction  x  Miss rate x Miss 

penalty
° Mem accesses per instruction =  1  +   .3   =  1.3
° Mem Stalls per instruction  =  1.3 x  .015 x 50  =   0.975
° CPI =  1.1  +  .975 =   2.075
° The ideal memory CPU with no misses is  2.075/1.1 =  1.88 times 

faster 
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Cache Performance

° Suppose for the previous example we double the clock rate to 400
MHZ, how much faster is this machine, assuming similar miss rate, 
instruction mix?

° Since memory speed is not changed, the miss penalty takes more 
CPU cycles:

° Miss penalty =  50  x  2  =  100 cycles.
° CPI =  1.1 +  1.3 x .015 x 100 =  1.1 + 1.95 =  3.05 
° Speedup  =    (CPIold x Cold)/ (CPInew x Cnew)
° =   2.075  x 2 /  3.05  =  1.36
° The new machine is only 1.36 times faster rather than 2 
times faster due to the increased effect of cache misses.
° CPUs with higher clock rate, have more cycles per cache miss and 

more memory impact on CPI.
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Cache Performance

° Suppose a CPU uses separate level  one (L1)  caches for  instructions and 
data  (Harvard memory architecture)  with different miss rates for instruction and 
data access:

• CPIexecution =  1.1
• Instruction mix:   50% arith/logic,  30% load/store, 20% control
• Assume a cache miss rate of  0.5% for instruction fetch and a cache data miss rate of  6%. 
• A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles for both memory reads and 

writes.         Find the resulting CPI using this cache?   How much faster is the CPU with ideal memory?

CPI =   CPIexecution +   mem stalls per instruction

Mem Stall  cycles per instruction =     Instruction Fetch Miss rate x Miss Penalty  +
Data Memory Accesses Per Instruction x  Data Miss Rate x  Miss Penalty

Mem Stall  cycles per instruction =    1 x 0.5/100  x 200   +   0.3 x  6/100  x   200  =   1   +  
3.6  = 4.6

CPI =   CPIexecution +   mem stalls per instruction  =  1.1  + 4.6  =   5.7

The CPU with ideal cache (no misses)  is  5.7/1.1 =  5.18  times faster 
With no cache the CPI would have been  =   1.1  +  1.3 X 200  =  261.1
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Cache Performance
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Cache Read/Write

° Statistical data suggest that reads (including instruction
fetches) dominate processor cache accesses  (writes account 
for 25% of data cache traffic).

° In cache reads, a block is read at the same time while the tag 
is being compared with the block address.  If the read is a hit 
the data is passed to the CPU, if a miss it ignores it. 

° In cache writes, modifying the block cannot begin until the tag 
is checked to see if the address is a hit.

° Thus for cache writes, tag checking cannot take place in 
parallel, and only the specific data (between 1 and 8 bytes) 
requested by the CPU can be modified.

° Cache can be classified according to the write and memory 
update strategy in place:  write through, or write back.
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Write Policy

1Write Though:  Data is written to both the cache block 
and to a block of main memory.

• The lower level always has the most updated data; an important feature for 
I/O and multiprocessing.

• Easier to implement than write back.
• A write buffer is often used to reduce CPU write stall while data is written to 

memory.

2Write back:  Data is written or updated only to the 
cache block.  The modified or dirty cache block is 
written to main memory when it’s being replaced from 
cache.

• Writes occur at the speed of cache
• A status bit called a dirty or modified bit, is used to indicate whether the block 

was modified while in cache; if not the block is not written back to main 
memory when replaced.

• Uses less memory bandwidth than write through.
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Write Policy

Write Allocate:
The cache block is loaded on a write miss 
followed by write hit actions.

No-Write Allocate:
The block is modified in the lower level 
(lower cache level, or main 

memory) and not loaded into cache.
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Example

° Which has a lower miss rate 16KB cache for both 
instruction or data, or a combined 32KB cache? 
(0.64%, 6.47%, 1.99%).

° Assume hit=1cycle and miss =50 cycles. 75% of 
memory references are instruction fetch.

° Miss rate of split cache=0.75*0.64%+0.25*6.47%=2.1%
° Slightly worse than 1.99% for combined cache. But, 

what about average memory access time?
° Split cache: 75%(1+0.64%*50)+25%(1+6.47%*50) = 

2.05 cycles.
° Combined cache: 

75%(1+1.99*50)+25%(1+1+1.99%*50) = 2.24
Extra cycle for load/store
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Example

° A CPU with  CPIexecution =  1.1  Mem accesses per instruction =  1.3
° Uses a unified L1 Write Through, No Write Allocate,  with: 

• No write buffer.
• Perfect Write buffer
• A realistic write buffer that eliminates 85% of write stalls

° Instruction mix:   50% arith/logic,  15% load, 15% store, 20% control
° Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

CPI =    CPIexecution +    mem stalls per instruction
% reads  =   1.15/1.3  =    88.5%         %  writes  =   .15/1.3 =   11.5%
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Example

° A CPU with  CPIexecution =  1.1 uses a unified L1 with 
with write back, with write allocate, and the 
probability a cache block is dirty = 10%

° Instruction mix:   50% arith/logic,  15% load, 15% 
store, 20% control

° Assume a cache miss rate of 1.5% and a miss 
penalty of 50 cycles.
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Example

° CPU with CPIexecution = 1.1  running at clock rate = 500 MHz
° 1.3 memory accesses per instruction.
° L1 cache operates at 500 MHz with a miss rate of 5%
° L2 cache operates at 250 MHz with local miss rate  40%,  (T2 = 

2 cycles)

° Memory access penalty,  M = 100 cycles.    Find CPI.
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Example

° CPU with CPIexecution = 1.1  running at clock rate = 500 MHz
° 1.3 memory accesses per instruction.
° For L1 :

• Cache operates at 500 MHz with a miss rate of  1-H1 =  5%
• Write though to L2 with perfect write buffer with write allocate

° For L2:
• Cache operates at 250 MHz with local miss rate  1- H2 = 40%,  (T2 = 2 cycles)
• Write back to main memory with write allocate
• Probability a cache block is dirty = 10% 

° Memory access penalty,  M = 100 cycles.    Find CPI.



Fall 2009 CSE4201

Example

° CPU with CPIexecution = 1.1  running at clock rate = 500 MHz
° 1.3 memory accesses per instruction.
° L1 cache operates at 500 MHz with a miss rate of 5%
° L2 cache operates at 250 MHz with a local miss rate  40%,  (T2

= 2 cycles)
° L3 cache operates at 100 MHz with a local miss rate 50%,  (T3 = 

5 cycles)
° Memory access penalty,  M= 100 cycles.    Find CPI.
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Caches -- Performance

° Classification of misses
• Compulsory
• Capacity
• Conflict

° How to Improve Cache Performance
• Reduce miss rate
• Reduce miss penalty
• Reduce hit time
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11Compulsory:Compulsory: On the first access to a block; the 
block must be brought into the cache; also called 
cold start misses, or first reference misses.

22Capacity:Capacity: Occur because blocks are being 
discarded from cache because cache cannot 
contain all blocks needed for program execution 
(program working set is much larger than cache 
capacity).

33Conflict:Conflict: In the case of set associative or direct
mapped block placement strategies,  conflict 
misses occur when several blocks are mapped to 
the same set or block frame; also called collision 
misses or interference misses.
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Improving Cache Performance
° Reducing hit time

1. Giving Reads Priority over Writes 
E.g., Read complete before earlier writes in write buffer

2. Avoiding Address Translation during Cache Indexing

° Reducing Miss Penalty
3. Multilevel Caches

° Reducing Miss Rate
4. Larger Block size (Compulsory misses)
5. Larger Cache size (Capacity misses)
6. Higher Associativity (Conflict misses)
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° Larger Block Size
° Larger block size reduces misses up to a point, then start to 

increase it (larger block size takes advantage of spatial 
locality, but it decrease the number of different block in the 
cache and increases the miss penalty since it will take longer 
to load the block from the memory to the cache)

Block Size (bytes)   

Miss 
Rate 
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20%

25%

16 32 64
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4K

16K
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Larger Block Size

°Larger block size
° From the last graph, if the memory takes 40 

cycles overhead and then deliver 16 bytes 
every 2 cycle. Compare between 16,128 
block size for 64K cache.

° 16 byte block access time = 
1+(1.06%*42)=1.5088

° 128 bytes block access time = 
1+(1.02*56)=1.5712
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Reducing Cache Miss

°Higher Associativity
° Practically 8-way set associative is as god as a fully 

associative
° The 2:1 cache rule of thumb states that a direct-

mapped cache of size N has the same miss rate as a 
2-way set associative of size N/2

° One problem with associative caches is that we need to 
increase the clock cycle (at least, we need a MUX to 
choose which set)

° Practically 10% increase in clock time for TTL, or ECL, 
and 2% for custom CMOS (when we go from direct 
mapped to 2-way set associative).
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Reducing Cache Miss

° Victim Caches
° Add a small fully associative cache between the cache 

and the memory.
° This victim cache contain only blocks that were 

discarded from the original cache.
° The victim cache is checked on miss, if the data is 

found there, it will be swapped with the data in the 
cache.

° A small victim cache of 1-5 blocks is sufficient (4-block 
victim cache removed 20% to 95% of conflict misses.
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Pseudo Associative Caches

° Pseudo-Associative Cache
° This cache behaves like direct-mapped
° On a miss, before going to the main memory, check another 

cache entry
° 2 hit times, one slow and one fast
° Example
° Compare between direct-mapped, 2-way set associative and 

pseudo associative (2 extra cycles fro pseudo hit)
° Direct = 1+9.8%*50 = 5.9
° 2-way = 1.1 +7.6%*50 = 4.9  (10% increase in Tc)
° Pseudo = 1 + (9.8%-7.6%)*2 + 7.6%*50 = 4.844
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Advanced Optimization Techniques

° Way prediction
° Trace caches
° Pipelined cache access
° Nonblocking caches
° Multibanked caches
° Early start and critical word first
° Merging Write Buffers
° Compiler optimizations to reduce miss rate
° Prefetching
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Way Prediction

° How to combine fast hit time of Direct Mapped and have the 
lower conflict misses of 2-way SA cache? 

° Way prediction: keep extra bits in cache to predict the “way,”
or block within the set, of next cache access. 

• Multiplexor is set early to select desired block, only 1 tag 
comparison performed that clock cycle in parallel with reading 
the cache data 

• Miss ⇒ 1st check other blocks for matches in next clock cycle

° Accuracy ≈ 85%
° Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

• Used for instruction caches vs. data caches

Hit Time

Way-Miss Hit Time Miss Penalty
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Trace Caches

° Find more instruction level parallelism?
How avoid translation from x86 to microops? 

° Trace cache in Pentium 4
1.Dynamic traces of the executed instructions vs. static 

sequences of instructions as determined by layout in memory
• Built-in branch predictor

2.Cache the micro-ops vs. x86 instructions
• Decode/translate from x86 to micro-ops on trace cache 

miss

+1. ⇒ better utilize long blocks (don’t exit in middle 
of block, don’t enter at label in middle of block)

- 1. ⇒ complicated address mapping since 
addresses no longer aligned to power-of-2 
multiples of word size
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Pipelined Cache Access

° Pipeline cache access to maintain bandwidth, but 
higher latency

° Instruction cache access pipeline stages:
1: Pentium
2: Pentium Pro through Pentium III 
4: Pentium 4

- ⇒ greater penalty on mispredicted branches 
(increases the number of pipeline stages)

- ⇒ more clock cycles between the issue of the load 
and the use of the data
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Nonblocking Caches

° Non-blocking cache or  lockup-free cache allow data cache to 
continue to supply cache hits during a miss

• requires F/E bits on registers or out-of-order execution
• requires multi-bank memories

° “hit under miss” reduces the effective miss penalty by 
working during miss vs. ignoring CPU requests

° “hit under multiple miss” or “miss under miss” may further 
lower the effective miss penalty by overlapping multiple 
misses

• Significantly increases the complexity of the cache controller as 
there can be multiple outstanding memory accesses

• Requires muliple memory banks (otherwise cannot support)
• Penium Pro allows 4 outstanding memory misses
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Multiple Banks

° Rather than treat the cache as a single monolithic 
block, divide into independent banks that can 
support simultaneous accesses

• E.g.,T1 (“Niagara”) L2 has 4 banks

° Banking works best when accesses naturally 
spread themselves across banks ⇒ mapping of 
addresses to banks affects behavior of memory 
system

° Simple mapping that works well is “sequential 
interleaving”

• Spread block addresses sequentially across banks
• E,g, if there 4 banks, Bank 0 has all blocks whose address 

modulo 4 is 0; bank 1 has all blocks whose address 
modulo 4 is 1; …
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Early Start and Critical Word First

° Don’t wait for full block before restarting CPU
° Early restart—As soon as the requested word of the 

block arrives, send it to the CPU and let the CPU 
continue execution

• Spatial locality ⇒ tend to want next sequential word, so not clear 
size of benefit of just early restart

° Critical Word First—Request the missed word first 
from memory and send it to the CPU as soon as it 
arrives; let the CPU continue execution while filling the 
rest of the words in the block

• Long blocks more popular today ⇒ Critical Word 1st Widely 
used

block
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Merging Write Buffers

° Write buffer to allow processor to continue 
while waiting to write to memory

° If buffer contains modified blocks, the 
addresses can be checked to see if address of 
new data matches the address of a valid write 
buffer entry 

° If so, new data are combined with that entry
° Increases block size of write for write-through 

cache of writes to sequential words, bytes 
since multiword writes more efficient to memory

° The Sun T1 (Niagara) processor, among many 
others, uses write merging
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Compiler Optimization

° Compiler can help in reducing cache miss
° Merging Arrays: Improve spatial locality by single 

array of compound elements vs. 2 arrays.

° Loop Interchange: Change nesting of loops to 
access data in the order stored in memory.

° Loop Fusion: Combine 2 or more independent 
loops that have the same looping and some 
variables overlap.

° Blocking: Improve temporal locality by accessing 
“blocks” of data repeatedly vs. going down whole 
columns or rows
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Merging Arrays

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reduces conflict between val and key and reduces compulsory 
misses if they are accessed in the same pattern
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Interchanging Loops

° Assume row-major matrix allocation
/* Before */

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through 
memory every 100 words in this case improves 
spatial locality (reduces compulsory misses)
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Loop Fusion

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}
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Blocking

for (i = 0; i < 12; i = i+1)
for (j = 0; j < 12; j = j+1)

{r = 0;
for (k = 0; k < 12; k = k+1){

r = r + y[i][k]*z[k][j];};
x[i][j] = r;
};

/* After Blocking */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B,N); k = k+1) {

r = r + y[i][k]*z[k][j];};
x[i][j] = x[i][j] + r;
};


