Digital Communications: A Discrete Time View

(Lecture notes for CSE 4214)

Andrew W. Eckford
Department of Computer Science and Engineering
York University, Toronto, Ontario, Canada

Version: October 10, 2009
Copyright © 2009 by A. W. Eckford.

Contents

Chapter 1. Review: Probability, Random Processes, and Linear Systems 1
1.1. Probability 1
1.2. Discrete-Time Random Processes 2
1.3. Linear systems 8
1.4. Problems 8
1.5. Laboratory Exercise: Probability and Random Processes 9
Chapter 2. Baseband Data Transmission 11
2.1. Hardware Model of Communication 11
2.2. Noise 11
2.3. Modulation and Detection 13
2.4. Error analysis 16
2.5. Probability of error and energy per bit 22
2.6. Problems 23
2.7. Laboratory exercise 24
Chapter 3. Optimal System Design 25
3.1. Optimizing the decision threshold 25
3.2. Receiver filter design: The matched filter 27
3.3. Optimized waveform design 31
3.4. Summary 32
3.5. Problems 32
3.6. Laboratory exercise 32
Chapter 4. Signal Space and Passband Data Transmission 33
4.1. Introduction to Signal Space 33
4.2. M-ary Digital Communications 35
4.3. Passband Data Transmission: Hardware Model 35
4.4. Modulation 35
Chapter 5. Multiple Access Communication Systems 37
5.1. Interference-free spectrum sharing 37
5.2. Spread-spectrum techniques 37
Chapter 6. An Introduction to Information Theory 39
6.1. Error-control coding 39
6.2. Data compression 39
Bibliography 41
Appendix A. Fourier Transforms 43
A.1. Properties 43
A.2. Table of fourier transform pairs 43

Appendix B. The Cauchy-Schwartz Inequality 45

CHAPTER 1

Review: Probability, Random Processes, and Linear Systems

1.1. Probability

In this section, we briefly review some necessary concepts of probability that will be used throughout this text.
1.1.1. Foundations. Basics of probability; joint probability; independence; conditional probability; Bayes' rule.
1.1.2. Discrete-valued random variables. Probability mass function; expected value; mean and variance; examples.
1.1.3. Continuous-valued random variables. Probability density function; expected value; mean and variance; examples.
1.1.4. The Gaussian distribution. Definition; properties (e.g., even function).

A Gaussian random variable x with with mean μ and variance σ^{2} has a probability density function given by

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) . \tag{1.1}
\end{equation*}
$$

Integrals over this pdf may be expressed in terms of the error function complementary, $\operatorname{erfc}(\cdot)$, which is defined as

$$
\begin{equation*}
\operatorname{erfc}(z)=\frac{2}{\sqrt{\pi}} \int_{t=z}^{\infty} \exp \left(-t^{2}\right) d t \tag{1.2}
\end{equation*}
$$

The function $\operatorname{erfc}(\cdot)$ has the following mathematical interpretation: if t is a Gaussian random variable with mean $\mu=0$ and variance $\sigma^{2}=1 / 2$, then $\operatorname{erfc}(z)=\operatorname{Pr}(|t|>$ $z)$. Furthermore, due to the symmetry of the Gaussian pdf about the mean, we
illustrate in Figure X that

$$
\begin{equation*}
\operatorname{Pr}(t>z)=\operatorname{Pr}(t<z)=\frac{1}{2} \operatorname{erfc}(z) \tag{1.3}
\end{equation*}
$$

Using a change of variables, $\operatorname{erfc}(\cdot)$ may be used to calculate an arbitrary Gaussian integral. For instance, for the random variable x with pdf $f(x)$ in (1.1), suppose we want to calculate the probability $\operatorname{Pr}(x>z)$. This probability can be expressed as

$$
\begin{align*}
\operatorname{Pr}(x>z) & =\int_{x=z}^{\infty} f(x) d x \tag{1.4}\\
& =\int_{x=z}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) d x \tag{1.5}
\end{align*}
$$

Now we make the substitution

$$
\begin{equation*}
t=\frac{x-\mu}{\sqrt{2 \sigma^{2}}} \tag{1.6}
\end{equation*}
$$

To perform a change of variables in an integral, we need to replace both x and $d x$ with the equivalent functions of t. Solving for x, we have that

$$
\begin{equation*}
x=\sqrt{2 \sigma^{2}} t+\mu \tag{1.7}
\end{equation*}
$$

so taking the first derivative of x with respect to $t, d x$ is given by

$$
\begin{equation*}
d x=\sqrt{2 \sigma^{2}} d t \tag{1.8}
\end{equation*}
$$

Substituting (1.7)-(1.8) into (1.5), we get

$$
\begin{align*}
\operatorname{Pr}(x>z) & =\int_{x=z}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) d x \tag{1.9}\\
& =\int_{\sqrt{2 \sigma^{2}} t+\mu=z}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-t^{2}\right) \sqrt{2 \sigma^{2}} d t \tag{1.10}\\
& =\int_{t=(z-\mu) / \sqrt{2 \sigma^{2}}}^{\infty} \frac{1}{\sqrt{\pi}} \exp \left(-t^{2}\right) d t \tag{1.11}\\
& =\frac{1}{2} \operatorname{erfc}\left(\frac{z-\mu}{\sqrt{2 \sigma^{2}}}\right) . \tag{1.12}
\end{align*}
$$

1.2. Discrete-Time Random Processes

There are many ways to define a random process, but for our purposes, the following is sufficient:

- A random process is a function of time $X(t)$, so that for each fixed time $t^{*}, X\left(t^{*}\right)$ is a random variable.

As a result, we can write the probability density function (pdf) of the random process at any given time. For example, $f_{X\left(t^{*}\right)}(x)$ represents the pdf of the random process at time t^{*}. Joint probability density functions measure the joint probability of the process at k different times; these are called k th order statistics of the random process. For example, for $k=2$ and times t_{1} and t_{2}, we can write the second order statistics as $f_{X\left(t_{1}\right), X\left(t_{2}\right)}\left(x_{1}, x_{2}\right)$.
1.2.1. Definition, Mean, and Variance. It's easy to imagine a random process in discrete time, as merely a sequence of random variables, one for each time interval. For instance, consider the following two random processes defined at integer times $t \in\{\ldots,-2,-1,0,1,2, \ldots\}$:

Example 1.1. At each time $t \in\{\ldots,-2,-1,0,1,2, \ldots\}$, a fair coin is flipped. If the coin shows heads after the flip at time t, then $X(t)=1$; otherwise, $X(t)=-1$. Thus, for any integer t^{*}, we can write

$$
f_{X\left(t^{*}\right)}(x)=\left\{\begin{array}{cl}
0.5, & x=+1 \\
0.5, & x=-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Since, at each fixed time t, the random process is a random variable, we can calculate the mean and variance of the process at each fixed time as usual for random variables. Thus, for the process as a whole, the mean and variance for a random process are calculated as functions of time. For instance, for the process in Example 1.1, the mean of this process is given by

$$
\begin{aligned}
\mu(t) & =\sum_{x \in\{+1,-1\}} x f_{X(t)}(x) \\
& =(+1)(0.5)+(-1)(0.5) \\
& =0
\end{aligned}
$$

for all t. The variance of the process is given by

$$
\begin{aligned}
\sigma^{2}(t) & =\sum_{x \in\{+1,-1\}}(x-\mu(t))^{2} f_{X(t)}(x) \\
& =(+1-0)^{2}(0.5)+(-1-0)^{2}(0.5) \\
& =1
\end{aligned}
$$

for all t.
As an alternative, the following more compicated example has mean and variance that are non-trivial functions of time:

Example 1.2. Let $X(0)=0$. For each $t \in\{1,2, \ldots\}$, a fair coin is flipped. If the coin shows heads after the flip at time t, then $X(t)=X(t-1)+1$; otherwise, $X(t)=X(t-1)$.

For any t, it is clear that $X(t)$ is the number of heads in the previous t trials. Such random variables are represented by the binomial distribution [1]. Thus,

$$
f_{X(t)}(x)=\binom{t}{x} \frac{1}{2^{t}}
$$

The mean of this random process is given by

$$
\mu(t)=\frac{t}{2}
$$

and the variance is given by

$$
\sigma^{2}(t)=\frac{t}{4}
$$

The reader is asked to prove these values in the exercises.

Instances of the random processes from Examples 1.1 and 1.2 are given in Figure 1.1.
1.2.2. Autocorrelation. Suppose you wanted a measure of correlation between two random variables, X_{1} and X_{2}, with the same mean $\mu=0$ and the same variance $\sigma^{2}>0$. As a candidate for this measure, consider

$$
\begin{equation*}
R=E\left[X_{1} X_{2}\right] \tag{1.13}
\end{equation*}
$$

If the random variables are independent (i.e., uncorrelated), then since $E\left[X_{1} X_{2}\right]=$ $E\left[X_{1}\right] E\left[X_{2}\right]$ for independent random variables, we would have

$$
R=E\left[X_{1}\right] E\left[X_{2}\right]=\mu^{2}=0
$$

bearing in mind that each of the random variables are zero mean. On the other hand, if the two random variables are completely correlated (i.e., $X_{1}=X_{2}$), we would have

$$
R=E\left[X_{1} X_{2}\right]=E\left[X_{1}^{2}\right]=\sigma^{2}
$$

Figure 1.1. Illustration of the discrete-time random processes from Examples 1.1 and 1.2.

Further, if they were completely anticorrelated (i.e., $X_{1}=-X_{2}$), it is easy to see that $R=-\sigma^{2}$.

This measure of correlation also has the following nice property:

Theorem 1.1. Given the above definitions, $|R| \leq \sigma^{2}$.

Proof: Start with $E\left[\left(X_{1}+X_{2}\right)^{2}\right]$. We can write:

$$
\begin{aligned}
E\left[\left(X_{1}+X_{2}\right)^{2}\right] & =E\left[X_{1}^{2}+2 X_{1} X_{2}+X_{2}^{2}\right] \\
& =E\left[X_{1}^{2}\right]+2 E\left[X_{1} X_{2}\right]+E\left[X_{2}^{2}\right] \\
& =\sigma^{2}+2 R+\sigma^{2} \\
& =2 \sigma^{2}+2 R
\end{aligned}
$$

Since $\left(X_{1}+X_{2}\right)^{2} \geq 0$ for all X_{1} and X_{2}, it is true that $E\left[\left(X_{1}+X_{2}\right)^{2}\right] \geq 0$. Thus, $2 \sigma^{2}+2 R \geq 0$, so $R \geq-\sigma^{2}$. Repeating the same procedure but starting with $E\left[\left(X_{1}-X_{2}\right)^{2}\right]$, we have that $R \leq \sigma^{2}$, and the theorem follows.
Since $R=0$ when X_{1} and X_{2} are independent, $R=\sigma^{2}$ (the maximum possible value) when they are completely correlated, and $R=-\sigma^{2}$ (the minimum possible
value) when they are completely anticorrelated, R is a good candidate for a correlation measure. The magnitude of R indicates the degree of correlation between X_{1} and X_{2}, while the sign indicates whether the variables are correlated or anticorrelated. Properties of this correlation measure when the variances are unequal, or when the means are nonzero, are considered in the exercises.

We apply this correlation measure to different time instants of the same random process, which we refer to as the autocorrelation. In particular, let $X(t)$ be a discrete-time random process defined on $t \in\{\ldots,-2,-1,0,1,2, \ldots\}$. Then the autocorrelation between $X\left(t_{1}\right)$ and $X\left(t_{2}\right)$ is defined as

$$
\begin{equation*}
R\left(t_{1}, t_{2}\right)=E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right] \tag{1.14}
\end{equation*}
$$

Note the similarity with (1.13), since $X(t)$ is merely a random variable for each time t. For the same reason, $R\left(t_{1}, t_{2}\right)$ has all the same properties as R.
1.2.3. Stationary random processes. A stationary discrete-time random process is a process for which the statistics do not change with time. Formally, a process is stationary if and only if

$$
\begin{equation*}
f_{X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{k}\right)}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=f_{X\left(t_{1}+\tau\right), X\left(t_{2}+\tau\right), \ldots, X\left(t_{k}+\tau\right)}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \tag{1.15}
\end{equation*}
$$

for all $k \in\{1,2, \ldots\}$ and all $\tau \in\{\ldots,-2,-1,0,1,2, \ldots\}$. This does not imply that the process $X(t)$ is constant with respect to time, only that the statistical variation of the process is the same, regardless of when you examine the process. The process in Example 1.1 is stationary; intuitively, this is because we keep flipping the same unchanging coin, and recording the outcome in the same way at all t.

We now examine the effects of stationarity on the mean, variance, and autocorrelation of a discrete-time random process $X(t)$. The mean $\mu(t)$ is calculated as follows:

$$
\begin{aligned}
\mu(t) & =\int_{x} x f_{X(t)}(x) \mathrm{d} x \\
& =\int_{x} x f_{X(t+\tau)}(x) \mathrm{d} x \\
& =\mu(t+\tau)
\end{aligned}
$$

where the second line follows from the fact that $f_{X(t)}=f_{X(t+\tau)}$ for all $\tau \in$ $\{\ldots,-2,-1,0,1,2, \ldots\}$. Thus, $\mu(t)=\mu(t+\tau)$ for all τ, so $\mu(t)$ must be a constant with respect to t. Using a similar line of reasoning, we can show that $\sigma^{2}(t)$ is a constant with respect to t. Thus, for stationary random processes, we will write $\mu(t)=\mu$ and $\sigma^{2}(t)=\sigma^{2}$ for all t.

For the autocorrelation, we can write

$$
\begin{align*}
R\left(t_{1}, t_{2}\right) & =E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right] \\
& =\int_{x_{1}} \int_{x_{2}} x_{1} x_{2} f_{X\left(t_{1}\right), X\left(t_{2}\right)}\left(x_{1}, x_{2}\right) \mathrm{d} x_{2} \mathrm{~d} x_{1} \tag{1.16}\\
& =\int_{x_{1}} \int_{x_{2}} x_{1} x_{2} f_{X\left(t_{1}+\tau\right), X\left(t_{2}+\tau\right)}\left(x_{1}, x_{2}\right) \mathrm{d} x_{2} \mathrm{~d} x_{1} . \tag{1.17}
\end{align*}
$$

Let $\tau=\tau^{\prime}-t_{1}$. Substituting back into (1.17), we have

$$
\begin{align*}
R\left(t_{1}, t_{2}\right) & =\int_{x_{1}} \int_{x_{2}} x_{1} x_{2} f_{X\left(t_{1}+\tau^{\prime}-t_{1}\right), X\left(t_{2}+\tau^{\prime}-t_{1}\right)}\left(x_{1}, x_{2}\right) \mathrm{d} x_{2} \mathrm{~d} x_{1} \\
& =\int_{x_{1}} \int_{x_{2}} x_{1} x_{2} f_{X\left(\tau^{\prime}\right), X\left(t_{2}-t_{1}+\tau^{\prime}\right)}\left(x_{1}, x_{2}\right) \mathrm{d} x_{2} \mathrm{~d} x_{1} \tag{1.18}
\end{align*}
$$

However, in (1.18), since $X(t)$ is stationary, $f_{X\left(\tau^{\prime}\right), X\left(t_{2}-t_{1}+\tau^{\prime}\right)}\left(x_{1}, x_{2}\right)$ does not change for any value of τ^{\prime}. Thus, setting $\tau^{\prime}=0$, we can write

$$
R\left(t_{1}, t_{2}\right)=\int_{x_{1}} \int_{x_{2}} x_{1} x_{2} f_{X(0), X\left(t_{2}-t_{1}\right)}\left(x_{1}, x_{2}\right) \mathrm{d} x_{2} \mathrm{~d} x_{1},
$$

which is not dependent on the exact values of t_{1} or t_{2}, but only on the difference $t_{2}-t_{1}$. As a result, we can redefine the autocorrelation function for stationary random processes as $R\left(t_{2}-t_{1}\right)$; further, reusing τ to represent this difference, we will usually write $R(\tau)$, where

$$
R(\tau)=E[X(t) X(t+\tau)]
$$

for all t.
The properties that $\mu(t)=\mu, \sigma^{2}(t)=\sigma^{2}$, and $R\left(t_{1}, t_{2}\right)=R\left(t_{2}-t_{1}\right)$ apply only to the first and second order statistics of the process $X(t)$. In order to verify whether a process is stationary, it is necessary to prove the condition (1.15) for every order of statistics. In general this is a difficult task. However, in some circumstances, only first and second order statistics are required. In this case, we define a wide-sense stationary (WSS) process as any process which satisfies the first and second order conditions of $\mu(t)=\mu, \sigma^{2}(t)=\sigma^{2}$, and $R\left(t_{1}, t_{2}\right)=R\left(t_{2}-t_{1}\right)$. We have shown that
all stationary processes are WSS, but it should seem clear that a WSS process is not necessarily stationary.
1.2.4. Power spectral density. For a wide-sense stationary random process, the power spectral density (PSD) of that process is the Fourier transform of the autocorrelation function:

$$
\begin{equation*}
S_{x}(j \omega)=\mathcal{F}\left[R_{x}(\tau)\right]=\int_{\tau=-\infty}^{\infty} R_{x}(\tau) e^{-j \omega \tau} d \tau \tag{1.19}
\end{equation*}
$$

Properties of PSD:

$$
\begin{equation*}
\operatorname{Var}(x[k])=R_{x}(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{x}(j \omega) d \omega . \tag{1.20}
\end{equation*}
$$

1.3. Linear systems

1.3.1. Review of linear systems.

1.3.2. Linear systems and random processes. Apply a linear filter with frequency-domain transfer function $H(j \omega)$ to a wide-sense stationary random process with PSD $S_{x}(j \omega)$. The output is a random process with PSD $S_{w}(j \omega)$, where

$$
\begin{equation*}
S_{w}(j \omega)=S_{x}(j \omega)|H(j \omega)|^{2} \tag{1.21}
\end{equation*}
$$

1.4. Problems

(1) For the random process in Example 1.2, show that $\mu(t)=t / 2$, and $\sigma^{2}(t)=$ $t / 4$. Is this process stationary? Explain.
(2) Suppose X_{1} and X_{2} are zero-mean random variables with variances σ_{1}^{2} and σ_{2}^{2}, respectively. For the correlation measure R defined in (1.13), show that

$$
|R| \leq \frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{2}
$$

(3) Suppose X_{1} and X_{2} have the same nonzero mean μ, and the same variance σ^{2}. For the correlation measure R defined in (1.13), show that $|R| \leq$ $\sigma^{2}+\mu^{2}$.
(4) Give an example of a discrete-time random process for which $\mu(t)=\mu$ and $\sigma^{2}(t)=\sigma^{2}$ for all t, but there exist t_{1} and t_{2} such that $R\left(t_{1}, t_{2}\right) \neq$ $R\left(t_{2}-t_{1}\right)$.
(5) Calculate $\mu(t)$ and $R\left(t_{1}, t_{2}\right)$ for the continuous time random process given in Example ??. Is this process stationary? Explain.
(6) Let $X(t)=X \sin (2 \pi t)$, where X is a random variable corresponding to the result of a single fair coin flip: $X=1$ if the coin is heads, and $X=-1$ is the coin is tails. Does $X(t)$ satisfy the definition of a continuous-time random process? If so, calculate $f_{X(t)}(x)$; if not, explain why not.

1.5. Laboratory Exercise: Probability and Random Processes

In this laboratory exercise, you will investigate the properties of discrete-valued random variables and random processes.
1.5.1. Generating arbitrary random variables. Let x be a discrete-valued random variable, taking values on $1,2, \ldots, 6$, with probability mass function $p(x)$.

- MATLAB provides a routine, rand, which generates uniformly distributed random variables on the range from 0 to 1 . Given $p(x)$, propose a way to generate instances of x, with probabilities $p(x)$, from rand.
- Write a MATLAB function, called xrand, implementing the method you describe. The routine takes a 1×6 vector, where the first element of the vector is $p(1)$, the second is $p(2)$, and so on. The routine returns a value on $1,2, \ldots, 6$ at random according to the probabilities $p(x)$.

Discussion of empirical distributions.
Given a distribution, write a function to calculate the mean and variance, both empirically and theoretically.

Consider the following Gaussian random process: ... Plot the autocorrelation, both empirically and

CHAPTER 2

Baseband Data Transmission

2.1. Hardware Model of Communication

2.1.1. Traditional communication system model.

2.1.2. Transmitter hardware model.

2.1.3. Receiver hardware model.

2.2. Noise

Although there are many sources of random distortion in communication systems, we will assume that the dominant source is thermal noise, arising from the random motion of electrons in electrical components. This random motion results in small current fluctuations, which can be significant in the presence of a very weak signal. Because there are many independently-moving electrons, all of which contribute randomly to the current fluctuations, the central limit theorem [2] can be used to model noise as a Gaussian random variable.

Gaussian noise has zero mean. The autocorrelation of a continuous-time Gaussian noise process $n(t)$ is given by

$$
\begin{equation*}
R_{n}(\tau)=\frac{N_{0}}{2} \delta(\tau) \tag{2.1}
\end{equation*}
$$

and is thus wide-sense stationary. Taking the Fourier transform of $R_{n}(\tau)$, its power spectral density is given by

$$
\begin{equation*}
S_{n}(j \omega)=\frac{N_{0}}{2} \tag{2.2}
\end{equation*}
$$

where N_{0} is a constant proportional to the temperature of the device. From (2.2), the power spectrum is the same at all frequencies ω, so the noise is "white", analogously to white light; furthermore, the current fluctuations are added to whatever deterministic signal is present. Thus, we refer to this type of noise as additive white Gaussian noise (AWGN).

In discrete time, the received signal $y[k]$ is given by

$$
\begin{equation*}
y[k]=A s[k]+n[k], \tag{2.3}
\end{equation*}
$$

where $s[k]$ represents the signal, A is a scaling factor representing signal attenuation/amplification, and $n[k]$ is the sampled version of the continuous-time AWGN process $n(t)$.

We will now determine the properties of $n[k]$. In the hardware model, we precede the A-to-D converter with an ideal lowpass filter having frequency-domain transfer function $H_{L P}(j \omega)$, where

$$
H_{L P}(j \omega)=\left\{\begin{array}{cl}
1, & |\omega|<\pi / T_{s} \tag{2.4}\\
0 & \text { otherwise }
\end{array}\right.
$$

That is, the cutoff frequency of the filter is the Nyquist frequency $1 / 2 T_{s}$. Let $\mathrm{w}(\mathrm{t})$ represent the noise random process at the output of the ideal lowpass filter, and let $S_{w}(j \omega)$ represent its PSD. From (1.21), $S_{w}(j \omega)$ is given by

$$
\begin{align*}
S_{w}(j \omega) & =S_{n}(j \omega)\left|H_{L P}(j \omega)\right|^{2} \tag{2.5}\\
& =\left\{\begin{array}{cl}
N_{0} / 2, & |\omega|<\pi / T_{s} \\
0 & \text { otherwise }
\end{array}\right. \tag{2.6}
\end{align*}
$$

Thus, from (1.20), the variance of $w(t)$ (and hence each sample $w[k]$) is given by

$$
\begin{align*}
\operatorname{Var}(w(t)) & =\operatorname{Var}(w[k]) \tag{2.7}\\
& =\frac{1}{2 \pi} \int_{\omega=-\infty}^{\infty} S_{w}(j \omega) d \omega \tag{2.8}\\
& =\frac{1}{2 \pi} \cdot \frac{2 \pi}{T_{s}} \cdot \frac{N_{0}}{2} \tag{2.9}\\
& =\frac{N_{0}}{2 T_{s}} . \tag{2.10}
\end{align*}
$$

We also need to know whether the samples $w[k]$ are independent. Taking the inverse Fourier transform of $S_{w}(j \omega)$, since $S_{w}(j \omega)$ is rectangular, we have that (see Appendix A)

$$
\begin{align*}
R_{x}(\tau) & =\mathcal{F}^{-1}\left[S_{w}(j \omega)\right] \tag{2.11}\\
& =\frac{1}{T_{s}} \operatorname{sinc}\left(\frac{\tau}{T_{s}}\right) \tag{2.12}
\end{align*}
$$

If τ is a multiple of the sampling frequency, we have

$$
\begin{align*}
R_{x}\left(k T_{s}\right) & =\frac{1}{T_{s}} \operatorname{sinc}(k) \tag{2.13}\\
& =\left\{\begin{array}{cc}
\frac{1}{T_{s}}, & k=0 \\
0, & k \neq 0
\end{array}\right. \tag{2.14}
\end{align*}
$$

Thus, recalling our discussion of correlation in Chapter 1 , the noise process $w[k]$ is uncorrelated from sample to sample. Since $w[k]$ is a Gaussian random process, this is sufficient to show that it is independent from sample to sample.

2.3. Modulation and Detection

2.3.1. Modulation. Data can be represented as an arbitrarily long vector of binary $\{0,1\}$ symbols, as in Figure X. The goal of modulation is to transform such a vector into a function of time, which is necessary before the bit can be transmitted over the medium.

Since this book deals with discrete-time signal processing, the modulator will replace each bit with a non-overlapping sequence of samples; the function of time will then be generated in digital-to-analog conversion. From Section 2.1, each bit consists of $n_{b}=T_{b} / T_{s}$ samples, so we should define two sequences of n_{b} samples each: one to represent 0 , and one to represent 1 . Let $s_{0}[k]$ and $s_{1}[k]$ represent these sequences for bits 0 and 1 , respectively.

The following examples illustrate modulation in detail.

Example 2.1 (Polar nonreturn-to-zero). In polar nonreturn-to-zero (NRZ), for any n_{b}, let

$$
s_{0}[k]= \begin{cases}1, & 1 \leq k \leq n_{b} \tag{2.15}\\ 0, & \text { otherwise }\end{cases}
$$

and

$$
\begin{equation*}
s_{1}[k]=-s_{0}[k] . \tag{2.16}
\end{equation*}
$$

Example 2.2 (Binary phase shift keying). In binary phase shift keying (BPSK), suppose for 0 , the bit time T_{b} contains exactly one cycle of a sinusoid; thus, there
would be exactly one cycle over n_{b} samples. We can write

$$
s_{0}[k]=\left\{\begin{array}{cl}
\sin \left(2 \pi k / n_{b}\right), & 1 \leq k \leq n_{b} \tag{2.17}\\
0, & \text { otherwise }
\end{array}\right.
$$

Furthermore, let

$$
s_{1}[k]=\left\{\begin{array}{cl}
\sin \left(2 \pi k / n_{b}+\pi\right), & 1 \leq k \leq n_{b} \tag{2.18}\\
0, & \text { otherwise }
\end{array}\right.
$$

as depicted in Figure X. From (2.18), the phase is shifted by π radians in order to transmit a 1, hence the terminology. However, also note that $s_{1}[k]=-s_{0}[k]$.

Now let $\mathbf{b}=[0,1,1,0,1]$, and let $n_{b}=5$. Replacing 0 and 1 with $s_{0}[k]$ and $s_{1}[k]$, respectively, from each example, we obtain discrete-time signals depicted in Figure X.
2.3.2. Detection. From (2.3), the received signal is corrupted by an AWGN random process $n[k]$. The detector's job is to extract the value of the bit, 0 or 1 , from the noisy signal $y[k]$, as accurately as possible.

The detector consists of two components: a filter, which performs signal processing on $y[k]$, and a decision device, which takes the output of the filter and determines whether a 0 or 1 was sent. Typically, the decision device examines the output value of the filter after each bit has been sent (i.e., at integer multiples of the bit time T_{b}, or integer multiples of n_{b} in discrete time); we will call these values the filter outputs. We will assume that the filter is linear and time invariant, and has impulse response $h[k]$. The filter outputs $\phi(j)$ are given by

$$
\begin{equation*}
\phi(j)=[y[k] \star h[k]]_{j n_{b}}, \tag{2.19}
\end{equation*}
$$

where the notation \star represents discrete-time convlution, and the notation $[\cdot]_{j n_{b}}$ indicates that the expression is evaluated at time $j n_{b}$.

Given $\phi(j)$, the decision device then assigns a bit, 0 or 1 , to each possible output of the filter. This is usually done through a threshold (i.e., the bit is a 0 if the filter output exceeds the threshold, or a 1 if the filter output is less than the threshold). Let $d_{z}(x)$ represent the decision function on x with threshold z, where

$$
d_{z}(x)= \begin{cases}0, & x \geq z \tag{2.20}\\ 1, & x<z\end{cases}
$$

Thus, combining (2.19)-(2.20), the estimated bits \hat{b}_{j} are given by

$$
\begin{equation*}
\hat{b}_{j}=d_{z}(\phi(j)) \tag{2.21}
\end{equation*}
$$

Selection of optimal $h[k]$ and z are non-trivial design problems, which will be discussed extensively in the remainder of the book. However, the following example illustrates a correctly designed detector, and its outputs in a noise-free channel.

Example 2.3. Let $s_{0}[t]$ and $s_{1}[t]$ be polar NRZ pulses, as defined in (2.15)(2.16). Let

$$
h[k]= \begin{cases}1, & 0 \leq k<n_{b} \tag{2.22}\\ 0, & \text { otherwise }\end{cases}
$$

Note that $h[k]=s_{0}[k+1]$.
In the absence of noise, the filter output in response to $s_{0}[k]$ at time n_{b} is

$$
\begin{align*}
{\left[s_{0}[k] \star h[k]\right]_{n_{b}} } & =\sum_{i=-\infty}^{\infty} s_{0}[i] h\left[n_{b}-i\right] \tag{2.23}\\
& =\sum_{i=1}^{n_{b}} 1 \tag{2.24}\\
& =n_{b} \tag{2.25}
\end{align*}
$$

Since $s_{1}[k]=-s_{0}[k]$, the filter output in response to $s_{1}[k]$ is given by

$$
\begin{align*}
{\left[s_{1}[k] \star h[k]\right]_{n_{b}} } & =-\sum_{i=-\infty}^{\infty} s_{0}[i] h\left[n_{b}-i\right] \tag{2.26}\\
& =-\sum_{i=1}^{n_{b}} 1 \tag{2.27}\\
& =-n_{b} \tag{2.28}
\end{align*}
$$

From now on, we will let s_{0} represent the noise-free filter output when 0 is sent (and, respectively, s_{1} when 1 is sent). Thus,

$$
\begin{equation*}
s_{0}=\left[s_{0}[k] \star h[k]\right]_{n_{b}}, \tag{2.29}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{1}=\left[s_{1}[k] \star h[k]\right]_{n_{b}} . \tag{2.30}
\end{equation*}
$$

Because the detection filter is linear, the effect of noise will be added to the noisefree output.

Now consider the effect of noise. From (2.3), since convolution distributes over addition, applying the filter $h[k]$ to $y[k]$ will result in

$$
\begin{align*}
y[k] \star h[k] & =(s[k]+n[k]) \star h[k] \tag{2.31}\\
& =s[k] \star h[k]+n[k] \star h[k], \tag{2.32}
\end{align*}
$$

which consists of a signal term $s[k] \star h[k]$ and a noise term $n[k] \star h[k]$. The signal term in (2.32) can be obtained by calculating $h[k] \star s_{0}[k]$ and $h[k] \star s_{1}[k]$, as in Example 2.3 for polar NRZ. Considering the noise term, evaluating the filter output at time n_{b}, we can write

$$
\begin{equation*}
[n[k] \star h[k]]_{n_{b}}=\sum_{i} h[i] n\left[n_{b}-i\right] \tag{2.33}
\end{equation*}
$$

where the sum is over all possible values of i (which can be restricted to those values of i for which $h[i] \neq 0$, i.e., the "support" of $h[i])$. Since $n[k]$ is an AWGN random process with mean zero and variance $N_{0} / 2 T_{s}($ from (2.10)), the sum in (2.33) is a weighted sum of independent Gaussian random variables, with mean zero and variance

$$
\begin{equation*}
\sigma^{2}=\frac{N_{0}}{2 T_{s}} \sum_{i} h[i]^{2} \tag{2.34}
\end{equation*}
$$

Recalling Chapter 1, the sum of Gaussian random variables is itself a Gaussian random variable. Thus, if the transmitted symbol is known to be 0 , the filter output has mean $\left[s_{0}[k] \star h[k]\right]_{n_{b}}$ and variance σ^{2}. Similarly, if the transmitted symbol is known to be 1 , the filter output has mean $\left[s_{1}[k] \star h[k]\right]_{n_{b}}$ and variance σ^{2}.

2.4. Error analysis

2.4.1. General form of the probability of error. An error occurs if $\hat{b}_{j} \neq b_{j}$ (we will refer to this event as error). Using the decision function $d_{z}(\phi[j])$ from (2.20), we have that $\hat{b}_{j}=0$ if $\phi[j] \geq z$; thus, an error occurs if $b_{j}=1$ and $\phi[j] \geq z$. Similarly, an error occurs if $b_{j}=0$ and $\phi[j]<z$.

Remember that if b_{j} is known, then $\phi[j]$ is a Gaussian random variable. Thus, using properties of Gaussian random variables, we can calculate the conditional error probabilities $\operatorname{Pr}\left(\operatorname{error} \mid b_{j}=0\right)$ and $\operatorname{Pr}\left(\operatorname{error} \mid b_{j}=1\right)$. The average error probability is then given by

$$
\begin{equation*}
\operatorname{Pr}(\text { error })=\operatorname{Pr}\left(\text { error } \mid b_{j}=0\right) \operatorname{Pr}\left(b_{j}=0\right)+\operatorname{Pr}\left(\text { error } \mid b_{j}=1\right) \operatorname{Pr}\left(b_{j}=1\right) \tag{2.35}
\end{equation*}
$$

Let's start with $\operatorname{Pr}\left(\right.$ error $\left.\mid b_{j}=1\right)$. Clearly

$$
\begin{equation*}
\left.\operatorname{Pr}\left(\operatorname{error} \mid b_{j}=1\right)=\operatorname{Pr}(\phi[j] \geq z) \mid b_{j}=1\right) \tag{2.36}
\end{equation*}
$$

This event is illustrated in Figure X. Given $b_{j}=1, \phi[j]$ is a Gaussian random variable with mean s_{1} (from (2.30)) and variance σ^{2} (from (2.34)). The PDF of this random variable is given by

$$
\begin{equation*}
f\left(\phi[k] \mid b_{j}=1\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(\phi[k]-s_{1}\right)^{2}\right) \tag{2.37}
\end{equation*}
$$

Thus, since $\phi[k]$ is a continuous-valued random variable,

$$
\begin{align*}
\operatorname{Pr}\left(\operatorname{error} \mid b_{j}=1\right) & \left.=\operatorname{Pr}(\phi[j] \geq z) \mid b_{j}=1\right) \tag{2.38}\\
& =\int_{\phi[k]=z}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(\phi[k]-s_{1}\right)^{2}\right) d \phi[k] \tag{2.39}
\end{align*}
$$

As we mentioned in Chapter 1, integrals over the Gaussian PDF, such as the one in (2.39), cannot be directly computed. However, we can use a special function known as the error function complementary, $\operatorname{erfc}(\cdot)$, defined in (1.2), to represent this integral. With a change of variables, the integral in (2.39) can be expressed in terms of $\operatorname{erfc}(\cdot)$ as

$$
\begin{equation*}
\operatorname{Pr}\left(\operatorname{error} \mid b_{j}=1\right)=\frac{1}{2} \operatorname{erfc}\left(\frac{z-s_{1}}{\sqrt{2 \sigma^{2}}}\right) \tag{2.40}
\end{equation*}
$$

By a similar derivation, $\operatorname{Pr}\left(\operatorname{error} \mid b_{j}=0\right)$ is given by

$$
\begin{equation*}
\operatorname{Pr}\left(\operatorname{error} \mid b_{j}=0\right)=\frac{1}{2} \operatorname{erfc}\left(\frac{s_{0}-z}{\sqrt{2 \sigma^{2}}}\right) \tag{2.41}
\end{equation*}
$$

Showing the correctness of (2.40) and (2.41) are left as exercises for the reader. Finally, substituting into (2.35), we have

$$
\operatorname{Pr}(\text { error })
$$

$$
\begin{align*}
& =\operatorname{Pr}\left(\operatorname{error} \mid b_{j}=0\right) \operatorname{Pr}\left(b_{j}=0\right)+\operatorname{Pr}\left(\operatorname{error} \mid b_{j}=1\right) \operatorname{Pr}\left(b_{j}=1\right) \tag{2.42}\\
& =\frac{1}{2} \operatorname{erfc}\left(\frac{s_{0}-z}{\sqrt{2 \sigma^{2}}}\right) \operatorname{Pr}\left(b_{j}=0\right)+\frac{1}{2} \operatorname{erfc}\left(\frac{z-s_{1}}{\sqrt{2 \sigma^{2}}}\right) \operatorname{Pr}\left(b_{j}=1\right) \tag{2.43}
\end{align*}
$$

2.4.2. Probability of error for Polar NRZ. Let's return to Example 2.3, which illustrated detection with Polar NRZ signals, and use a threshold $z=0$. In the example, we showed that $s_{0}=-s_{1}=n_{b}$. Thus, substituting into (2.43), we have

$$
\begin{align*}
\operatorname{Pr} & (\text { error) } \\
& =\frac{1}{2} \operatorname{erfc}\left(\frac{n_{b}-0}{\sqrt{2 \sigma^{2}}}\right) \operatorname{Pr}\left(b_{j}=0\right)+\frac{1}{2} \operatorname{erfc}\left(\frac{0-\left(-n_{b}\right)}{\sqrt{2 \sigma^{2}}}\right) \operatorname{Pr}\left(b_{j}=1\right) \tag{2.44}\\
& =\frac{1}{2} \operatorname{erfc}\left(\frac{n_{b}}{\sqrt{2 \sigma^{2}}}\right) \operatorname{Pr}\left(b_{j}=0\right)+\frac{1}{2} \operatorname{erfc}\left(\frac{n_{b}}{\sqrt{2 \sigma^{2}}}\right) \operatorname{Pr}\left(b_{j}=1\right) \tag{2.45}\\
& =\frac{1}{2} \operatorname{erfc}\left(\frac{n_{b}}{\sqrt{2 \sigma^{2}}}\right)\left(\operatorname{Pr}\left(b_{j}=0\right)+\operatorname{Pr}\left(b_{j}=1\right)\right) \tag{2.46}\\
& =\frac{1}{2} \operatorname{erfc}\left(\frac{n_{b}}{\sqrt{2 \sigma^{2}}}\right) . \tag{2.47}
\end{align*}
$$

From (2.47), since $\operatorname{erfc}(\cdot)$ is a decreasing function, it seems like increasing n_{b} leads to a decrease in Pr (error). However, by examining (2.34), we can show that the probability of error is independent of the sampling rate. In Example 2.3, we used a filter impulse response $h[k]=s_{0}[k]$, so (2.34) becomes

$$
\begin{align*}
\sigma^{2} & =\frac{N_{0}}{2 T_{s}} \sum_{i=1}^{n_{b}} s_{0}[k]^{2} \tag{2.48}\\
& =\frac{N_{0}}{2 T_{s}} \sum_{i=1}^{n_{b}} 1 \tag{2.49}\\
& =\frac{N_{0} n_{b}}{2 T_{s}} \tag{2.50}
\end{align*}
$$

However, the sample time T_{s} can be expressed as

$$
\begin{equation*}
T_{s}=\frac{T_{b}}{n_{b}} \tag{2.51}
\end{equation*}
$$

Substituting into (2.50), we have

$$
\begin{equation*}
\sigma^{2}=\frac{N_{0} n_{b}^{2}}{2 T_{b}} \tag{2.52}
\end{equation*}
$$

and finally, substituting into (2.47), we have

$$
\begin{align*}
\operatorname{Pr}(\text { error }) & =\frac{1}{2} \operatorname{erfc}\left(\frac{n_{b}}{\sqrt{2\left(N_{0} n_{b}^{2}\right) /\left(2 T_{b}\right)}}\right) \tag{2.53}\\
& =\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{T_{b}}{N_{0}}}\right) \tag{2.54}
\end{align*}
$$

Thus, in this example, the only important factors in determining the probability of error are the bit duration, T_{b}, and the AWGN power spectral density coefficient, N_{0}.
2.4.3. Summary and Examples. Our calculation of probability of error for Polar NRZ followed a procedure that can be generalized to other signalling schemes. Given modulation signals $s_{0}[k]$ and $s_{1}[k]$, detection filter $h[k]$, threshold z, and all relevant system parameters (e.g., i.e., probabilities $\operatorname{Pr}\left(b_{j}=0\right)$ and $\operatorname{Pr}\left(b_{j}=1\right)$, noise coefficient N_{0}, sample time T_{s}, samples per bit n_{b}), the following procedure may be used to calculate the probability of error:
(1) Calculate the noise-free filter outputs s_{0} and s_{1}, using equations (2.29)(2.30).
(2) Calculate the variance of the noise σ^{2} at the output of the filter, using equation (2.34). Given that the input bit is 0 (or 1), the output of the filter is then a Gaussian random variable with mean $\mu=s_{0}$ (resp., s_{1}) and variance σ^{2}.
(3) Obtain probability of error by substituting all these quantities into equation (2.43).

Using this procedure, we now present two additional examples.

Example 2.4 (Binary Phase Shift Keying). Returning to example 2.2, we now calculate the probability of error for BPSK. Let

$$
h[k]=\left\{\begin{array}{cl}
\sin \left(-\frac{2 \pi k}{n_{b}}\right), & 1 \leq k \leq n_{b} \tag{2.55}\\
0 & \text { otherwise }
\end{array}\right.
$$

and let the threshold $z=0$. We now follow the procedure given above.

Noise-free filter outputs: Using (2.29), s_{0} is given by

$$
\begin{align*}
s_{0} & =\left[s_{0}[k] \star h[k]\right]_{n_{b}} \tag{2.56}\\
& =\sum_{i=1}^{n_{b}} s_{0}[i] h\left[n_{b}-i\right] \tag{2.57}\\
& =\sum_{i=1}^{n_{b}} \sin \left(\frac{2 \pi i}{n_{b}}\right) \sin \left(\frac{2 \pi\left(i-n_{b}\right)}{n_{b}}\right) \tag{2.58}\\
& =\sum_{i=1}^{n_{b}} \sin \left(\frac{2 \pi i}{n_{b}}\right) \sin \left(\frac{2 \pi i}{n_{b}}+2 \pi\right) \tag{2.59}\\
& =\sum_{i=1}^{n_{b}} \sin \left(\frac{2 \pi i}{n_{b}}\right)^{2} \tag{2.60}
\end{align*}
$$

Furthermore, it is easy to show that

$$
\begin{equation*}
s_{1}=-s_{0} \tag{2.61}
\end{equation*}
$$

Variance of the noise: Using (2.34), σ^{2} is given by

$$
\begin{align*}
\sigma^{2} & =\frac{N_{0}}{2 T_{s}} \sum_{i=1}^{n_{b}} h[i]^{2} \tag{2.62}\\
& =\frac{N_{0}}{2 T_{s}} \sum_{i=1}^{n_{b}} \sin \left(-\frac{2 \pi k}{n_{b}}\right)^{2} \tag{2.63}\\
& =\frac{N_{0}}{2 T_{s}} \sum_{i=1}^{n_{b}} \sin \left(\frac{2 \pi k}{n_{b}}\right)^{2} \tag{2.64}\\
& =\frac{N_{0}}{2 T_{s}} s_{0} \tag{2.65}
\end{align*}
$$

where (2.64) follows from (2.63) since $\sin (-x)=-\sin (x)$.
Probability of error. Substituting into (2.43), we have
$\operatorname{Pr}($ error $)$
$=\frac{1}{2} \operatorname{erfc}\left(\frac{s_{0}-z}{\sqrt{2 \sigma^{2}}}\right) \operatorname{Pr}\left(b_{j}=0\right)+\frac{1}{2} \operatorname{erfc}\left(\frac{z-s_{1}}{\sqrt{2 \sigma^{2}}}\right) \operatorname{Pr}\left(b_{j}=1\right)$
$=\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{T_{s} s_{0}}{N_{0}}}\right) \operatorname{Pr}\left(b_{j}=0\right)+\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{T_{s} s_{0}}{N_{0}}}\right) \operatorname{Pr}\left(b_{j}=1\right)$
$=\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{T_{s} s_{0}}{N_{0}}}\right)$.

To obtain specific numbers for this system, let $T_{b}=10^{-4}, n_{b}=8$, and $N_{0}=$ $1.25 \cdot 10^{-5}$. Then from (2.60), $s_{0}=4$, so

$$
\begin{align*}
\operatorname{Pr}(\text { error }) & =\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{\left(10^{-4} / 8\right) \cdot 4}{1.25 \cdot 10^{-5}}}\right) \tag{2.69}\\
& =0.00234 \tag{2.70}
\end{align*}
$$

Example 2.5 (On-off keying). Let $s_{0}[k]$ be the same as (2.15), and let $h[k]=$ $s_{0}[k+1]$, as in Polar NRZ. However, let $s_{1}[k]=0$ for all k. This is referred to as on-off keying, since the transmitter is "on" (all +1) to transmit 0, and "off" (all zero) to transmit 1. Suppose $\operatorname{Pr}\left(b_{j}=0\right)=\operatorname{Pr}\left(b_{j}=1\right)=1 / 2$. We consider two cases: first, $z=0$, and second, $z=n_{b} / 2$.

Noise-free filter outputs: Since $s_{0}[k]$ and $h[k]$ are the same as in Polar NRZ, s_{0} is also the same, so

$$
\begin{equation*}
s_{0}=\left[s_{0}[k] \star h[k]\right]_{n_{b}}=n_{b} . \tag{2.71}
\end{equation*}
$$

Since $s_{1}[k]=0$, then

$$
\begin{equation*}
s_{1}=[0 \star h[k]]_{n_{b}}=0 \tag{2.72}
\end{equation*}
$$

Variance of the noise: Since $h[k]$ is the same as in Polar $N R Z$, then

$$
\begin{equation*}
\sigma^{2}=\frac{N_{0}}{2 T_{s}} \sum_{i} h[k]^{2}=\frac{N_{0}}{2 T_{s}} n_{b} . \tag{2.73}
\end{equation*}
$$

Probability of error. Substituting into (2.43), and using $z=0$, we have
$\operatorname{Pr}($ error $)$
$=\frac{1}{2} \operatorname{erfc}\left(\frac{s_{0}-z}{\sqrt{2 \sigma^{2}}}\right) \operatorname{Pr}\left(b_{j}=0\right)+\frac{1}{2} \operatorname{erfc}\left(\frac{z-s_{1}}{\sqrt{2 \sigma^{2}}}\right) \operatorname{Pr}\left(b_{j}=1\right)$
$=\frac{1}{4} \operatorname{erfc}\left(\sqrt{\frac{T_{s} n_{b}}{N_{0}}}\right)+\frac{1}{4} \operatorname{erfc}(0)$
$=\frac{1}{4}\left(\operatorname{erfc}\left(\sqrt{\frac{T_{s} s_{0}}{N_{0}}}\right)+1\right)$.
On the other hand, using $z=n_{b} / 2$, we have

$$
\begin{equation*}
\operatorname{Pr}(\text { error })=\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{n_{b} T_{s}}{4 N_{0}}}\right) \tag{2.77}
\end{equation*}
$$

The probability of error in (2.77) is generally smaller (and therefore better) than (2.76), which we illustrate in Figure X.

2.5. Probability of error and energy per bit

Probability of error is frequently expressed in terms of the average energy per bit E_{b}, which allows the system designer to compare two systems on the basis of the same energy expenditure.

In continuous time, the energy E_{0} and E_{1} contained in the continuous-time modulation functions $s_{0}(t)$ and $s_{1}(t)$, respectively, are expressed by

$$
\begin{equation*}
E_{0}=\int_{t=0}^{T_{b}} s_{0}(t)^{2} d t \tag{2.78}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{1}=\int_{t=0}^{T_{b}} s_{1}(t)^{2} d t \tag{2.79}
\end{equation*}
$$

Average energy per bit is then given by

$$
\begin{equation*}
E_{b}=E_{0} \operatorname{Pr}\left(b_{j}=0\right)+E_{1} \operatorname{Pr}\left(b_{j}=1\right) \tag{2.80}
\end{equation*}
$$

In discrete time, calculation of the energy per bit is dependent on the digital-to-analog hardware that is used to transform $s_{0}[k]$ and $s_{1}[k]$ into continuous-time functions $s_{0}(t)$ and $s_{1}(t)$, respectively. In this book, we will use the following method: each sample will be replaced with a rectangular function of width T_{s} and amplitude equal to the sample value, where the rectangle corresponding to the k th sample occupies time between $t=(k-1) T_{s}$ and $t=k T_{s}$. This scheme is depicted in Figure X.

More formally, let $r_{T_{s}}(t)$ be a rectangular function over the interval T_{s}, given by

$$
r_{T_{s}}(t)= \begin{cases}1, & -T_{s} \leq t<0 \tag{2.81}\\ 0 & \text { otherwise }\end{cases}
$$

This is a more convenient form of the $\operatorname{rect}(\cdot)$ function, defined in the appendix. Furthermore, the rectangle is defined on the interval $\left[-T_{s}, 0\right)$ because, from the definition above, the rectangle "lags" the sample. Then $s_{0}(t)$ is given by

$$
\begin{equation*}
s_{0}(t)=\sum_{i=1}^{n_{b}} s_{0}[i] r_{T_{s}}\left(t-i T_{s}\right) \tag{2.82}
\end{equation*}
$$

To calculate energy E_{0} for bit 0 , we can now use (2.78):

$$
\begin{align*}
E_{0} & =\int_{t=0}^{T_{b}}\left(\sum_{i=1}^{n_{b}} s_{0}[i] r_{T_{s}}\left(t-i T_{s}\right)\right)^{2} d t \tag{2.83}\\
& =\sum_{i=1}^{n_{b}} s_{0}[i]^{2} \int_{t=0}^{T_{b}} r_{T_{s}}\left(t-i T_{s}\right) d t \tag{2.84}\\
& =T_{s} \sum_{i=1}^{n_{b}} s_{0}[i]^{2} \tag{2.85}
\end{align*}
$$

where (2.84) follows from (2.83) because the rectangles $r_{T_{s}}\left(t-i T_{s}\right)$ do not overlap, and have unit amplitude; and where (2.85) follows from (2.84) because the area under $r_{T_{s}}\left(t-i T_{s}\right)$ is always T_{s}. Similarly for E_{1}, we have that

$$
\begin{equation*}
E_{1}=T_{s} \sum_{i=1}^{n_{b}} s_{1}[i]^{2} \tag{2.86}
\end{equation*}
$$

For the three error calculations we gave in this chapter, we can now restate the probability of error as a function of energy per bit. For polar NRZ, we have that

$$
\begin{align*}
E_{0} & =T_{s} \sum_{i=1}^{n_{b}} s_{0}[i]^{2} \tag{2.87}\\
& =T_{s} n_{b} \tag{2.88}\\
& =T_{b}, \tag{2.89}
\end{align*}
$$

and $E_{1}=E_{0}$. Thus, $E_{b}=T_{b}$. Substituting back into (2.53), we have

$$
\begin{equation*}
\operatorname{Pr}(\text { error })=\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_{b}}{N_{0}}}\right) \tag{2.90}
\end{equation*}
$$

which directly relates the probability of error to the average energy consumed in transmitting a bit. Restating the equations for the other two modulation schemes are left as exercises.

2.6. Problems

(1) Making the changes of variables described in Chapter 1, show that (2.40) and (2.41) are correct.
(2) Restate the error calculation for binary phase shift keying (Example 2.4) and on-off keying (Example 2.5) in terms of average energy per bit E_{b}. How do these schemes compare with Polar NRZ in terms of energy efficiency?
2.7. Laboratory exercise

CHAPTER 3

Optimal System Design

In Chapter 2, we outlined the basic problems of modulation and detection, without discussing how parameters such as z and $h[k]$ should be selected. The digital communication system design problem is to minimize the probability of detection error, subject to constraints on the energy per bit E_{b}. In this chapter, we present the optimal solution to this design problem.

3.1. Optimizing the decision threshold

In the on-off keying example from Chapter 2 (Example 2.5), we saw that the choice of threshold had an impact on the probability of error. Given a pair of signals $s_{0}[k]$ and $s_{1}[k]$, and a filter $h[k]$, the threshold z should obviously be selected so as to minimize Pr (error). How can we do this?

Recall the average error probability expression

$$
\begin{equation*}
\operatorname{Pr}(\text { error })=\frac{1}{2} \operatorname{erfc}\left(\frac{s_{0}-z}{\sqrt{2 \sigma^{2}}}\right) \operatorname{Pr}\left(b_{j}=0\right)+\frac{1}{2} \operatorname{erfc}\left(\frac{z-s_{1}}{\sqrt{2 \sigma^{2}}}\right) \operatorname{Pr}\left(b_{j}=1\right) \tag{3.1}
\end{equation*}
$$

and differentiate with respect to z. Doing so, we get an expression closely related to the Gaussian integral: let

$$
\begin{equation*}
f_{T}(t)=\frac{2}{\sqrt{\pi}} \exp \left(-t^{2}\right) \tag{3.2}
\end{equation*}
$$

and let $F_{T}(t)$ represent the indefinite integral of $f_{T}(t)$ (which is not available in closed form). Then

$$
\begin{align*}
\operatorname{erfc}(z) & =\int_{z}^{\infty} f_{T}(t) d t \tag{3.3}\\
& =F_{T}(\infty)-F_{T}(z) \tag{3.4}
\end{align*}
$$

However, by the fundamental theorem of calculus, it is true that

$$
\begin{equation*}
f_{T}(t)=\frac{d}{d t} F_{T}(t) \tag{3.5}
\end{equation*}
$$

so taking the first derivative of $\operatorname{erfc}(z)$ with respect to z, we get

$$
\begin{equation*}
\frac{d}{d z} \operatorname{erfc}(z)=-f_{T}(z) \tag{3.6}
\end{equation*}
$$

Applying this to (3.1), and using the chain rule for derivatives, we get

$$
\begin{align*}
& \frac{d}{d z} \operatorname{Pr}(\text { error }) \\
& \quad=\frac{1}{2} \operatorname{Pr}\left(b_{j}=0\right) \frac{d}{d z} \operatorname{erfc}\left(\frac{s_{0}-z}{\sqrt{2 \sigma^{2}}}\right)+\frac{1}{2} \operatorname{Pr}\left(b_{j}=1\right) \frac{d}{d z} \operatorname{erfc}\left(\frac{z-s_{1}}{\sqrt{2 \sigma^{2}}}\right) \tag{3.7}\\
& \quad=\frac{1}{2 \sqrt{\sigma^{2}}} \operatorname{Pr}\left(b_{j}=0\right) f_{T}\left(\frac{s_{0}-z}{\sqrt{2 \sigma^{2}}}\right)-\frac{1}{2 \sqrt{\sigma^{2}}} \operatorname{Pr}\left(b_{j}=1\right) f_{T}\left(\frac{z-s_{1}}{\sqrt{2 \sigma^{2}}}\right) \tag{3.8}
\end{align*}
$$

To find the minimum, we set the expression in (3.8) to zero. As a result, the minimizing value of z is the value satisfying

$$
\begin{equation*}
\operatorname{Pr}\left(b_{j}=0\right) f_{T}\left(\frac{s_{0}-z}{\sqrt{2 \sigma^{2}}}\right)=\operatorname{Pr}\left(b_{j}=1\right) f_{T}\left(\frac{z-s_{1}}{\sqrt{2 \sigma^{2}}}\right) \tag{3.9}
\end{equation*}
$$

It is left as an exercise for the reader to show that this value is a minimum. Substituting into (3.9) with the expansion of $f_{T}(t)$, and collecting exponential terms, we have

$$
\begin{equation*}
\exp \left(-\frac{1}{2 \sigma^{2}}\left(s_{0}-z\right)^{2}+\frac{1}{2 \sigma^{2}}\left(z-s_{1}\right)^{2}\right)=\frac{\operatorname{Pr}\left(b_{j}=1\right)}{\operatorname{Pr}\left(b_{j}=0\right)} \tag{3.10}
\end{equation*}
$$

Taking the natural logarithm, log, of both sides results in

$$
\begin{equation*}
\frac{1}{2 \sigma^{2}}\left(\left(z-s_{1}\right)^{2}-\left(s_{0}-z\right)^{2}\right)=\log \frac{\operatorname{Pr}\left(b_{j}=1\right)}{\operatorname{Pr}\left(b_{j}=0\right)} \tag{3.11}
\end{equation*}
$$

and collecting terms on the left, we have

$$
\begin{equation*}
\frac{1}{2 \sigma^{2}}\left(2\left(s_{0}-s_{1}\right) z-\left(s_{0}^{2}-s_{1}^{2}\right)\right)=\log \frac{\operatorname{Pr}\left(b_{j}=1\right)}{\operatorname{Pr}\left(b_{j}=0\right)} \tag{3.12}
\end{equation*}
$$

Finally, solving for z gives

$$
\begin{equation*}
z=\frac{\sigma^{2}}{s_{0}-s_{1}} \log \frac{\operatorname{Pr}\left(b_{j}=1\right)}{\operatorname{Pr}\left(b_{j}=0\right)}+\frac{1}{2}\left(s_{0}+s_{1}\right) . \tag{3.13}
\end{equation*}
$$

Thus, in the polar NRZ example we presented above, $z=0$ is indeed the optimal threshold, since $s_{1}=-s_{0}$ and $\operatorname{Pr}\left(b_{j}=0\right)=\operatorname{Pr}\left(b_{j}=1\right)=1 / 2$.

We make two remarks on (3.13). First, if the two binary values 0 and 1 are equiprobable (i.e., $\left.\operatorname{Pr}\left(b_{j}=0\right)=\operatorname{Pr}\left(b_{j}=1\right)=1 / 2\right)$, then (3.13) reduces to

$$
\begin{equation*}
z=\frac{1}{2}\left(s_{0}+s_{1}\right) \tag{3.14}
\end{equation*}
$$

which is exactly halfway between the two mean values s_{0} and s_{1}. Thus, for any received value $y[k]$, the decision $\hat{b}[k]$ is made based on the closest point to $y[k]$,
either s_{0} or s_{1}. Second, if 0 and 1 are not equiprobable, then the threshold is biased towards the less likely bit, thereby expanding the region of $y[k]$ that maps to the more likely bit. This reduces error since, in case of uncertainty, it is safer to select the more likely bit. This is illustrated in Figure X.

Example 3.1. Suppose $s_{0}=1$, $s_{1}=-1$, and $\sigma^{2}=1$. Let $z=1 / 2$. For what values of $\operatorname{Pr}\left(b_{j}=0\right)$ and $\operatorname{Pr}\left(b_{j}=1\right)$ is this setting of z optimal?

Substituting into (3.13), we have

$$
\begin{align*}
z=\frac{1}{2} & =\frac{\sigma^{2}}{s_{0}-s_{1}} \log \frac{\operatorname{Pr}\left(b_{j}=1\right)}{\operatorname{Pr}\left(b_{j}=0\right)}+\frac{1}{2}\left(s_{0}+s_{1}\right) \tag{3.15}\\
& =\frac{1}{2} \log \frac{\operatorname{Pr}\left(b_{j}=1\right)}{\operatorname{Pr}\left(b_{j}=0\right)}+\frac{1}{2}(0) \tag{3.16}
\end{align*}
$$

Simplifying, we have

$$
\begin{equation*}
\log \frac{\operatorname{Pr}\left(b_{j}=1\right)}{\operatorname{Pr}\left(b_{j}=0\right)}=1 \tag{3.17}
\end{equation*}
$$

Thus, $\operatorname{Pr}\left(b_{j}=1\right) / \operatorname{Pr}\left(b_{j}=0\right)=e^{1}=e \simeq 2.718$. However, remember that $\operatorname{Pr}\left(b_{j}=\right.$ $1)+\operatorname{Pr}\left(b_{j}=0\right)=1$. Thus,

$$
\begin{equation*}
\frac{\operatorname{Pr}\left(b_{j}=1\right)}{1-\operatorname{Pr}\left(b_{j}=1\right)}=e \tag{3.18}
\end{equation*}
$$

the solution for which is $\operatorname{Pr}\left(b_{j}=1\right)=e /(1+e) \simeq 0.731$, so $\operatorname{Pr}\left(b_{j}=1\right) \simeq 0.269$.

In general, the optimal way to distinguish between two signals in noise is to employ the maximum a posteriori probability (MAP) criterion

3.2. Receiver filter design: The matched filter

We now consider how to design the optimal receiver filter $h[k]$. The following assumptions are used to simplify the derivation:

- The input bits are equiprobable: $\operatorname{Pr}\left(b_{j}=0\right)=\operatorname{Pr}\left(b_{j}=1\right)=1 / 2$; and
- Modulation waveform $s_{1}[k]$ is a scalar multiple of $s_{0}[k]$; i.e., there exists α such that

$$
\begin{equation*}
s_{1}[k]=\alpha s_{0}[k] \tag{3.19}
\end{equation*}
$$

Note that (3.19) is true of all three modulation schemes we have studied thus far: in Polar NRZ and BPSK, we had $\alpha=-1$, while in on-off keying, we had $\alpha=0$.

To simplify the notation, let

$$
\begin{equation*}
\hat{h}[k]=h\left[n_{b}-k\right] . \tag{3.20}
\end{equation*}
$$

Using $\hat{h}[k], s_{0}$ becomes

$$
\begin{align*}
s_{0} & =\left[s_{0}[k] \star h[k]\right]_{n_{b}} \tag{3.21}\\
& =\sum_{i=1}^{n_{b}} s_{0}[i] h\left[n_{b}-i\right] \tag{3.22}\\
& =\sum_{i=1}^{n_{b}} s_{0}[i] \hat{h}[i] . \tag{3.23}
\end{align*}
$$

Furthermore, using (3.19), s_{1} becomes

$$
\begin{align*}
s_{1} & =\sum_{i=1}^{n_{b}} s_{1}[i] \hat{h}[i] \tag{3.24}\\
& =\alpha \sum_{i=1}^{n_{b}} s_{0}[i] \hat{h}[i] \tag{3.25}\\
& =\alpha s_{0} . \tag{3.26}
\end{align*}
$$

Furthermore, since $\hat{h}[k]$ rearranges the elements of $h[k]$, but does not change their values, it should be clear that the variance is now given by

$$
\begin{equation*}
\sigma^{2}=\frac{N_{0}}{2 T_{s}} \sum_{i} \hat{h}[i]^{2} \tag{3.27}
\end{equation*}
$$

By assumption, the bit values are equiprobable, so we use the optimal threshold from (3.14). This leads to

$$
\begin{equation*}
z=\frac{1}{2}\left(s_{0}+s_{1}\right)=\frac{1+\alpha}{2} s_{0} \tag{3.28}
\end{equation*}
$$

Substituting into (3.1), we have

$$
\begin{align*}
\operatorname{Pr} & \text { (error) } \\
& =\frac{1}{2} \operatorname{erfc}\left(\frac{s_{0}-z}{\sqrt{2 \sigma^{2}}}\right) \operatorname{Pr}\left(b_{j}=0\right)+\frac{1}{2} \operatorname{erfc}\left(\frac{z-s_{1}}{\sqrt{2 \sigma^{2}}}\right) \operatorname{Pr}\left(b_{j}=1\right) \tag{3.29}\\
& =\frac{1}{4} \operatorname{erfc}\left(\frac{s_{0}-(1+\alpha) s_{0} / 2}{\sqrt{2 \sigma^{2}}}\right)+\frac{1}{4} \operatorname{erfc}\left(\frac{(1+\alpha) s_{0} / 2-\alpha s_{0}}{\sqrt{2 \sigma^{2}}}\right) \tag{3.30}\\
& =\frac{1}{2} \operatorname{erfc}\left(\frac{(1-\alpha) s_{0}}{2 \sqrt{2 \sigma^{2}}}\right) \tag{3.31}
\end{align*}
$$

The filter design problem can then be stated as follows: find $\hat{h}[k]$ satisfying

$$
\begin{equation*}
\min _{\hat{h}[k]} \frac{1}{2} \operatorname{erfc}\left(\frac{(1-\alpha) s_{0}}{2 \sqrt{2 \sigma^{2}}}\right) \tag{3.32}
\end{equation*}
$$

However, note that $\operatorname{erfc}(x)$ is a decreasing function of x, so minimizing erfc is equivalent to maximizing its argument. Thus, (3.32) is equivalent to finding $\hat{h}[k]$ satisfying

$$
\begin{equation*}
\max _{\hat{h}[k]} \frac{(1-\alpha) s_{0}}{2 \sqrt{2 \sigma^{2}}} \tag{3.33}
\end{equation*}
$$

The constants do not affect the value of $\hat{h}[k]$ maximizing (3.33), and neither does squaring the expression, so (3.33) becomes

$$
\begin{equation*}
\max _{\hat{h}[k]} \frac{s_{0}^{2}}{\sigma^{2}} \tag{3.34}
\end{equation*}
$$

Substituting s_{0} and σ^{2} with their expansions, given by (3.23) and (3.27) respectively, the design problem becomes: find $\hat{h}[k]$ satisfying

$$
\begin{equation*}
\max _{\hat{h}[k]} \frac{\left(\sum_{i=1}^{n_{b}} s_{0}[i] \hat{h}[i]\right)^{2}}{\sum_{i=1}^{n_{b}} \hat{h}[i]^{2}} \tag{3.35}
\end{equation*}
$$

again eliminating the constants in the denominator. Remarkably, α is irrelevant to the maximization, so the filter only depends on $s_{0}[k]$.

To solve this problem, we use the Cauchy-Schwartz inequality [3]. There are many forms of this inequality, but the following form is most appropriate for this problem. Let $a[k]$ and $b[k]$ be discrete-time functions that are supported on $1 \leq$ $k \leq n$. Then:

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a[i] b[i]\right)^{2} \leq\left(\sum_{i=1}^{n} a[i]^{2}\right)\left(\sum_{i=1}^{n} b[i]^{2}\right) \tag{3.36}
\end{equation*}
$$

with equality if and only if $a[i]=b[i]$ for all i. This inequality is proved in Appendix B.

Returning to the design problem, we can apply the Cauchy-Schwartz inequality to $s_{0}[k]$ and $\hat{h}[k]$. Since $s_{0}[k]$ and $\hat{h}[k]$ are supported over $1 \leq k \leq n_{b}$, by substituting directly into (3.36), we can write

$$
\begin{equation*}
\left(\sum_{i=1}^{n_{b}} s_{0}[i] \hat{h}[i]\right)^{2} \leq\left(\sum_{i=1}^{n_{b}} s_{0}[i]^{2}\right)\left(\sum_{i=1}^{n_{b}} \hat{h}[i]^{2}\right) \tag{3.37}
\end{equation*}
$$

However, $s_{0}[k]$ is given, so $\sum_{i=1}^{n_{b}} s_{0}[i]^{2}$ is a constant with respect to $\hat{h}[i]$. Rearranging (3.37), we can write

$$
\begin{equation*}
\frac{\left(\sum_{i=1}^{n_{b}} s_{0}[i] \hat{h}[i]\right)^{2}}{\sum_{i=1}^{n_{b}} \hat{h}[i]^{2}} \leq K \tag{3.38}
\end{equation*}
$$

where $K=\sum_{i=1}^{n_{b}} s_{0}[i]^{2}$, emphasizing that this quantity is constant. The quantity on the left of the inequality (3.38) is the same as the quantity to be maximized in (3.35). Thus, from (3.38), we conclude that the maximum possible value of this quantity is K, and by the equality condition for the Cauchy-Schwartz inequality, this value is achieved if and only if

$$
\begin{equation*}
\hat{h}[k]=s_{0}[k] \tag{3.39}
\end{equation*}
$$

for all k. Letting $h^{\star}[k]$ represent the optimized filter, we have that

$$
\begin{equation*}
h^{*}[k]=s_{0}\left[n_{b}-k\right] . \tag{3.40}
\end{equation*}
$$

The optimal filter $h^{*}[k]$ is called the matched filter, since from (3.40) it is clearly matched to $s_{0}[k]$.

Using $h^{*}[k]$, we can find the optimized values of s_{0} and s_{1} (which we write s_{0}^{*} and s_{1}^{*}, respectively), as follows:

$$
\begin{align*}
s_{0}^{*} & =\sum_{i=1}^{n_{b}} s_{0}[i]^{2} \tag{3.41}\\
& =\frac{E_{0}}{T_{s}}, \tag{3.42}
\end{align*}
$$

recalling the definition of E_{0} as the energy required to send a zero. Similarly,

$$
\begin{equation*}
s_{1}^{*}=\alpha \frac{E_{0}}{T_{s}} . \tag{3.43}
\end{equation*}
$$

Notice that $E_{1}=\alpha^{2} E_{0}$, so the average energy per bit, E_{b}, is given by

$$
\begin{align*}
E_{b} & =\frac{1}{2}\left(E_{0}+E_{1}\right) \tag{3.44}\\
& =\frac{1+\alpha^{2}}{2} E_{0} \tag{3.45}
\end{align*}
$$

Furthermore, the optimized value of σ^{2}, written $\sigma^{2^{*}}$, is given by

$$
\begin{align*}
\sigma^{2^{*}} & =\frac{N_{0}}{2 T_{s}} \sum_{i=1}^{n_{b}} s_{0}[i]^{2} \tag{3.46}\\
& =\frac{N_{0}}{2 T_{s}^{2}} E_{0} . \tag{3.47}
\end{align*}
$$

Substituting all of the above into (3.31), we have

$$
\begin{align*}
\operatorname{Pr}(\text { error }) & =\frac{1}{2} \operatorname{erfc}\left(\frac{(1-\alpha) s_{0}^{*}}{2 \sqrt{2 \sigma^{2^{*}}}}\right) \tag{3.48}\\
& =\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{(1-\alpha)^{2}}{4} \frac{E_{0}}{N_{0}}}\right) \tag{3.49}\\
& =\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{(1-\alpha)^{2}}{2\left(1+\alpha^{2}\right)} \frac{E_{b}}{N_{0}}}\right) \tag{3.50}
\end{align*}
$$

Thus, under our design assumptions, the probability of error for the optimal filter can be expressed in terms of E_{b} / N_{0}. It is interesting to note that the individual values of E_{b} and N_{0} are irrelevant - only their ratio matters. Thus, E_{b} / N_{0} is often used as a figure of merit for digital communication systems.

Example 3.2.

3.3. Optimized waveform design

The parameter α relates $s_{0}[k]$ to $s_{1}[k]$. Since, from (3.50), the probability of error is a function of α, we may consider the value of α that minimizes the probability of error.

We need to find α satisfying

$$
\begin{equation*}
\min _{\alpha} \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{(1-\alpha)^{2}}{2\left(1+\alpha^{2}\right)} \frac{E_{b}}{N_{0}}}\right) . \tag{3.51}
\end{equation*}
$$

Note that E_{b} / N_{0} is independent of α, so taking the same apporach as we took leading up to (3.35): we need to find α maximizing

$$
\begin{equation*}
\max _{\alpha} \frac{(1-\alpha)^{2}}{1+\alpha^{2}} \tag{3.52}
\end{equation*}
$$

Taking the first derivative, we get

$$
\begin{equation*}
\frac{d}{d \alpha} \frac{(1-\alpha)^{2}}{1+\alpha^{2}}=\frac{-2(1-\alpha)(1+\alpha)}{\left(1+\alpha^{2}\right)^{2}} \tag{3.53}
\end{equation*}
$$

which has critical points at $\alpha=-1$ and $\alpha=+1$; it is straightforward to show that these are a maximum and a minimum, respectively. Thus, using the optimal signalling scheme $s_{1}[k]=-s_{0}[k]$, optimal filter $h[k]$, and optimal threshold z, the best possible probability of error is given by

$$
\begin{equation*}
\operatorname{Pr}(\text { error })=\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_{b}}{N_{0}}}\right) \tag{3.54}
\end{equation*}
$$

Intuitively, it makes sense that $\alpha=+1$ is a minimum, since in that case, $s_{0}[k]=s_{1}[k]$ - in other words, there is no difference between the signals used to transmit 0 and 1 , so there is no way to tell them apart. On the other hand, for constant E_{b}, this result suggests that the best approach is to set $s_{0}[k]=-s_{1}[k]$, as we did in Polar NRZ and BPSK. Thus, on-off keying, in which $\alpha=0$, is not an optimal signalling scheme. Furthermore, in (3.54), the details of $s_{0}[k]$ and $s_{1}[k]$ are not relevant - they only affect $\operatorname{Pr}\left(\right.$ error) through E_{b}. Thus, any optimal signalling scheme with the same E_{b} should have the same error performance. (However, there are other criteria, such as bandwidth, that make some signalling schemes more useful than others; we will discuss these in later chapters.)

3.4. Summary

Optimal parameter selections derived in this chapter are given as follows:

- Optimal threshold. Given in (3.13). If 0 and 1 are equiprobable, the optimal threshold is $z=\left(s_{0}+s_{1}\right) / 2$.
- Optimal filter. The matched filter is optimal, with $h^{*}[k]=s_{0}\left[n_{b}-k\right]$.
- Signal selection. Given $s_{0}[k]$, set $s_{1}[k]=-s_{0}[k]$. Every such setting of $s_{0}[k]$ and $s_{1}[k]$ with the same E_{b} has the same Pr (error).

Unless otherwise noted, these optimal settings will be used throughout the rest of the book.

3.5. Problems

(1) Show that the value of z satisfying (3.9) is a minimum of Pr (error).
(2) For the three modulation schemes introduced in Chapter 2, demonstrate that the optimal threshold and matched filter were correctly chosen in each example.

3.6. Laboratory exercise

CHAPTER 4

Signal Space and Passband Data Transmission

In Chapters 2 and 3, we introduced the basic elements of the digital communcations problem, including modulation, detection, and optimized receiver design. However, our analysis in those chapters was binary and one-dimensional: we could only transmit one bit at a time. Furthermore, we restricted ourselves to the case where $s_{1}[k]$ was a scalar multiple of $s_{0}[k]$, which is not necessarily optimal when nonbinary signals are transmitted. In this chapter, we introduce signal space, which provides a mathematical framework for nonbinary and multi-dimensional modulation schemes. Furthermore, we introduce limitations on bandwidth, and discuss their importance on signal design.

4.1. Introduction to Signal Space

4.1.1. Vector spaces. Chapter 2 established that the modulation functions $s_{0}[k]$ and $s_{1}[k]$ are discrete functions supported on $1 \leq k \leq n_{b}$. These functions can instead be represented as $1 \times k$ row vectors \mathbf{s}_{0} and \mathbf{s}_{1}, respectively, where

$$
\begin{equation*}
\mathbf{s}_{0}=\left[s_{0}[1], s_{0}[2], \ldots, s_{0}\left[n_{b}\right]\right] \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{s}_{1}=\left[s_{1}[1], s_{2}[1], \ldots, s_{2}\left[n_{b}\right]\right] . \tag{4.2}
\end{equation*}
$$

In Chapter 3, we assumed that \mathbf{s}_{1} was a scalar multiple of \mathbf{s}_{0}; let us now relax that assumption. Recall the definition of vector dot product: if $\mathbf{a}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and $\mathbf{b}=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ are $1 \times n$ vectors, then

$$
\begin{equation*}
\mathbf{a} \cdot \mathbf{b}=\sum_{i=1}^{n} a_{i} b_{i} \tag{4.3}
\end{equation*}
$$

Now suppose there exists a vector $\overline{\mathbf{s}}_{0}$ and constants α and β such that

$$
\begin{equation*}
\mathbf{s}_{1}=\alpha \mathbf{s}_{0}+\beta \overline{\mathbf{s}}_{0} \tag{4.4}
\end{equation*}
$$

where $\overline{\mathbf{s}}_{0} \cdot \mathbf{s}_{0}=0$. That is, $\overline{\mathbf{s}}_{0}$ is orthogonal to \mathbf{s}_{0}.
The pair $\mathbf{s}_{0}, \overline{\mathbf{s}}_{0}$ thus form a two-dimensional vector space containing both \mathbf{s}_{0} and \mathbf{s}_{1}. Vector spaces consist of a set of basis vectors, where any vector in the space can be composed of a linear combination of the basis vectors. Furthermore, vector spaces are closed, in the sense that any linear combination of vectors in the vector space is also in the vector space. This is illustrated in the following example, using the well-known Cartesian space.

Example 4.1 (Cartesian vector space). Let $\mathbf{x}=[1,0]$ and $\mathbf{y}=[0,1]$ be 1×2 basis vectors. Firstly, note that \mathbf{x} and \mathbf{y} are orthogonal:

$$
\begin{align*}
\mathbf{x} \cdot \mathbf{y} & =x_{1} y_{1}+x_{2} y_{2} \tag{4.5}\\
& =1 \cdot 0+0 \cdot 1 \tag{4.6}\\
& =0 . \tag{4.7}
\end{align*}
$$

Clearly, any two-dimensional vector can be expressed as

$$
\begin{equation*}
[\alpha, \beta]=\alpha \mathbf{x}+\beta \mathbf{y} \tag{4.8}
\end{equation*}
$$

and therefore all such vectors are in the two-dimensional Cartesian vector space. Furthermore, from (4.8), the summation of any pair of vectors in this space is also in the space. To see this, we can write

$$
\begin{align*}
{\left[\alpha_{1}, \beta_{1}\right]+\left[\alpha_{2}, \beta_{2}\right] } & =\alpha_{1} \mathbf{x}+\beta_{1} \mathbf{y}+\alpha_{2} \mathbf{x}+\beta_{2} \mathbf{y} \tag{4.9}\\
& =\left(\alpha_{1}+\alpha_{2}\right) \mathbf{x}+\left(\beta_{1}+\beta_{2}\right) \mathbf{y} \tag{4.10}\\
& =\left[\alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2}\right] \tag{4.11}
\end{align*}
$$

The same arguments apply to any vector space with orthogonal basis vectors.

The norm of a $1 \times n$ vector \mathbf{a} is given by

$$
\begin{equation*}
|\mathbf{a}|=\sqrt{\mathbf{a} \cdot \mathbf{a}}=\sqrt{\sum_{i=1}^{n} a_{i}^{2}} \tag{4.12}
\end{equation*}
$$

From the above example, the vectors \mathbf{x} and \mathbf{y} have the additional useful property that $|\mathbf{x}|=|\mathbf{y}|=1$. A basis for a vector space for which the basis vectors are all orthogonal to each other, and all have unit norm, is called an orthonormal basis. Given any m linearly independent vectors (i.e., none of the m vectors can
be expressed as a linear combination of the others), it always possible to generate an m-dimensional orthonormal basis using the Gram-Schmidt procedure. Here we give this procedure for $m=2$, which is the largest case that we will require in this book. Let \mathbf{a} and \mathbf{b} represent the two (linearly independent) vectors, and suppose they are both $1 \times n$:
(1) Normalize a: let

$$
\begin{equation*}
\hat{\mathbf{a}}=\frac{\mathbf{a}}{|\mathbf{a}|} . \tag{4.13}
\end{equation*}
$$

Using (4.12), it is easy to show that $|\hat{\mathbf{a}}|=1$, so $\hat{\mathbf{a}}$ is the first basis vector.
(2) Remove the component of \mathbf{b} in the direction of $\hat{\mathbf{a}}$: let

$$
\begin{equation*}
\mathbf{b}^{\prime}=\mathbf{b}-\hat{\mathbf{a}}(\mathbf{b} \cdot \hat{\mathbf{a}}) . \tag{4.1.1}
\end{equation*}
$$

Using (4.3), it is easy to show that \mathbf{b}^{\prime} is orthogonal to $\hat{\mathbf{a}}$, i.e., $\mathbf{b}^{\prime} \cdot \hat{\mathbf{a}}=0$.
(3) Normalize \mathbf{b}^{\prime} : let

$$
\begin{equation*}
\hat{\mathbf{b}}=\frac{\mathbf{b}^{\prime}}{\left|\mathbf{b}^{\prime}\right|} . \tag{4.15}
\end{equation*}
$$

Again using (4.12), it is easy to show that $|\hat{\mathbf{b}}|=1$, and $\hat{\mathbf{b}}$ is still orthogonal to $\hat{\mathbf{a}}$, so $\hat{\mathbf{b}}$ is the second basis vector.
(4) The orthonormal basis is finally given by the pair of vectors $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$.

We now verify that \mathbf{a} and \mathbf{b} can be represented in terms of this basis: from (4.13), \mathbf{a} is given by

$$
\begin{equation*}
\mathbf{a}=|\mathbf{a}| \hat{\mathbf{a}}, \tag{4.16}
\end{equation*}
$$

(with a coefficient of zero in the $\hat{\mathbf{b}}$ direction), and from (4.14)-(4.15), \mathbf{b} is given by

$$
\begin{equation*}
\mathbf{b}=(\mathbf{b} \cdot \hat{\mathbf{a}}) \hat{\mathbf{a}}+\left|\mathbf{b}^{\prime}\right| \hat{\mathbf{b}} . \tag{4.17}
\end{equation*}
$$

Thus, \mathbf{a} and \mathbf{b} are in the vector space formed by $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$.

4.2. M-ary Digital Communications

4.3. Passband Data Transmission: Hardware Model

4.4. Modulation

CHAPTER 5

Multiple Access Communication Systems

5.1. Interference-free spectrum sharing

5.1.1. Frequency division multiple access.
5.1.2. Time division multiple access.

5.2. Spread-spectrum techniques

An Introduction to Information Theory

6.1. Error-control coding

6.1.1. Capacity.
6.1.2. Linear block codes.
6.1.3. Convolutional codes.

6.2. Data compression

6.2.1. Entropy.
6.2.2. Huffman codes.

Bibliography

[1] A. Leon-Garcia, Probability and Random Processes for Electrical Engineering, 2nd ed., Reading, MA: Addison-Wesley, 1994.
[2] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed., New York, NY: McGraw-Hill, 1991.
[3] S. Haykin, Communication Systems, 4th ed., New York, NY: Wiley, 2000.

APPENDIX A

Fourier Transforms

A.1. Properties

A.2. Table of fourier transform pairs
A.2.1. Definitions.

$$
\operatorname{rect}(t)=\left\{\begin{array}{cc}
1, & |t|<1 / 2 \tag{A.1}\\
1 / 2, & |t|=1 / 2 \\
0,|t|>1 / 2 &
\end{array}\right.
$$

$$
\operatorname{sinc}(t)=\frac{\sin (\pi t)}{\pi t}
$$

A.2.2. Table.

$$
\begin{align*}
\text { Fourier transform } & \leftrightarrow \quad \text { Time domain } \\
\operatorname{rect}(j \omega) & \frac{1}{2 \pi} \operatorname{sinc}\left(\frac{t}{2 \pi}\right) \tag{A.3}
\end{align*}
$$

APPENDIX B

The Cauchy-Schwartz Inequality

In this appendix, we prove the Cauchy-Schwartz inequality, which we used in Chapter 3 to design the optimal detection filter.

