User Tools

Site Tools


projects

This is an old revision of the document!


Available projects

The Algorithmics Animation Workshop

Supervisor: Andy Mirzaian

Required background: General prerequisites

Recommended background: CSE 3101

Description

The URL for Algorithmics Animation Workshop (AAW) is http://www.cs.yorku.ca/~aaw. The main purpose of AAW is to be a pedagogical tool by providing animation of important algorithms and data structures in computer science, especially those studied in courses CSE 3101, 4101, 5101, 6114, 6111. This is an open ended project in the sense that more animations can be added to this site over time.

Web-based digital signage

Supervisor: John Amanatides

Required background: General prerequisites

Recommended background: CSE 3221, CSE 3214

Description

Digital signs are increasingly used in many modern buildings to direct people to appropriate rooms for meetings, services, etc. Unfortunately, “programming” them is non-trivial, especially for non-technical people such as administrative staff. The goal of this project is to make using digital signs much easier for such people.

One way to do this is to utilize what administrative staff are really good at: dealing with calendars. By assigning calendars to individual rooms/organizations/events, and having the digital signage software interpret this calendar data to display the day's events, an easier-to-use signage system can be developed.

More specifically, the deliverables of this project include a digital signage system for Bethune College. Some of the technologies that you will be expected to learn/use include Javascript, JQuery, HTML, CSS, and ical/CalDAV. We expect to go open source with this software so that others can use it as well. The deliverables will also include an analysis of what it takes to scale this type of signage campus wide, including provisions for campus alerts/emergency announcements.

Computer pointing devices and the speed-accuracy tradeoff

Supervisor: Scott MacKenzie

Required Background: General 4080 prerequisites, CSE3461, and (preferably) CSE4441

Recommended Background: Interest in user interfaces and human-computer interaction (HCI). Understanding of experiment design. Experience in doing user studies.

Please click here for full description.

One key text entry

Supervisor: Scott MacKenzie

Required Background: General 4080 prerequisites, CSE3461, and (preferably) CSE4441

Recommended Background: Interest in user interfaces and human-computer interaction (HCI). Understanding of experiment design. Experience in doing user studies.

Please click here for full description.

Estimating registration Error

Supervisor: Burton Ma

Required background: General prerequisites

Recommended background: N/A

Description

A fundamental step in computer-assisted surgery is registration where the anatomy of the patient is matched to an image or model of the anatomy. For some types of orthopaedic procedures, registration is performed by digitizing the locations of points on the surface of a bone and matching the point locations to the surface of a model of the bone. Here, a surgeon uses a pointer that is tracked using an optical tracking system to measure registration point locations on a patient. A registration algorithm is used to compute the transformation that best matches the points to a model of the anatomy.

Virtual navigational information (such as where to drill or cut the bone) can be provided to the surgeon after the registration transformation has been established. Here, a surgeon is using a tracked surgical drill to drill a hole along a pre-operatively defined path. Notice that the surgeon looks at the virtual navigational information instead of the patient when performing this task.

Computer-assisted surgical navigation depends on having an accurate registration. If the estimated registration is inaccurate then the navigational information will also be inaccurate, which may lead to errors in the surgical procedure. It is of great interest to know the accuracy of the estimated registration.

Further details on the project can be found here.

Robotic tangible user interface for large tabletops

Supervisor: Wolfgang Stuerzlinger

Required Background: General CSE4080 prerequisites

Recommended Background: CSE3431 or equivalent

Description

Tangible user interfaces provide the user with object that they can touch and use as input devices. One example is the use of (tracked) toy houses to perform a city planning task on a large surface. This project implements a new form of tracking/identification scheme for tangible objects via LED arrays mounted on them. Furthermore, and using robotic components, the tangible objects will have the ability to move around autonomously, which enables important functionalities such as undo and replay.

Different "snapping" techniques in drawing systems

Supervisor: Wolfgang Stuerzlinger

Required Background: General CSE4080 prerequisites

Recommended Background: CSE3461

Description

Many graphics programs implement snapping to facilitate drawing. Snapping ensures that end-points of lines meet, that the endpoint of one line correctly “touches” another, that objects align side-to-side, etc. One problem of simple snapping techniques is that one cannot position objects arbitrarily close together - otherwise the snapping technique interferes. A novel snapping technique “Snap-and-Go” circumvents this problem by slowing the cursor over the line, instead of snapping it close to the line. The objective of this project is to implement several snapping techniques for two-dimensional drawing systems and then to perform an evaluation with a small user study.

Simulation of a 6dof virtual reality tracker

Supervisor: Wolfgang Stuerzlinger

Required Background: General CSE4080 prerequisites

Recommended Background: CSE3431 or equivalent

Description

Previous work by the supervisor resulted in a novel and highly accurate Virtual Reality tracking system that matches or exceeds the specifications of all competing systems. However, this system works only in 5 or 6-sided immersive display environment.

This project is the first step towards an adaptation of the technology for more general environments. In particular we target normal rooms and immersive displays with less than 5 screens. The technical work involves adapting the simulation software for the previous device to simulate a new design, and iteratively optimizing that design based on the results obtained.

projects.1271873608.txt.gz · Last modified: 2010/04/21 18:13 by bil