
Java By Abstraction Chapter 11

1 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-1

Chapter 11

Exception
Handling

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-2

11.1 What are Exceptions?
11.1.1 Exception Handling
11.1.2 The Delegation Model

11.2 Java's Exception Constructs
11.2.1 The Basic try-catch Construct
11.2.2 Handling Multiple Exceptions
11.2.3 Other Constructs

11.3 Exception Objects
11.3.1 The Throwable Hierarchy
11.3.2 Object-Oriented Exception Handling
11.3.3 Checked Exceptions

11.4 Building Robust Apps
11.4.1 Validation versus Exception
11.4.2 Logic Errors

Outline

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-3

An exception is an object that
represents information about an error
state that has arisen to the VM

Examples of error states:

-attempting to perform an illegal
operation, such as:

input mismatch, divide by zero, invalid
cast, ...

11.1 What Are Exceptions?

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-4

Example: The Quotient app
Given two integers, write a program to
compute and output their quotient.

output.println("Enter the first integer:");
int a = input.nextInt();
output.println("Enter the second:");
int b = input.nextInt();

int c = a / b;
output.println("Their quotient is: " + c);

Java By Abstraction Chapter 11

2 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-5

“Legal” Issue
If an exception is thrown by an
implementer, was this part of its
contract?

“Logistical” Issue
If an exception is thrown, what should
the client do about it?

11.1 The important issues:

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-6

There are three sources that can lead
to exceptions:

The End User
Garbage-in, garbage-out

The Programmer
Misunderstanding requirements and/or contracts

The Environment
The VM, the O/S, the H/W, or the network

11.1 What Are Exceptions?

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-7

11.1.1 Exception Handling

Valid

Operation?

Programmer,

End User, or

Environment

Sources

Incorrect

Operations

Error

Logic

Error

Caught?

Handler

Runtime

Error

yes yes

no
Exception

no

• An error source can lead to an incorrect operation

• An incorrect operations may be valid or invalid

• An invalid operation throws an exception

• An exception becomes a runtime error unless caught

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-8

Example, cont.
Here is a sample run:
Enter the first integer:
8

Enter the second:
0

Exception in thread "main"
java.lang.ArithmeticException: / by zero

 at Quotient.main(Quotient.java:16)

In this case:
 - The error source is the end user.
 - The incorrect operation is invalid
 - The exception was not caught

Java By Abstraction Chapter 11

3 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-9

Example, cont.
Anatomy of an error message:
Enter the first integer:
8

Enter the second:
0

Exception in thread "main"
java.lang.ArithmeticException: / by zero

 at Quotient.main(Quotient.java:16)

MessageStack traceType

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-10

11.1.2 The Delegation Model
• We, the client, delegate to method A

•An invalid operation is encountered in A

•A can either handle it or delegate it

•If A handled it, no one would know
•Not even the API of A would document this

•Otherwise, the exception is delegated to us

• We can either handle it or delegate it

•If we handle it, need to use try-catch

•Otherwise, we delegate to the VM

• The VM’s way of handling exceptions is to cause a
runtime error.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-11

11.1.2 The Delegation Model
• We, the client, delegate to method A

•A delegates to method B

•An invalid operation is encountered in B

•B can either handle it or delegate it

•If B handled it, no one would know
•Not even the API of B would document this

•Otherwise, the exception is delegated to A

•A can either handle it or delegate it

•If A handled it, no one would know; otherwise it
comes to us...

• We can either handle it or delegate it
Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-12

The Delegation Model Policy:

Handle or Delegate Back

Note:

• Applies to all (components and client)

• The API must document any back
delegation

• It does so under the heading: “Throws”

Java By Abstraction Chapter 11

4 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-13

Example: SubstringApp
Given a string containing two slash-delimited
substrings, write a program that extracts and
outputs the two substrings.

int slash = str.indexOf("/");
String left = str.substring(0, slash);
String right = str.substring(slash + 1);
output.println("Left substring: " + left);
output.println("Right substring: " + right);

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-14

Example, cont.
Here is a sample run with str = “14-9”
int slash = str.indexOf("/");
String left = str.substring(0, slash);
String right = str.substring(slash + 1);
output.println("Left substring: " + left);
output.println("Right substring: " + right);

java.lang.IndexOutOfBoundsException:
String index out of range: -1
at java.lang.String.substring(String.java:1480)
at Substring.main(Substring.java:14)

The trace follows the delegation from line 1480 within
substring to line 14 within the client.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-15

Example, cont.
Here is the API of substring:
String substring(int beginIndex, int endIndex)
Returns a new string that…

Parameters:
beginIndex - the beginning index, inclusive.
endIndex - the ending index, exclusive.

Returns:
the specified substring.

Throws:
IndexOutOfBoundsException - if the beginIndex
is negative, or endIndex is larger than the
length of this String object, or beginIndex is
larger than endIndex.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-16

11.2.1 The basic try-catch

try

{ ...

 code fragment

 ...

}

catch (SomeType e)

{ ...

 exception handler

 ...

}

program continues

Java By Abstraction Chapter 11

5 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-17

Example
Redo the last example with exception handling

try
{
 int slash = str.indexOf("/");
 String left = str.substring(0, slash);
 String right = str.substring(slash + 1);
 output.println("Left substring: " + left);
 output.println("Right substring: " + right);
}
catch (IndexOutOfBoundsException e)
{
 output.println("No slash in input!");
}
output.println("Clean Exit."); // closing

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-18

11.2.2 Multiple Exceptions

try

{ ...

}

catch (Type-1 e)

{ ...

}

catch (Type-2 e)

{ ...

}

...

catch (Type-n e)

{ ...

}

program continues

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-19

Example
Given a string containing two slash-delimited
integers, write a program that outputs their
quotient. Use exception handling to handle all
possible input errors.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-20

Example
Given a string containing two slash-delimited
integers, write a program that outputs their
quotient. Use exception handling to handle all
possible input errors.

Note that when exception handling is used, do
not code defensively; i.e. assume the world is
perfect and then worry about problems. This
separates the program logic from validation.

Java By Abstraction Chapter 11

6 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-21

Example, cont.
try
{
 int slash = str.indexOf("/");
 String left = str.substring(0, slash);
 String right = str.substring(slash + 1);
 int leftInt = Integer.parseInt(left);
 int rightInt = Integer.parseInt(right);
 int answer = leftInt / rightInt;
 output.println("Quotient = " + answer);
}
catch (?)
{

}

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-22

Example, cont.
catch (IndexOutOfBoundsException e)
{
 output.println("No slash in input!");
}
catch (NumberFormatException e)
{
 output.println("Non-integer operands!");
}
catch (ArithmeticException e)
{
 output.println("Cannot divide by zero!");
}

output.println("Clean Exit."); // closing

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-23

11.3.1 The Hierarchy

Throwable

Object

Exception Error

RuntimeException VirtualMachineError

IOException AssertionError

PrinterException AWTError

... ...

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-24

11.3.2 OO Exception Handling
• They all inherit the features in Throwable

• Can create them like any other object:
Exception e = new Exception();

• And can invoke methods on them, e.g.
getMessage, printStackTrace, etc.

• They all have a toString

• Creating one does not simulate an exception. For
that, use the throw keyword:
Exception e = new Exception("test");
throw e;

Java By Abstraction Chapter 11

7 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-25

Example
Write an app that reads a string containing
two slash-delimited integers the first of
which is positive, and outputs their quotient
using exception handling. Allow the user to
retry indefinitely if an input is found invalid.

As before but:

• What if the first integer is not positive?

• How do you allow retrying?

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-26

Example, cont.
for (boolean stay = true; stay;)
{
 try
 {
 // as before
 if (leftInt < 0) throw(??);
 …
 output.println("Quotient = " + answer);
 stay = false;
 }
 // several catch blocks
}

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-27

for (boolean stay = true; stay;)
{
 try
 {
 // as before
 if (leftInt < 0) throw(??);
 …
 output.println("Quotient = " + answer);
 stay = false;
 }
 // several catch blocks
}

Example, cont.

The order may
be important

E.g. Runtime-
Exception with a

message

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-28

11.3.3 Checked Exceptions
• App programmers can avoid any RuntimeException

through defensive validation

• Hence, we cannot force them to handle such
exceptions

• Other exceptions, however, are "un-validatable",
e.g. diskette not inserted; network not available…

• These are “checked” exceptions

• App programmers must acknowledge their
existence

• How do we enforce that?

• The compiler ensures that the app either handles
checked exceptions or use “throws” in its main.

Java By Abstraction Chapter 11

8 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-29

Example
Write a program that finds out the IP
address of a given web server.
Hint: Use the Socket class (Lab 11)

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-30

11.4 Building Robust Applications

• Thanks to the compiler, checked exceptions are never
"unexpected"; they are trapped or acknowledged

• Unchecked exceptions (often caused by the end user)
must be avoided and/or trapped

• Defensive programming relies on validation to detect
invalid inputs

• Exception-based programming relies on exceptions

• Both approaches can be employed in the same app

• Logic errors are minimized through early exposure,
e.g. strong typing, assertion, etc.

Key points to remember:

