
1

1

CSE1720

Delegation Concepts
(Ch 2)

2

Output (sec 2.2.5)

• Output to the console
• Output to a file (later… section 5.3.2)

• Instead of
System.out.println(“Hi”);

• Use:
PrintStream output = System.out;
output.println(“Hi”);

3

Input (sec 2.2.5)

• Output from the console
• Input from a file (later… section 5.3.2)

• Use:
Scanner input = new
Scanner(System.in);
int x = input.nextInt();

4

Ready-Made I/O Components
Use this template as a starting point for all your
programs in this course:

import java.util.Scanner;
import java.io.PrintStream;

public class Template
{
 public static void main(String[] args)
 {
 Scanner input = new Scanner(System.in);
 PrintStream output = System.out;
 ...
 // use input.nextInt/Double for input
 // use output.println/print for output
 ...
 }
}

2

5

2.1 Computing Paradigms

The code inside the rectangle computes the area of a circle. It
handles both storage (of data) and computation (of area). Let us
explore delegating one or both of these tasks.

import java.lang.System;

public class Area
{
 public static void main(String[] args)
 {
 int width = 8;
 int height = 3;
 int area = width * height;
 System.out.println(area);
 }
}

6

2.1.1 Procedural Paradigm
Keep storage but delegate computation to a class:
int width = 8;
int height = 3;
int area = Rectangle1.computeArea(width, height);

• A method belongs to a class. It performs an action, and hence, its name
is a verb (e.g., computeArea()) or
a complete predicate (e.g., isEnabled()).

• The method name must be followed by a pair of parenthesis with any
parameters needed sandwiched in between.

• The method name together with the types of its parameters make up
the method signature. It is unique per class.

• The method's action culminates in a return. It can be void.

• Invocation syntax: class_name.method(…). It is like dialing the phone
number of a company followed by someone's extension.

7

2.1.2 Modular Paradigm
Delegate both storage and computation to a class:
Rectangle2.width = 8;
Rectangle2.height = 3;
int area = Rectangle2.getArea();

• An attribute belongs to a class. It holds data, and hence, its name is a
noun (width). It has a type.

• Java treats attributes like variables except you do not declare them in
your program (their class takes care of that) and the notion of scope
does not apply to them.

• The attribute name is unique per class.

• Access syntax: class_name.attribute.

• Because the class name appears before the dot, we say that you invoke
a method, or access an attribute, on the class.

8

2.1.3 Object-Oriented Paradigm

Rectangle3 r = new Rectangle3();
r.width = 8;
r.height = 3;
int area = r.getArea();

• Create an instance (a.k.a object) of a class that can handle storage and
computation and work with the instance as if it is a module.

• The instance has a name, r, known as the object reference.

• The attributes are accessed, and the methods are invoked, on the
instance, not on the class.

• Think of the object (or instance) as a copy of the original class.

• Each object can store different values in its attributes; these values are
known as the state of the object.

Delegate both to an instance of a class:

3

9

Case Study 2.2.4: the JDK
Top-level
packages

java.awt
Provides support for drawing graphics.

AWT = Abstract Windowing Toolkit

java.beans Provide support for Java Beans.

java.io Provides support for f ile and other I/O operations.

java.lang
Provides the fundamental Java classes.

This package is auto -imported by the compiler.

java.math Provides support for arbitrary -precision arithmetic

java.net Provides su pport for network access.

java.rmi
Provides support for RMI.
RMI = Remote Method Invocation

java.security Provides support for the security framework.

java.sql

Provides support for databases access over JDBC
JDBC = Java Database Connectivity,

SQL = Structured Query Language

java.text Provides formatting for text, dates, and numbers.

java.util
Miscellaneous utility classes including JCF.
JCF = Java Collection Framework

javax.crypto Provides support for cryptographic operations .

javax.servlet
Provides support for servlet and JSP development.
JSP = Java Server Pages

javax.swing
Provides support for GUI development.
GUI = Graphical User Interface

javax.xml
Provides support for XML processing.

XML = eXtensible Markup Language
10

UML (Unified Modeling Language)

The class diagram of a procedural class:

« utility »

type::lib::Rectangle1

computeArea(int, int): int

« utility »

type::lib::Rectangle2

getArea(): int

width: int

height: int

« utility »

java::lang::Math

sqrt(double): double

PI: double

The class diagrams of two modular classes:

11

UML (Non-Utility Classes)
The class diagram of an object oriented class along with
the object diagrams of two instances of it:

The class diagrams of an
object-oriented class in the
Java standard library

 type::lib::Re ctangle3

width: int

height: int

getArea(): int

width = 4

height = 1

...

width = 8

height = 3

...

s: Rectangle3 r: Rectangle3

java::util::Date

getTime(): long

toString(): String

12

2.2.5 Ready-Made I/O Components
Keyboard Input:
Scanner input = new Scanner(System.in);
int width = input.nextInt();

java::util::Scanner

nextInt(): int

nextDouble(): double

nextLine(): String

input: Scanner

java::io::PrintStream

print(int): void

print(String): void

println(doubl e): void

output: PrintStream

Screen Output:
PrintStream output = System.out;
output.print(width);

4

13

2.2.1 Application Architecture
•A Java application consists of several cooperating classes.

One of the classes starts the application, and is known as
the main class. The other classes are known as helpers or
components.

•The main class for a desktop application (as opposed to
an applet or servlet) is known as an app. It must have a
method with the following header:

•The main class delegates to components. And as more
ready-made components become available, application
development will reduce to developing the main class.

public static void main(String[] args)

14

2.2.2 The Client View
•The client is the developer of the main class. The

implementer is the developer of a component.

•The client understands the big picture, the purpose of the
application. The implementer focuses only on the inner
details of one component.

•The client knows how to shop for components and how
to read their specs; i.e. knows what each one does but not
how it does it.

•This course focuses on being a client. It prepares you to
write applications using components that are already
available.

•Separation of concerns means the client and the
implementer share info on a need-to-know basis.

15

The Client View
•Given a component, the client does not care what is inside

it, only what it does. This is known as its interface or API
(application programming interface).

•The class of a component thus encapsulates it. An attempt
to look inside is breaking the encapsulation.

CLIENT

Interface

In
terfa

ce In
te

rf
a

ce

IMPLEMENTER

Interface

16

The Client View
A class is made up of features. A feature is an attribute or a method. The
class of a component classifies each feature as either public or private
depending, respectively, on whether the client needs or does not need to
know about it.

The API (interface) of a component lists only the headers of its public
methods and the declarations of its public attributes (a.k.a. fields).

feature

method

attribute

private

public = field

private

public

interfac
e

5

17

2.3.1 Risk Mitigation
 by Early Exposure

For example, the Java compiler turns a potential logic
error (like assigning a real value to an int variable) to a
compile-time error. The risk of truncating the real value
is exposed early.

If you are not sure about something during
software development, confront it as early as
possible. Making changes later is more
difficulty than doing so now.

18

2.3.3 Contracts
Each method in a component comes with a contract that
spells out the responsibilities of the client and the
implementer.

The client must supply parameters that satisfy the
precondition of the method.

The implementer must supply a return that satisfy the
postcondition of the method.

Liability:

•if pre=false, the client is at fault,

•if pre=true and post=false, then the implementer is at fault.

•If pre=post=true then everything is OK.

Note: if a method has pre=true then its client does not have to
ensure anything.

19

Contracts
Methods in the Java standard library specify their pre
and post as follows:

 - pre is always assumed to be true unless stated otherwise

 - post is specified under Returns and Throws and can be assumed
to be true

Example:

double squareRoot(double x)

Returns the square root of the given argument.

Parameters:

x - an argument.
Returns:

the positive square root of x.
Throws:

an exception if x < 0.

This contract specifies pre=true (i.e. no condition on the parameter). The
post states that the method will return the square root if x is non-
negative and will throw an exception otherwise

