
Java By Abstraction Chapter 3

1 Copyright © 2006 Pearson Education Canada Inc.

1

Chapter 3

Using APIs

2

3.1 Anatomy of an API
3.1.1 Overall Layout
3.1.2 Fields
3.1.3 Methods

 3.2 A Development Walkthrough
3.2.1 The Development Process
3.2.2 The Mortgage Application
3.2.3 Output Formatting
3.2.4 Relational Operators
3.2.5 Input Validation
3.2.6 Assertions

3.3 General Characteristics of Utility Classes
3.3.1 Memory Diagram
3.3.2 Advantages of Utility Classes
3.3.3 Case Study: Dialog I/O

Outline

3

3.1.1 Overall Layout

Classes

Packages Details

 The Class section

 The Field section

 The Constructor section

 The Method section

4

3.1.2 Fields

Field Summary

static double PI

The double value that is closer than any other to pi, the

ratio of the circumference of a circle to its diameter.

Field Detail

PI

public static final double PI

The double value that is closer than any other to pi, the ratio of
the circumference of a circle to its diameter.

See Also: Constant Field Values

Java By Abstraction Chapter 3

2 Copyright © 2006 Pearson Education Canada Inc.

5

3.1.3 Methods
Method Summary

static double abs(double a)

Returns the absolute value of a double value.

static int abs(int a)

Returns the absolute value of an int value.

static double pow(double a, double b)
Returns the value of the first argument raised to the
power of the second argument.

Method Summary

double nextDouble ()

Scans the next token of the input as an double.

int nextInt()

Scans the next token of the input as an int.

String nextLine()

Advances this scanner past the current line and

returns the input that was skipped.

long nextLong()

Scans the next token of the input as an long.

The Math
class of
java.lang

The Scanner
class of
java.util

6

Method Detail
abs

public static double abs(double a)

Returns the absolute value of a double value. If the argument is not negative, the argument is
returned. If the argument is negative, the negation of the argument is returned. Special cases:

 - If the argument is positive zero or negative zero, the result is positive zero.
 - If the argument is infinite, the result is positive infinity.
 - If the argument is NaN, the result is NaN.

Parameters:
 a - the argument whose absolute value is to be determined
Returns:
 the absolute value of the argument.

7

Key points to remember about methods

• Methods can be “Overloaded”
• A class cannot have two methods with the same signature

(even if the return is different).

• If the signatures are different, methods can have the
same name

• this situation is an example of “overloading”

8

Key points to remember about methods

• “Binding with Most Specific”
• Situation: the invocation C.m(…);

• C is a class name, m is the name of the method
invoked on C

• During compilation, the compiler (javac) attempts to:

1. locate the class C, and then

2. locate the method m (that is, the method with the
signature specified by the “…” in the invocation)

This is called binding (as in “to bind C.m(…)”)

• If #1 fails, No Class Definition Found error is issued

• If #2 fails, “cannot find symbol” error is issued

• For #2, if more than one such m is found, the compiled
picks the "most specific" one.

Java By Abstraction Chapter 3

3 Copyright © 2006 Pearson Education Canada Inc.

9

3.2 A Development

 Walkthrough

10

• Analysis

• Design

• Implementation

• Testing

• Deployment

The Requirement:
Input & its validation
Output & its formatting

3.2.1 The Development Process

11

• Analysis

• Design

• Implementation

• Testing

• Deployment

An algorithm (function)
that determines the
output given the input.

The Development Process

12

• Analysis

• Design

• Implementation

• Testing

• Deployment

Turn the algorithm into
a program

The Development Process

Java By Abstraction Chapter 3

4 Copyright © 2006 Pearson Education Canada Inc.

13

• Analysis

• Design

• Implementation

• Testing

• Deployment

Does the program meet
the requirement?

The Development Process

14

• Analysis

• Design

• Implementation

• Testing

• Deployment Installation, porting,
training, support…

The Development Process

15

Invalid inputs are the cause of most errors
in programs. Therefore, upon encountering
one, a program must either:

3.2.5 Input Validation

• Print a message and end

• Print a message then allow the user to
retry several times or decide to abort.

• Trigger a runtime error; i.e. crash.

For now, let us use the 3rd via a method in Toolbox:

 static void crash(boolean, String)
16

A simple yet powerful tool to guard against
errors that arise from misunderstandings.

Whenever you believe that some non-trivial
condition is true, assert it, e.g.

3.2.6 Assertions

You cannot assert a validation because user input is
not under your control. Hence, do not confuse assert
(a Java statement) with crash (a method).

assert payment >=0;

Java By Abstraction Chapter 3

5 Copyright © 2006 Pearson Education Canada Inc.

17

3.3 General Characteristics

 of Utility Classes

18

3.3.1 Memory Diagrams

import java.util.Scanner;
import java.io.PrintStream;

public class Circle
{
 public static void main(String[] args)
 {
 Scanner input = new Scanner(System.in);
 PrintStream output = System.out;
 output.print("Enter radius: ");
 int radius = input.nextInt();
 output.println(Math.PI * Math.pow(radius, 2));
 }
}

Let us compile and load the program, Circle, which uses
a field and a method in the Math utility class.

19

Memory Diagrams

20

Simplicity
• To access a static field f in a class C, write: C.f

• To invoke a static method m in a class C, write C.m(…)

• There is only one copy of a static class in memory

Suitability
• A utility class is best suited to hold a groups of methods
that do not hold state, e.g. java.lang.Math.

• Even in non-utility classes, static is best suited for
features that are common to all instances, e.g. the
MAX_VALUE field and the parseInt method of the
(non-utility) class: Integer.

3.3.2 Advantages of Utility Classes

Java By Abstraction Chapter 3

6 Copyright © 2006 Pearson Education Canada Inc.

21

Two static methods in:

 javax.swing.JOptionPane

•To display a message:
void showMessage(null, message)

•To prompt for and read an input:
String showInputDialog(null, prompt)

3.3.3 Case Study: Dialog I/O

Note that showInputDialog returns a String. Hence, if
you use it to read a number, you must invoke one of the
parse methods in the corresponding wrapper class.

