
 Java By Abstraction Chapter 1

1 Copyright © 2006 Pearson Education Canada Inc.

1

CSE1720:

Primitive Types,
Primitive Expression
Evaluation

2

A type is a range of values and a set of
operations on these values.

The range of the int type consists of all
whole numbers between -2 and +2 billions
(approx). int supports the four arithmetic
operations plus the remainder.

The long type is very similar to int except
its range is much bigger, +/-1019

An integer literal has an int type unless
suffixed by L (l), in which case it is long.

1.2.2 The Integer Types

3

Real

Integer
Use for integer
data, e.g. count.

100% exact

Use for real data, e.g.
amount.

Inherently inaccurate

1.2.4 Other Data Types

4

Numeric Types

Real

Integer

float

double

4

8

±1038   SD=7

±10308 SD=15

int

long

4

8

±2G   exact

±2E   exact
Integer literals are int by default unless suffixed with L

Real literals are recognized thru a decimal point or an exponent.
They are double by default unless suffixed with F

 Java By Abstraction Chapter 1

2 Copyright © 2006 Pearson Education Canada Inc.

5

• Stores the result on a condition

• Has only two possible values

• true and false are reserved words

• Boolean variables are not integers

Note: Boolean literals are the easiest to recognize!

The Type boolean

6

The Character Type
• A letter, digit, or symbol

• Digits versus Numbers

• Store the code, not the typeface

• The case of English: ASCII

• char is thus an (unsigned) integer type

• Unicode has 64K codes

char

Character literals are recognized by single quotes
surrounding one character, e.g. 'A'

7

Code Character

0
.
.
.

32 space
.
.
.

48-57 '0'-'9'
.
.
.

65-90 'A'-'Z'
.
.
.

97-122 'a'-'z'
.
.
.

65535

Escape Meaning

\uxxxx
The character whose code is

(hex) xxxx

\' Single quote

\" Double quote

\\ Backslash

\n New line

\r Carriage return

\f Form Feed

\t Tab

\b Backspace

More on Characters

8

Non-Primitive

Primitive

number

character

boolean

class

interface

array

1.2.5 Primitive & Non-Primitive

 Java By Abstraction Chapter 1

3 Copyright © 2006 Pearson Education Canada Inc.

9

PRIMITIVE

TYPES
Type

Size

(bytes)

 Approximate Range

min max
S.D.

byte 1 -128 +127 ?

short 2 -32,768 +32,767 ?

int 4 -2_10
9
 +2_10

9
 ?

S

I
G

N

E
D long 8 -9_10

18
 +9_10

18
 ?

I

N
T

E

G
E

R
UNSIGNED char 2 0 65,535 ?

SINGLE float 4 +3.4_1038 +3.4_1038 7

N

U
M

B

E
R R

E

A

L DOUBLE double 8 -1.7_10308 +1.7_10308 15

BOOLEAN boolean 1 true/false N/A

Java’s Primitive Type

N/A

N/A

N/A

N/A

N/A

N/A
10

1.3.1 The int Arithmetic Operators

Precedence Operator Kind Syntax Operation

+ infix x + y add y to x

-5 !
- infix x - y subtract y from x

* infix x * y multiply x by y

/ infix x / y divide x by y -4 !

% infix x % y remainder of x / y

+ prefix +x identity

- prefix -x negate x

++ prefix ++x x = x + 1; result = x

-2 !

-- prefix --x x = x - 1; result = x

++ postfix x++ result = x; x = x + 1

-1 !
-- postfix x-- result = x; x = x - 1

11

Examples
double price;

price = 17.25;

int quantity = 25;

boolean isValid = false;

double cost;

cost = price;

double extended;

extended = quantity * price;

RHS is a variable

Can combine declaration
with assignment.

RHS is an expression

12

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

 Java By Abstraction Chapter 1

4 Copyright © 2006 Pearson Education Canada Inc.

13

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

14

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

15

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

16

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

 Java By Abstraction Chapter 1

5 Copyright © 2006 Pearson Education Canada Inc.

17

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

= 5 + 0 - 6 % 4

18

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

= 5 + 0 - 6 % 4

19

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

= 5 + 0 - 6 % 4

= 5 + 0 - 2

20

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

= 5 + 0 - 6 % 4

= 5 + 0 - 2

 Java By Abstraction Chapter 1

6 Copyright © 2006 Pearson Education Canada Inc.

21

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

= 5 + 0 - 6 % 4

= 5 + 0 - 2

= 5 - 2

22

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

= 5 + 0 - 6 % 4

= 5 + 0 - 2

= 5 - 2

= 3

23

• The int operators satisfy closure through circular wrapping

• The / int operator always rounds toward 0 and leads to an
exception if the divisor is zero

• The sign of % is the same as that of the dividend

• The real operators satisfy closure by adding Infinity and
NaN. Hence, dividing by zero does not lead to exceptions

• (a * b) / c is not the same as a * (b / c) for any type

• (a + b) – c is not the same as a + (b – c) for real types

1.3.2 Other Arithmetic Operators
Each of long, float, and double come with 11
operators with the same symbols as int; i.e.
the symbols are overloaded. Note:

24

• Promotion (aka widening conversion) is
done automatically when needed

• May lead to loss of precision but the
order of magnitude is preserved

• Demotion is not done automatically.
Can be done manually thru a cast

• Casting is risky…avoid it.

1.3.3 Mixed Types and Casting

 Java By Abstraction Chapter 1

7 Copyright © 2006 Pearson Education Canada Inc.

25

D
e
m

o
tio

n

char

float

long

int

byte short

double

P
r
o

m
o

tio
n

26

Note:
• The cast operator has a precedence that

is higher than * but less than ++

• The = operator has the lowest precedence
of all operators

• There are shorthand operators to combine
assignment with an operator:

 x op= y is shorthand for x = x op y

 Ex: x +=1 is like x = x + 1 or x++

27

Example

int iVar = 15;

long lVar = 2;

float fVar = 7.6f - iVar / lVar;

double dVar = 1L / lVar + fVar / lVar;

int result = 100 * dVar;

Fix, if need be, and output result
The answer may surprise you!

