
Java By Abstraction Chapter 8

1 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-1

Chapter 8

Aggregation

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-2

8.1 What is Aggregation?
8.1.1 Definition and Terminology
8.1.2 The Aggregate’s Constructor
8.1.3 Accessors and Mutators
8.1.4 The Client’s Perspective
8.1.5 Case Study: I/O Streams
8.1.6 Case Study: Graphics

8.2 Working with Collections
8.2.1 Creating the Collection
8.2.2 Adding/Removing Elements
8.2.3 Indexed Traversals
8.2.4 Chained Traversals
8.2.5 Searching
8.2.6 Search Complexity

Outline

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-3

8.1 What is Aggregation?

If one of the attributes of a class C is an
object reference of type T*, then C is an
aggregate and T is the aggregated part.

Every instance of C must have an instance
of T (or else the attribute would be null).

Aggregation = has-a

* T != String

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-4

Examples

(a)

(b)
Bill Wallet *

Wheel

Radio

4

Car
1

CD CDPlayer
1

(c)

Java By Abstraction Chapter 8

2 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-5

8.1.1 Definition and Terminology

• Multiplicity

• Variable Multiplicity

• Collections (part=element)

• Composition (shared lifetime)

The Camera – Film Relation

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-6

Examples

Date CreditCard
2

Calendar

Date

1

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-7

Examples

(a)

(b)
Investment Portfolio *

Stock Investment
1

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-8

8.1.2 The Aggregate’s Constructor

• When a client instantiates C, who
instantiates T?

• Create an Investment

• Create a CreditCard

• What signature (for the Investment
constructor) makes Investment a
composition?

Java By Abstraction Chapter 8

3 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-9

8.1.3 Accessors and Mutators

• Aggregates must provide an accessor
through which the part can be
accessed

• In a composition, the accessor
returns a clone of the part

• An aggregate may provide a mutator
so the client can mutate the part

• In a non-composition, such a mutator
is not needed (why?)

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-10

8.1.4 The Client’s Perspective

• Aggregation = Layered Abstraction

• Sounds like an implementer’s concern

• Why don't implementers hide it?
If they did:

 Investment would have to handle
symbol, name, and price

 CreditCard would have to accept
day, month, and year.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-11

Example-1: Copying an Aggregate
Given a reference x to an aggregate, make a
copy of it and call it y.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-12

Example-1: Copying an Aggregate

Three different copies:

• An Alias

• A Shallow Copy

• A Deep Copy

Given a reference x to an aggregate, make a
copy of it and call it y.

Java By Abstraction Chapter 8

4 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-13

8.1.5 Case Study: I/O Streams

Reader

Buffered Reader

Input Stream

InputStream

read(): int

reads one byte

BufferedReader

readLine(): String

reads one line

1

InputStreamReader

read(): int

reads one character

1

BufferedReader buffer =
 new BufferedReader(
 new InputStreamReader(System.in));

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-14

File Input:

BufferedReader filer =
 new BufferedReader(
 new InputStreamReader(
 new FileInputStream(filename));

BufferedReader

readLine(): String

reads one line

1

InputStreamReader

read(): int

reads one c haracter

InputStream

read(): int

reads one byte

FileInputStream

read(): int

reads one byte

1

1

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-15

8.1.6 Case Study: Graphics

X

Graphics2D

UniPanel

Container

JFrame

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-16

 JFrame

getContentPane(): Container

setContentPane(Container)

Container

add(Component)

1

Graphics

Java By Abstraction Chapter 8

5 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-17

 Container

add(Component)

type:lib::UniPanel

getGraphics2D()
getWidth(): int
getHeight(): int
repaint()

*

Graphics

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-18

 type:lib::UniPanel

getGraphics2D()
getWidth(): int
getHeight(): int
repaint()

Graphics2D

getColor(): Color
getFont(): Font
getStroke(): Stroke
setColor(Color)
setFont(Font)
setStroke(Stroke)

1

Graphics

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-19

 Graphics2D

getColor(): Color

getFont(): Font

getStroke(): Stroke

setColor(Color)

setFont(Font)

setStroke(Stroke)

1

Stroke Font

1

Color

1

Graphics

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-20

8.2 Working with Collections

Collection

Statically
Allocated

Dynamically
Allocated

List SetList Set

Java By Abstraction Chapter 8

6 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-21

8.2.1 Creating the Collection

Constructor Summary - Portfolio

Portfolio(java.lang.String title, int capacity)
 Construct an empty portfolio having the passed name and
capable of holding the specified number of investments.

Constructor Summary - GlobalCredit

GlobalCredit()
 Construct a GC processing centre having the name "NoName".

• Cannot specify elements as parameters

• Create an empty one then populate

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-22

8.2.2 Adding / Removing Elements

Method Summary - Portfolio

 boolean add(Investment inv)
Attempt to add the passed investment to this portfolio.

Method Summary - GlobalCredit
 boolean add(CreditCard card)

Attempt to add the passed credit card to this GCC.

• All collections provide a void or a boolean
add to enable clients to populate.

• These methods are boolean for diff reasons:

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-23

8.2.3 Indexed Traversals

• Traversal in lieu of accessors

• Traverse = Visit each element once.
Don’t miss and don’t over-visit.

• Indexed = Pretend the elements are
numbered (0 offset).

• Two methods: get(int) and size()

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-24

Example of an indexed traversal

Inv. Market Book Net
 001 3450.00 2870.00 580.00
 002 450.00 500.00 -50.00

Total

Given a reference x to a Portfolio, list all its
investments in a tabular fashion:

Java By Abstraction Chapter 8

7 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-25

8.2.4 Chained Traversals

• The chain metaphor

• Often used in big and/or distributed
databases

• Two methods: getFirst() and getNext()

• Both can return null but for different
reasons

• Must invoke getFirst before getNext

• Could it be done with just one method?
Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-26

Example of a chained traversal

Card No Balance Exp 36m?
907321-5 76.85
671282-1 81.64
464184-0 134.49 <
755917-2 232.43
 . . .
 . . .

Given a reference x to a GlobalCredit, list all
its credit cards in a tabular fashion:

The last column indicates if the card will expire within 36 months

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-27

Pitfall: On-the-fly Invocation

Given a reference x to a collection that, as a
precondition, has at least one element and at
most two. List its elements using chained
traversal without writing a loop

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-28

Pitfall: On-the-fly Invocation

output.println(x.getFirst());

if (x.getNext() != null)
{
 output.println(x.getNext());
}

Given a reference x to a collection that, as a
precondition, has at least one element and at
most two. List its elements using chained
traversal without writing a loop

Java By Abstraction Chapter 8

8 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-29

8.2.5 Searching

Searching can be done via a traversal:
• Set up a traversal loop

• In each iteration, compare the element we
are searching for with an element of the
collection. Set a boolean flag accordingly

• The result (found or not found) must be
somehow remembered after the loop is
exited.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-30

A search example:

Given a reference gc to a random GlobalCredit,
determine whether a given card c is in it.

Attempt #1 (incorrect):

boolean found = false;
for (Card card=gc.getFirst(); card != null; card=gc.getNext())

{
 found = card.equals(c);
}

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-31

A search example, cont.

Correct it by adding the loop invariant:

c is equal to one of the elements seen so far

boolean found = false;
for (Card card=gc.getFirst(); card != null; card=gc.getNext())

{
 found = found || card.equals(c);
}

Attempt #2 (correct):

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-32

A search example, cont.

Speed it up by exiting once c is found:

boolean found = false;
for (Card card = gc.getFirst(); card != null && !found;
 card=gc.getNext())

{
 found = found || card.equals(c);
}

Attempt #3 (correct and efficient):

Java By Abstraction Chapter 8

9 Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-33

• Traversal-based search is Exhaustive

• N comparisons in the worst case. It is
thus a linear search

A bag contains N numbered balls and you can
pick one ball one at a time. Can you determine
if ball number 55 is in the bag by picking less
than N times? In the worst case?

8.2.6 Search Complexity

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-34

Search Complexity

• Traversal-Based search: O(N).

• Complexity of an algorithm can be:
O(1), O(lgN), O(N), O(N2) … O(2N), O(N!)

• Can break the O(N) barrier by pre-
arranging the elements in some manner

• Sorting, Hashing, Tree structures can
lead to sub-linear search complexity.

• GlobalCredit offers a non-exhaustive
search. It is sub-linear

