Java By Abstraction

Aggregation

Copyright © 2006 Pearsc

8.1 What is Aggregation?

If one of the attributes of a class C is an
object reference of type T°, then C is an
aggregate and T is the aggregated. part.

Every instance of C must have an instance
of T (or else the attribute would be null).

Aggregation = has-a

* T |= String

Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc.

Outline

8.1 What is Aggregation?

Definition and Terminology
The Aggregate's Constructor
Accessors and Mutators
The Client's Perspective
Case Study: I/O Streams
Case Study: Graphics

o]

e e e

cORWN R

X

rking with Collections
Creating the Collection
Adding/Removing Elements
Indexed Traversals
Chained Traversals
Searching

Search Complexity

OEOEEEES EEEEE

NN O
CODhwWN =

Copyright © 2006 Pearson Educati a Inc. Java By Abstraction

Examples

CDPlayer

Wallet

Copyright © 2006 Pearson Education Canada Inc.

Chapter 8

Java By Abstraction

8.1.1 Definition and Terminology

* Multiplicity
* Variable Multiplicity
* Collections (part=element)

* Composition (shared lifetime)

The Camera - Film Relation

Copyright © 2006 Pearson Education Canada Inc.

Investment Stock

Examples

2
CreditCard Ik

Portfolio Investment

Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc.

Calendar

8.1.2 The Aggregate’'s Constructor
When a client instantiates C, who
instantiates T?

Create an Investment
Create a CreditCard

What signature (for the Investment
constructor) makes Investment a
composition?

Chapter 8

Java By Abstraction Chapter 8

8.1.3 Accessors and Mutators 8.1.4 The Client's Perspective

* Aggregation = Layered Abstraction

* Aggregates must provide an accessor
through which the part can be

* Sounds like an implementer's concern
accessed

* Why don't implementers hide it?
If they did:

O Investment would have to handle
symbol, name, and price

* In a composition, the accessor
returns a clone of the part

* An aggregate may provide a mutator

so the client can mutate the part ;
O CreditCard would have to accept

day, month, and year.

* In a non-composition, such a mutator

Example-1: Copying an Aggregate Example-1: Copying an Aggregate

Given a reference x to an aggregate, make a
copy of it and call it y.

Given a reference x to an aggregate, make a
copy of it and call it y.

Three different copies:
* An Alias

* A Shallow Copy

* A Deep Copy

Copyright © 2006 Pearson Education Canada Inc. 3

Java By Abstraction Chapter 8

8.1.5 Case Study: I/O Streams File Input:

InputStream InputStreamReader BufferedReader

InputStream

read(): int read(): int oreadLine(): String

A read(): int
reads one byte reads one character reads one line

reads one byte

Inputs

Input Stream Reader read(): int vreadLlne .() : String
reads one ¢ haracter reads one line

FileInputStream

read(): int
reads one byte

Buffered Reader

BufferedReader filer =
new BufferedReader (
new InputStreamReader (
new FileInputStream(filename)) ;

BufferedReader buffer =
new BufferedReader (
new InputStreamReader (System.in));

Copyright © 2006 Pearson Education Canada Inc. Java By Abst Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction

8.1.6 Case Study: Graphics Graphics

JFrame

getContentPane () : Container
setContentPane (Container)

Container

add (Component)

Copyright © 2006 Pearson Education Canada Inc. Java By Abst

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction

Copyright © 2006 Pearson Education Canada Inc. 4

Java By Abstraction Chapter 8

Graphics Graphics

type:1lib: :UniPanel

Container ‘
getGraphics2D ()

getWidth(): int
getHeight () : int
repaint ()

add (Component)

type:1lib: :UniPanel Graphics2D

getColor(): Color
getFont () : Font
getStroke () : Stroke
setColor (Color)
setFont (Font)
setStroke (Stroke)

getGraphics2D ()

getWidth () : int

getHeight () : int
repaint ()

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction

Graphics 8.2 Working with Collections

Graphics2D .
Collection

getColor(): Color
getFont () : Font
getStroke(): Stroke
setColor (Color)
setFont (Font)
setStroke (Stroke)

Statically Dynamically
Allocated Allocated

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction

Copyright © 2006 Pearson Education Canada Inc.

Java By Abstraction

8.2.1 Creating the Collection

Cannot specify elements as parameters

Create an empty one then populate

Constructor Summary - Portfolio

Portfolio(java.lang.String title, int capacity)
Construct an empty portfolio having the passed name and
capable of holding the specified number of investments.

Constructor Summary - GlobalCredit
GlobalCredit ()

Construct a GC processing centre having the name "NoName".

Copyright © 2006 Pearson Education Canada Inc.

8.2.3 Indexed Traversals

Traversal in lieu of accessors

Traverse = Visit each element once.
Don't miss and don't over-visit.

Indexed = Pretend the elements are
numbered (O offset).

Two methods: get(int) and size()

Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc.

8.2.2 Adding / Removing Elements

All collections provide a void or a boolean
add to enable clients to populate.

These methods are boolean for diff reasons:

Method Summary - Portfolio

boolean add(Investment inv)
Attempt to add the passed investment to this portfolio.

Method Summary - GlobalCredit

boolean add(CreditCard card)
Attempt to add the passed credit card to this GCC.

Copyright © 2006 Pearson Education Canada Inc.

Example of an indexed traversal

Given a reference x to a Portfolio, list all its
investments in a tabular fashion:

Inv. Market Book

001 3450.00 2870.00
002 450.00

Copyright © 2006 Pearson Education Canada Inc.

Chapter 8

Java By Abstraction

8.2.4 Chained Traversals

* The chain metaphor

+ Often used in big and/or distributed
databases

+ Two methods: getFirst() and getNexit()

+ Both can return null but for different
reasons

* Must invoke getFirst before getNext
* Could it be done with just one method?

Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 825

Pitfall: On-the-fly Invocation

Given a reference x to a collection that, as a
precondition, has at least one element and at
most two. List its elements using chained
traversal without writing a loop

Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc.

Chapter 8

Example of a chained traversal
Given a reference x to a GlobalCredit, list all
its credit cards in a tabular fashion:

Card No Balance Exp 36m2?

907321-5 76.85

671282-1 81.64

464184-0 134.49

755917-2

The last column indicates if the card will expire within 36 months

Pitfall: On-the-fly Invocation
Given a reference x to a collection that, as a
precondition, has at least one element and at
most two. List its elements using chained
traversal without writing a loop

output.println(x.getFirst()) ;

if (x.getNext() != null)

{

output.println(x.getNext()) ;
}
7

Java By Abstraction

8.2.5 Searching

Searching can be done via a traversal:
+ Set up a traversal loop

* In each iteration, compare the element we
are searching for with an element of the
collection. Set a boolean flag accordingly

+ The result (found or not found) must be
somehow remembered after the loop is
exited.

Copyright © 2006 Pearson Education Canada Inc.

A search example, cont.

Correct it by adding the loop invariant:

c is equal to one of the elements seen so far

Attempt #2 (correct):

boolean found = false;
for (Card card=gc.getFirst(); card !'= null; card=gc.getNext())

{
found = found || card.equals(c);

Copyright © 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc.

A search example:

Given a reference gc to a random GlobalCredit,
determine whether a given card c is in it.

Attempt #1 (incorrect):

boolean found = false;
for (Card card=gc.getFirst(); card !'= null; card=gc.getNext())

{

found = card.equals(c);

Copyright © 2006 Pearson Education Canada Inc.

A search example, cont.

Speed it up by exiting once c is found:

Attempt #3 (correct and efficient):

boolean found = false;

for (Card card = gc.getFirst(); card != null && !found;
card=gc.getNext ())

found = found || card.equals(c);

Copyright © 2006 Pearson Education Canada Inc.

Chapter 8

Java By Abstraction Chapter 8

8.2.6 Search Complexity Search Complexity

* Traversal-based search is Exhaustive * Traversal-Based search: O(N).

- N comparisons in the worst case. It is - Complexity of an algorithm can be:
thus a linear search O(1), O(IgN), O(N), O(N?) ... O(2N), O(N))

* Can break the O(N) barrier by pre=

A bag contains N numbered balls and you can arranging the elements in some manner

pick one ball one at a time. Can you determine . 3 .
if ball number 55 is in the bag by picking less Seniiz Hashmg, RlgEe sfruc*l‘ur‘es. N
than N times? In the worst case? lead to sub-linear search complexity.

+ GlobalCredit offers a non-exhaustive
search. It is sub-linear

Copyright © 2006 Pearson Education Canada Inc. 9

