
Java By Abstraction - Companion Notes
Topic 2 -Programming By Delegation
CSE 1720, Winter 2010, Version 1.0, Prepared by: M. Baljko

LEGEND

JD = Java Details
PT = Programming Tip
IMD = In More Detail
Ex = Example
wrt = with respect to

Section 2.1; JD 2.1; PT 2.1; IMD 2.1-2.3; Ex 2.1-2.4

• This section is really key –do you recognize the following?
o that the procedural paradigm was used in the makeSunset function discussed in

CSE1710 (e.g., delegation of computation to makeRed, makeBlue)
o that the object-oriented paradigm was used for file in the makeHomePage

function. In that example, we don’t know the type of the variable file, but we
know it is an object since we are invoking methods on it.

 side note: Java requires the declaration of all variables in advance of their
use, whereas Python/Jython does not. This is why we don’t know the type
of file.

• If you would like to see the UML diagrams for the classes in type.lib, have a look at
p. 464

• keep in mind the following: you are shown the modular paradigm in order to illustrate a
concept about delegation, but the modular paradigm has a big flaw, which means it is not
actually used that much in practice (or at least should not be used!). What is the big
flaw? The explanation is in IMD 2.6 (but it depends on the concept of contracts, which is
not introduced until sec 2.3.3

• We can discuss the method invocation System.out.println() in more detail once
you have read this section;

o System.out is a way to access the attribute of the utility class System that is
named out. The class System represents the computer upon which the virtual
machine is running (generally speaking). The attributes in and out represent
the input and output streams, respectively. I/O streams are discussed in more
detail later, in sec 8.1.5 and 9.2.

o For now, you just need to know that the value of System.out is an instance of
a PrintStream object. Since PrintStream is not among the 8 primitive
data types (char, short, byte, int, long, float, double, boolean),
PrintStream must be a nonprimitive data type. Thus, the value of this
attribute is a nonprimitive value. The attribute Rectangle2.width is an int,
which is a primitive type. (IMD 2.2 is relevant to this point)

o How does one know what is type of an attribute? The API specifies this.
o What operations can get performed on a PrintStream object? Or, in other

words, what services does the PrintStream class provide? One of these is
println(), which causes a carriage return (blank line) to be printed to the
console.

o In sum, the class PrintStream is a nonutility class, whereas the class System
is a utility class. The invocation System.out.println()is a combination of
both types of classes.

Section 2.2-2.3; JD 2.2; PT 2.2; IMD 2.5-2.6; Ex 2.5

• Sec 2.2.1 and 2.2.2 are important; encapsulation is a bread-and-butter concept.
• JD 2.3 is somewhat abstract – keep in mind that the term “interface” in the statement “a

public feature is place in the interface” is referring to the interface between the client and
implemented (see fig. 2.8). This “interface” is an abstract concept. What the interface
actually looks likes can be seen the API, which is typically viewed using a web browser
(e.g, figs 3.2-3.8 in the chapter 3 provide graphical approximations and Ex 2.5 provides a
text-based approximation)

• Sec 2.2.3 is important. The section presumes that you already know that division by
zero causes a problem to the virtual machine (so now you know).

Section 2.4; PT 2.3-2.4

• You can bypass sec 2.4 and PT 2.3 for now and come back to it later
• PT 2.4 makes an important point

Section 2.2.5; JD 2.4

• These are the building blocks for interactive applications
• JD 2.4 is a historical note; you can ignore since we will exclusively be using Java 5.0

(also sometimes called Java 1.5, not that this is terribly important)

Section 2.3; JD 2.5; Ex 2.6-2.8

• read the lead-in to sec 2.3 and then 2.3.1
• set aside sec 2.3.2 and JD 2.5for now
• sec 2.3.3 is TERRIBLY TERRIBLY important!!!! The illustrations in Ex 2.6-2.8 are very

clear and on-point. Consider this the hugest hint possible for your term test preparation!

Case Study 2.3.4 “Meet the Managers”

• Don’t read this (yet)
o this case study is tailored to the declaration and assignment of a variable with a

primitive value. To make sense of this, one must have some understanding about
the digital representation of values in the various representation schemes used by
the primitive data types.

o Since we have skipped over the relevant prior sections in Chapter 1, some of the
background information need to understand this case study is missing.

• Stay tuned – an alternative version of “Meet the Managers” will be posted on the course
wiki shortly. We will cover the alternative version instead.

