Java By Abstraction - Companion Notes
Topic 7 — Strings

CSE 1720, Winter 2010, Version 1.0, Prepared by: M. Baljko

corresponding to Chapter 6 of JBA

Section 6.1; PT 6.1-6.2; Ex 6.1

note the statement that Strings are allowed to masquerade as primitive types in Java — this
statement is important, since we will see that Strings are non-primitive types, but in many
instances have the appearance of being a primitive type.

6.1.1 — talks about String object creation, with illustrations using memory diagrams

PT 6.1 talks about the empty string vs null (aka “the null string”); the empty string is
represented by the literal ”” (i.e., a set of double quotes with nothing in between them)
6.1.2 — reinforcement of what we’ve already seen in lab and lecture, a good review

PT 6.2 important point

Section 6.2;JD 6.1; PT 6.3

we’ve already used several of these string methods; this section provides a review and the
introduction of other methods.

Notice that sec 6.2.3 is entitled “Transformers” (as opposed to “Mutators”; the duo of
“Accessors” and “Mutators” as categories of methods were discussed in sec 4.3.1) — it should be
clear that one cannot mutate or change a string once it has been created; at best, one can create a
modified version of a string and then use that instead.

sec 6.2.5 is important, since it described how to shift from one type to another. Also note PT 6.3,
which applies to this functionality.

JD 6.1 makes mention of boxing and unboxing — this point has to do with the automatic
transformation of a value between the primitive and non-primitive representations (e.g., the value
of 6 can be represented as an int or as an instance of an Integer). Refer back to p. 123 and
the description of a wrapper class.

Section 6.3

this section describes several different applications

6.3.1 concerns counting the number of occurrences of a particular character within a string. This
example does not make use of delegation, but it easily could. Imagine a method in a utility class
with the following signature:

countOccurrences (String theString, char c)

As an exercise, consider the example app given in fig 6.3. Delegate the corresponding
functionality into a static method (use the Mortgage and Pig Latin applications we developed as
templates)

6.3.2, 6.3.3, 6.3.4 all concerns substitutions of characters and of strings (two versions: one
assuming new and old string are old equal length and the other version with no such
assumption). Again, it would be a good ideal to use delegation

Section 6.4

6.4.1 StringBuffer is important; think of it as the mutable version of String

6.4.2 is an advanced topic; regular expressions are an important concept not only for Java but for
any sort of pattern matching. We will do several examples in lecture/lab. Read this subsection
in order to prepare.



