
Java By Abstraction - Companion Notes
Topic 2 - Application Programming Interface (APIs)
PART 2
CSE 1720, Winter 2010, Version 1.0, Prepared by: M. Baljko

this is an alternative version that does not depend on prior knowledge about the primitive
data types; this version incorporates information from sec 3.3.1.

Question:
What happens in memory when you launch the VM and tell it to invoke a particular
application?

Let’s say we are trying to run the application called RectangleExample, which is
found in the file called RectangleExample.java and has been successfully
compiled into bytecode that is contained in the file RectangleExample.class

import type.lib.Rectangle3;

public class RectangleExample {

 public static void main(String[] args) {
 Rectangle3 r;
 r = new Rectangle3();
 }

}

Answer:
In Part 1, we discussed how the VM loads the class definition of RectangleExample
and the class definitions of all classes upon which RectangleExample depends. Last
we left off, the VM was about to invoke the bytecode that corresponds to the first line of
code:

 Rectangle3 r;
This line of code corresponds to a variable declaration.

Act II, con’t

VM: ... (continuing)... I will invoke the first line of the main method of

RectangleExample. The first line is a variable declaration. SM, I need you
to arrange to have a variable called r set up.

SM: OK, I will work on it, hang on a sec
(SM turns to the MM)
Hello MM. Please arrange for me to have a place in memory for the variable r. I
know you are not a specialist in matters of representation, so let me tell you how
much space this will need. The variable will need 4 blocks of memory.

[this is not a made-up number – non-primitive variables are used to store
addresses and these addresses take up 4 block of memory]

MM: (turns away from SM. looks for and locates a place in memory at location 900 that
has 4 blocks free. The MM marks the memory blocks from 900-903 as not being
available for use, since they are already being used for something)

 (MM turns back to SM) Done. The location is 900.
SM: thinks to itself.... hmm, let me update my symbol table.
 (SM turns back to VM) ok Done.

Here’s what memory looks like:

Act III
Now the VM shifts its attention to the next line of code

VM: Now I will invoke the second line of the main method of RectangleExample.

I see that this line is an assignment statement (see sec 1.3 of the textbook). When
this statement is executed, I will perform the following three steps: (1) evaluate
the right-hand-side (RHS), (2) ensure that the RHS and LHS are compatible, and
(3) store the value of the RHS in the memory block of the LHS.
So I need to evaluate the RHS. I see that this is an instantiation – the main
method is using the services of Rectangle3 to create an object. There are no
passed parameters, so I don’t need to do anything further (if there were
parameters, then I would need to evaluate them as well). So I get an instance of
Rectangle3 created in memory (making use of the SM to find the constructor
Rectangle3 that is contained within the class definition of Rectangle3 and
also making use of the SM to get the object put into memory at some location,
which SM keeps track of). The “value” of the RHS is the memory location of the
object, which the SM has reported to be 4 or (00000000 00000000
00000000 00000100) in binary.

Here’s what memory looks like:

VM: Now I’ve complete step (1), so I will move onto step (2). Are the types of the the

RHS and LHS of this assignment statement compatible? Yes, they are both
Rectangle3. So this is ok.
Now what about step (3)? I need to ensure that the value of the RHS is stored in
the memory block of the LHS.
(turns to SM) SM! hey! you need to assign the value 00000000 00000000
00000000 00000100 to the variable r. (Note! the VM doesn’t actually know
where r is stored – the SM does, though)

SM: ok, I know where r is stored, it is at memory location 900. So I’ll put the value
00000000 00000000 00000000 00000100 there.

Here’s what memory looks like:

But....
It can be time-consuming to deal with binary representations, so we’ll just use the integer
representation for 4 (but you should know that there is no “4” in memory, since memory
consists only of 0’s and 1’s). So given this short-cut, here’s what our memory diagram
looks like:

Act IV
Now the VM shifts its attention away from the second line of code.
VM: Now I’ve finished this line of code. I see there’s no bytecode left to invoke. Ok,

I’ll stop now. We’ll shut everything down and stop running. (the contents of
memory are lost).

