Winter 2010 CSE3213 Communication Networks

Assignment \# 2

Instructor: Foroohar Foroozan

Review chapter 3 (Sections 3.1-3.5) Garcia before attempting the assignment.

1. Consider an analog repeater system in which the signal has power σ_{x} and each stage adds noise with power σ_{n}. For simplicity assume that each repeater recovers the original signal without distortion but that the noise accumulates. Find the SNR after n repeater links. Write the expression in decibels: $\mathrm{SNR} \mathrm{dB}=10 \log _{10} \mathrm{SNR}$.
2. Suppose a baseband transmission system is constrained to a maximum signal level of +1 volt and that the additive noise that appears in the receiver is uniformly distributed between $[-1 / 16,1 / 16]$. How many levels of pulses can this transmission system use before the noise starts introducing errors?
3. Assume a pulse code modulation (PCM) scheme that uses 3 bits to differentiate between 8 different levels of a PAM (i.e. analog) signal.
The following bit string, generated with the given PCM, has been received at time $t=1$:

$$
000001010011100100011010
$$

Sketch the analog signal that is represented by the string.

4. A link is to be operated at a bandwidth efficiency of $\mathrm{B}=9$, i.e. at a rate of 9 bps for each Hz of bandwidth. Obtain the minimum SNR required at the receiver to allow, in theory, error-free transmission with this bandwidth efficiency. Express your answer in dB's.
5. What is the maximum reliable bit rate possible over a telephone channel with the following parameters?
a. $\mathrm{W}=2.4 \mathrm{kHz} \mathrm{SNR}=40 \mathrm{~dB}$
b. $\mathrm{W}=3.0 \mathrm{kHz} \mathrm{SNR}=20 \mathrm{~dB}$
c. $\mathrm{W}=3.0 \mathrm{kHz} \mathrm{SNR}=40 \mathrm{~dB}$
6. Suppose we wish to transmit at a rate of 64 kbps over a 3 kHz telephone channel. What is the minimum SNR required to accomplish this?
7. Suppose that a low-pass communications system has a 1 MHz bandwidth. What bit rate is attainable using 8 -level pulses? What is the Shannon capacity of this channel if the SNR is 20 dB ? 40 dB ?

