
CSE 3213: Communication Networks Winter 2010

Course Web-Page: https://wiki.cse.yorku.ca/course_archive/2009-10/W/3213/

Instructor: Foroohar Foroozan (foroozan@cse.yorku.ca)

Office Hours: TR 14:00-15:00 (CSE 2052)

Prerequisite: General Prerequisite.

<u>Textbook</u>: "Communication Networks: Fundamental Concepts and Key Architectures",

A. Leon-Garcia and I. Widjaja, McGraw Hill, 2004, 2nd edition.

Other Material:

"Data Communications and Networking", B. A. Forouzan, McGraw Hill, 2007, 4th edition.

- "Computer Networks: A Systems Approach Network Simulation Experiments Manual",
- E. Aboelela, Morgan Kaufmann, 2008, 2nd edition.

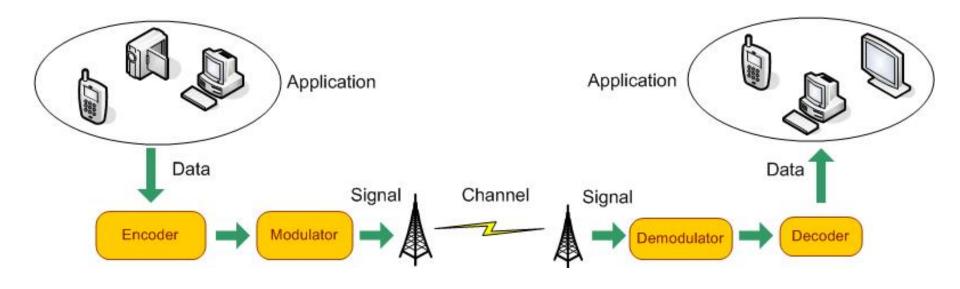
Grading Scheme:	Quiz 1, 2, 3, 4:	4 x 3 % = 12 %		
	Lab Report 1, 2 ,3:	2 x 6 % = 18 %		
	Midterm (Feb 24):	30%		
	Final:	40%		
Missed Midterm/ Q	uizes: Missing a test will res	Missing a test will result in a score of zero –		
		unless the official York <u>attending physician's statement</u> is filled out. (with the official physician's statement, the weight of the exam/quiz		
	will be added to that o	will be added to that of the final exam.)		
	Exact time of each Qu	Exact time of each Quiz will be announced on the		
	course Web site, in ac	Ivance.		
<u>Lab Software</u> :	OPNET IT Guru (Academic Ed	lition)		
	 'free' network simulation so 	oftware	s Edition 11.1 Gridon Billip	
	6-month renewable licence	-month renewable licence		
	 lab-manual will be available 	lab-manual will be available		
	after reading week	Acade	mic Edition	
	. Joho to taka placa in Marah			

OPNET Technologies, Inc.

-

• labs to take place in March

Course Objective and Schedule:


The course is an introduction to communications and networking. Topics covered include:

- Message, Circuit, Packet Switching LANs, WANs
- Applications and Layered Architectures
- Digital vs. Analog Communications
- Characterization of Communication Channels
- Channel Capacity, Nyquist and Shannon Theorems
- Line Coding (RZ, NRZ, Bipolar, Manchester)
- Digital Modulation (ASK, PSK, FSK)
- Properties of Media and Digital Transmission Systems
- Error Detection and Correction
- Flow and Error Control
- Medium Access Control (Aloha, CSMA, Scheduling)
- LAN Protocols (Ethernet, Token Ring, Wireless LANs)
- Connecting LANs
- Network Layer and IP Protocol

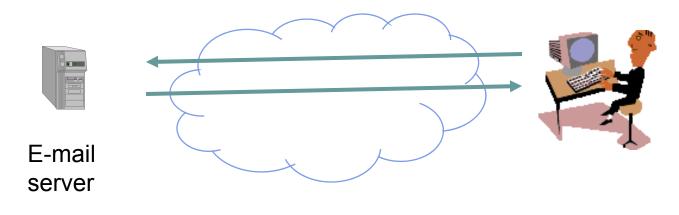
Telecommunication = communication over distance

Chapter 1 Communication Networks and Services

Network Architecture and Services Telegraph Networks & Message Switching Telephone Networks and Circuit Switching Computer Networks & Packet Switching

Alberto Leon-Garcio

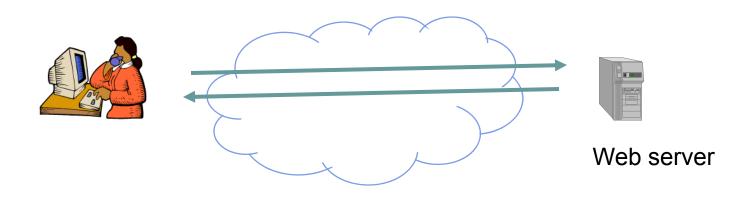
Chapter 1 Communication Networks and Services


Alberto Leon-Garcia

Indra Widiaia

- A communication service enables the exchange of information between users at different locations.
- Communication services & applications are everywhere.

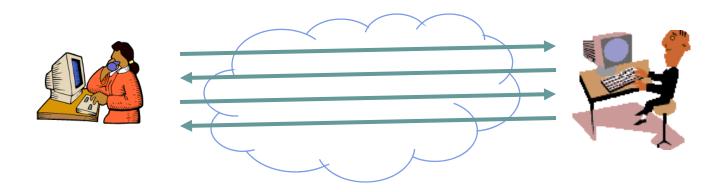
E-mail



Exchange of text messages via servers

- A communication service enables the exchange of information between users at different locations.
- Communication services & applications are everywhere.

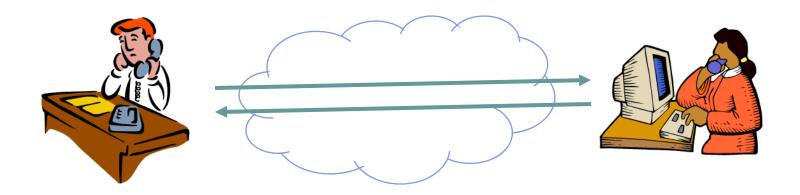
Web Browsing



Retrieval of information from web servers

- A communication service enables the exchange of information between users at different locations.
- Communication services & applications are everywhere.

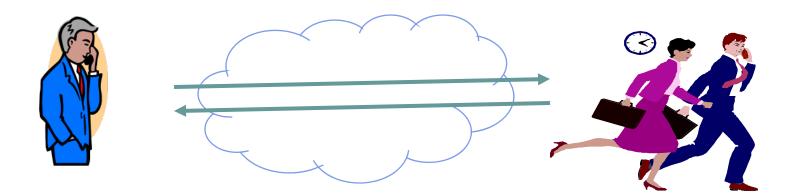
Instant Messaging



Direct exchange of text messages

- A communication service enables the exchange of information between users at different locations.
- Communication services & applications are everywhere.

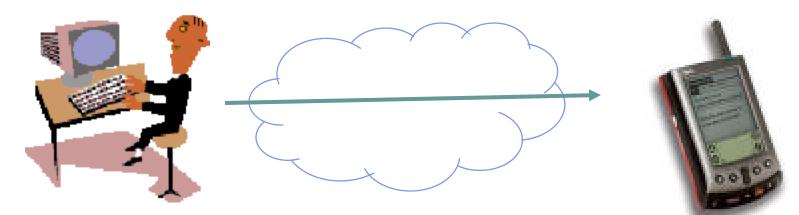
Telephone



Real-time bidirectional voice exchange

- A communication service enables the exchange of information between users at different locations.
- Communication services & applications are everywhere.

Cell phone



Real-time voice exchange with mobile users

- A communication service enables the exchange of information between users at different locations.
- Communication services & applications are everywhere.

Short Message Service

Fast delivery of short text messages

Services & Applications

- Service: Basic information transfer capability
 - Internet transfer of individual block of information
 - Internet reliable transfer of a stream of bytes
 - Real-time transfer of a voice signal
- Applications build on communication services
 - E-mail & web build on reliable stream service
 - Fax and modems build on basic telephone service
- New applications build on multiple networks
 - SMS builds on Internet reliable stream service and cellular telephone text messaging

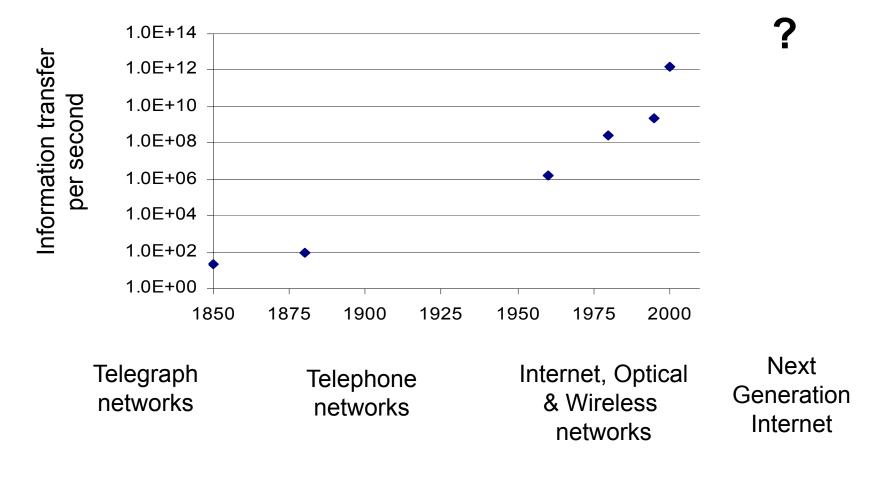
What is a communication network?

Communication Network

- The equipment (hardware & software) and facilities that provide the basic communication service
- Virtually invisible to the user; Usually represented by a cloud
- Equipment
 - Routers, servers, switches, multiplexers, hubs, modems, …
- Facilities
 - Copper wires, coaxial cables, optical fiber
 - Ducts, conduits, telephone poles ...

How are communication networks designed and operated?

Communication Network Architecture



- Network architecture: the plan that specifies how the network is built and operated
- Architecture is driven by the network services
- Overall communication process is complex
- Network architecture partitions overall communication process into separate functional areas called *layers*

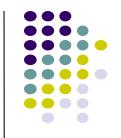
Next we will trace evolution of three network architectures: telegraph, telephone, and computer networks

Network Architecture Evolution

Network Architecture Evolution

an indicator of the progress in comm. technology is the speed at which data can be transmitted measured in [bps]

- Telegraph Networks [20 bps]
 - Message switching & digital transmission
- Telephone Networks [64 kbps]
 - Circuit Switching
 - Analog transmission \rightarrow digital transmission
 - Mobile communications
- Internet [n*Gbps]
 - Packet switching & computer applications
- Next-Generation Internet
 - Multiservice packet switching network


Chapter 1 Communication Networks and Services

Telegraph Networks & Message Switching

Alberto Leon-Garcia

Indra Widiaia

Telegraphs & Long-Distance Communications

Approaches to long-distance communications

- Courier: physical transport of the message
 - Messenger pigeons, pony express, FedEx
- Telegraph: message is transmitted across a network using signals
 - Drums, beacons, mirrors, smoke, flags, semaphores...
 - Electricity, light
- Telegraph delivers message much sooner

Telegraphs Networks : Message Switching

Electric Telegraph wires were stretched from one point to another; electric current is either allowed to flow through the wires or is broken by switch

called telegraph key

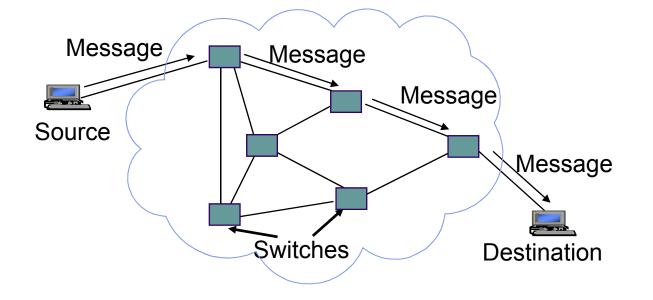
electric current is used to activate a sounder which makes clicking sounds -

short / long times between clicks are decoded into letters from the alphabet

Morse Telegraph text message is encoded into a sequence of dots and dashes [1837]

- dots and dashes are converted into short and long pulses of electric current
- digital transmission system relies only on 2 signal-levels

Morse Morse Morse Morse Code Code Code Code А J S - - -2 В κ Т 3 _____ С L U 4 - ___ - -- - ____ D м v 5 ____ - -- - - ____ Ε Ν - w 6 _ - - - -F 7 - - _ -0 х _ - - _ ____ G Р Y 8 ____-_ - __ __ н Q Z 9 - - - -- -R 1 0



http://www.davidsarnoff.org/gallery-ds/DS_Telegraph_key.html

Electric Telegraph Networks

- Electric telegraph networks exploded
 - Message switching & Store-and-Forward operation
 - Key elements: Addressing, Routing, Forwarding

Elements of Telegraph Network Architecture

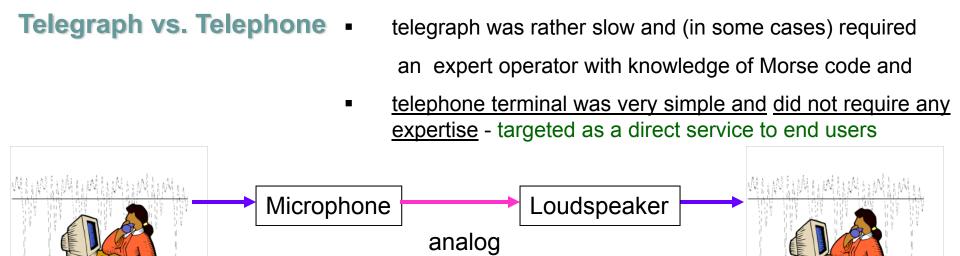
- Digital transmission
 - Text messages converted into symbols (dots/dashes, zeros/ones)
 - Transmission system designed to convey symbols
- Multiplexing
 - Framing needed to recover text characters
- Message Switching
 - Messages contain source & destination addresses
 - Store-and-Forward: Messages forwarded hop-by-hop across network
 - Routing according to destination address

Chapter 1 Communication Networks and Services

Telephone Networks and Circuit Switching

Alberto Leon-Garcia

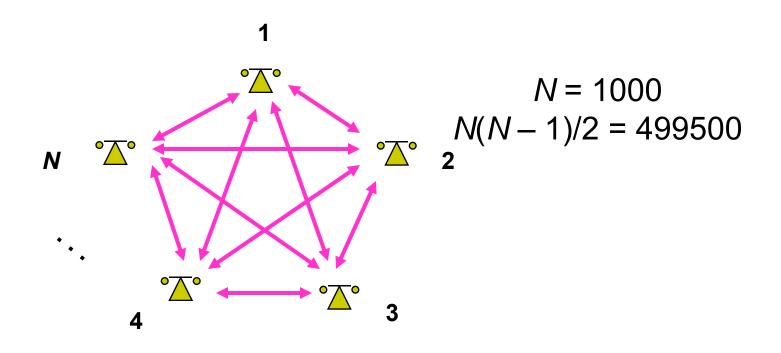
Indra Widiaia


Bell's Telephone

sound

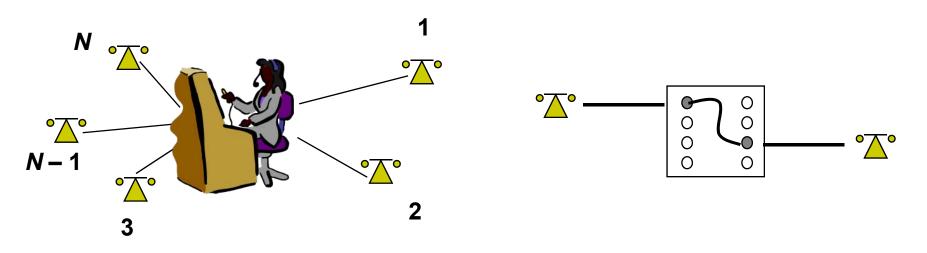
sound

- Alexander Graham Bell (1875) working on harmonic telegraph to multiplex telegraph signals
- Discovered voice signals can be transmitted directly
 - Microphone converts voice pressure variation (sound) into *analogous* electrical signal
 - Loudspeaker converts electrical signal back into sound

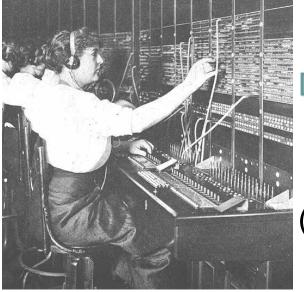

electrical

signal

The N² Problem

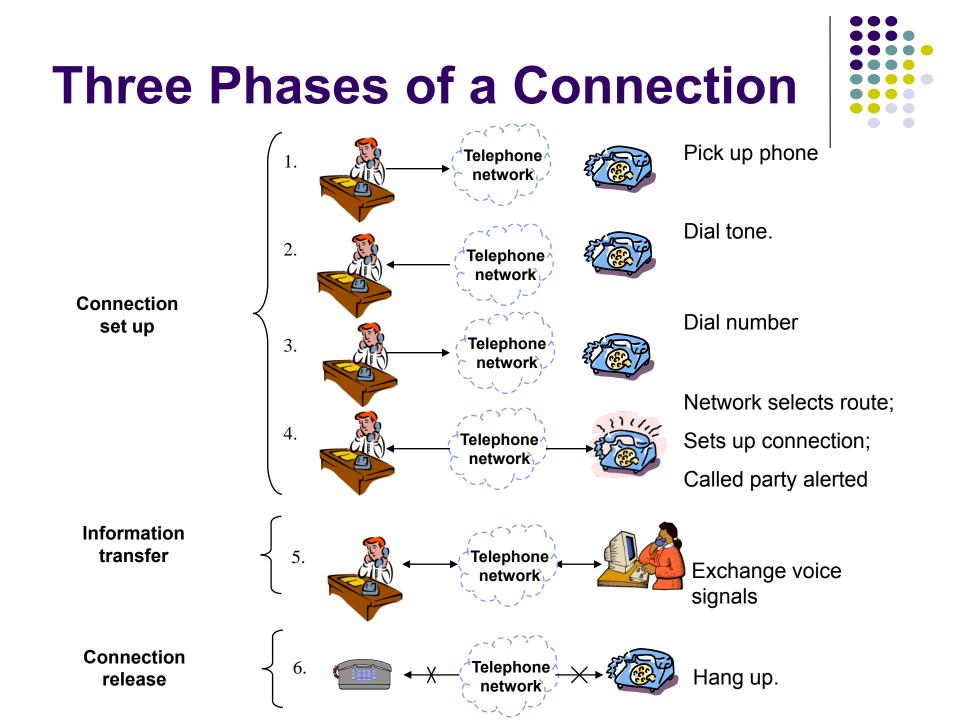

- For *N* users to be fully connected *directly*
- Requires N(N-1)/2 connections
- Requires too much space for cables
- Inefficient & costly since connections not always on

Circuit Switching


- Patchcord panel switch invented in 1877
- Operators connect users on demand
 - Establish *circuit* to allow electrical current to flow from inlet to outlet
- Only N connections required to central office

Telephone Networks

Connection-Oriented Service! – connection has to be set up before the actual transfer of information can take place



"intelligence" inside the network

Digital Telephone Systems: evolution began with the invention of the transistor and integrated circuits

(1) analog voice is converted into digital signal \Rightarrow better transmission

(2) digital switches \Rightarrow faster switching and advanced reservation of resources

Elements of Telephone Network Architecture

- Digital transmission & switching
 - Digital voice; Time Division Multiplexing
- Circuit switching
 - User signals for call setup and tear-down
 - Route selected during connection setup
 - End-to-end connection across network
 - Signaling coordinates connection setup
- Hierarchical Network
 - Decimal numbering system
 - Hierarchical structure; simplified routing; scalability
- Signaling Network
 - Intelligence inside the network

