CSE 3213: Communication Networks Winter 2010

Course Web-Page: https://wiki.cse.yorku.ca/course archive/2009-10/W/3213/

Instructor: Foroohar Foroozan (foroozan@cse.yorku.ca)

Office Hours: TR 14:00-15:00 (CSE 2052)

Prerequisite: General Prerequisite.

Textbook: "Communication Networks: Fundamental Concepts and Key Architectures",
A. Leon-Garcia and I. Widjaja, McGraw Hill, 2004, 2nd edition.

Other Material:

"Data Communications and Networking", B. A. Forouzan, McGraw Hill, 2007, 4 ${ }^{\text {th }}$ edition.
"Computer Networks: A Systems Approach - Network Simulation Experiments Manual",
E. Aboelela, Morgan Kaufmann, 2008, 2nd edition.

Grading Scheme:

Missed Midterm/ Quizes:

Quiz 1, 2, 3, 4:	$4 \times 3 \%=12 \%$
Lab Report 1, $2,3:$	$3 \times 6 \%=18 \%$
Midterm (Feb 24):	
Final:	30%

Missing a test will result in a score of zero -
unless the official York attending physician's statement is filled out. (with the official physician's statement, the weight of the exam/quiz will be added to that of the final exam.)

Exact time of each Quiz will be announced on the course Web site, in advance.

Lab Software:
OPNET IT Guru (Academic Edition)

- 'free' network simulation software
- 6-month renewable licence
- lab-manual will be available after reading week
- labs to take place in March

The course is an introduction to communications and networking. Topics covered include:

- Message, Circuit, Packet Switching LANs, WANs
- Applications and Layered Architectures
-Digital vs. Analog Communications
-Characterization of Communication Channels
- Channel Capacity, Nyquist and Shannon Theorems
- Line Coding (RZ, NRZ, Bipolar, Manchester)
- Digital Modulation (ASK, PSK, FSK)
- Properties of Media and Digital Transmission Systems
-Error Detection and Correction
- Flow and Error Control
- Medium Access Control (Aloha, CSMA, Scheduling)
- LAN Protocols (Ethernet, Token Ring, Wireless LANs)
- Connecting LANs
- Network Layer and IP Protocol

Telecommunication = communication over distance

Chapter 1

Communication

 Networks and ServicesNetwork Architecture and Services
Telegraph Networks \& Message Switching Telephone Networks and Circuit Switching Computer Networks \& Packet Switching

Chapter 1

 Communication Networks and Services
Communication Services \& Applications

- A communication service enables the exchange of information between users at different locations.
- Communication services \& applications are everywhere.
E-mail

Exchange of text messages via servers

Communication Services \& Applications

- A communication service enables the exchange of information between users at different locations.
- Communication services \& applications are everywhere.

Web Browsing

Web server

Retrieval of information from web servers

Communication Services \& Applications

- A communication service enables the exchange of information between users at different locations.
- Communication services \& applications are everywhere.

Instant Messaging

Direct exchange of text messages

Communication Services \& Applications

8

- A communication service enables the exchange of information between users at different locations.
- Communication services \& applications are everywhere.

Telephone

Real-time bidirectional voice exchange

Communication Services \& Applications

- A communication service enables the exchange of information between users at different locations.
- Communication services \& applications are everywhere.

Cell phone

Real-time voice exchange with mobile users

Communication Services \& Applications

- A communication service enables the exchange of information between users at different locations.
- Communication services \& applications are everywhere.

Short Message Service

Fast delivery of short text messages

Services \& Applications

- Service: Basic information transfer capability
- Internet transfer of individual block of information
- Internet reliable transfer of a stream of bytes
- Real-time transfer of a voice signal
- Applications build on communication services
- E-mail \& web build on reliable stream service
- Fax and modems build on basic telephone service
- New applications build on multiple networks
- SMS builds on Internet reliable stream service and cellular telephone text messaging

What is a communication network?

- The equipment (hardware \& software) and facilities that provide the basic communication service
- Virtually invisible to the user; Usually represented by a cloud
- Equipment
- Routers, servers, switches, multiplexers, hubs, modems, ...
- Facilities
- Copper wires, coaxial cables, optical fiber
- Ducts, conduits, telephone poles ...

Communication Network Architecture

- Network architecture: the plan that specifies how the network is built and operated
- Architecture is driven by the network services
- Overall communication process is complex
- Network architecture partitions overall communication process into separate functional areas called layers
Next we will trace evolution of three network architectures: telegraph, telephone, and computer networks

Network Architecture Evolution

Telegraph networks

Telephone networks

Internet, Optical \& Wireless networks

Next
Generation Internet

Network Architecture Evolution

an indicator of the progress in comm. technology is the speed at which data can be transmitted measured in [bps]

- Telegraph Networks [20 bps]
- Message switching \& digital transmission
- Telephone Networks [64 kbps]
- Circuit Switching
- Analog transmission \rightarrow digital transmission
- Mobile communications
- Internet [n*Gbps]
- Packet switching \& computer applications
- Next-Generation Internet
- Multiservice packet switching network

Chapter 1

Communication
 Networks and Services

Telegraph Networks \& Message Switching

Telegraphs \& Long-Distance Communications

Approaches to long-distance communications

- Courier: physical transport of the message
- Messenger pigeons, pony express, FedEx
- Telegraph: message is transmitted across a network using signals
- Drums, beacons, mirrors, smoke, flags, semaphores...
- Electricity, light
- Telegraph delivers message much sooner

Telegraphs Networks : Message Switching

Electric Telegraph wires were stretched from one point to another;
electric current is either allowed to flow through the wires or is broken by switch called telegraph key electric current is used to activate a sounder which makes clicking sounds short / long times between clicks are decoded into letters from the alphabet

Morse Telegraph text message is encoded into a sequence of dots and dashes [1837]

- dots and dashes are converted into short and long pulses of electric current
- digital transmission system - relies only on 2 signal-levels

	Morse Code		Morse Code		Morse Code		Morse Code
A	- -	J	--——	S	-	2	---——
B	---	K	--	T	-	3	-----
C	---	L	----	U	-	4	----
D	---	M	--	V	---	5	----
E	-	N	- -	w	- - -	6	----
F	----	0	———	X	----	7	-----
G	---	P	-——-	Y	----	8	-——--
H	--	Q	----	Z	---	9	-———-
1	--	R	---	1	- - -	0	----20

Electric Telegraph Networks

- Electric telegraph networks exploded
- Message switching \& Store-and-Forward operation
- Key elements: Addressing, Routing, Forwarding

Elements of Telegraph Network Architecture

- Digital transmission
- Text messages converted into symbols (dots/dashes, zeros/ones)
- Transmission system designed to convey symbols
- Multiplexing
- Framing needed to recover text characters
- Message Switching
- Messages contain source \& destination addresses
- Store-and-Forward: Messages forwarded hop-by-hop across network
- Routing according to destination address

Chapter 1

Communication

 Networks and ServicesTelephone Networks and Circuit Switching

Bell's Telephone

- Alexander Graham Bell (1875) working on harmonic telegraph to multiplex telegraph signals
- Discovered voice signals can be transmitted directly - Microphone converts voice pressure variation (sound) into analogous electrical signal
- Loudspeaker converts electrical signal back into sound

Telegraph vs. Telephone - telegraph was rather slow and (in some cases) required
an expert operator with knowledge of Morse code and

- telephone terminal was very simple and did not require any expertise - targeted as a direct service to end users

sound

The N^{2} Problem

- For N users to be fully connected directly
- Requires $N(N-1) / 2$ connections
- Requires too much space for cables
- Inefficient \& costly since connections not always on

Circuit Switching

- Patchcord panel switch invented in 1877
- Operators connect users on demand
- Establish circuit to allow electrical current to flow from inlet to outlet
- Only N connections required to central office

Telephone Networks

Connection-Oriented Service! - connection has to be set up before the actual transfer of information can take place

"intelligence" inside the network

Digital Telephone Systems: evolution began with the invention of the transistor and integrated circuits

(1) analog voice is converted into digital signal \Rightarrow better transmission
(2) digital switches \Rightarrow faster switching and advanced reservation of resources

Three Phases of a Connection

Elements of Telephone Network Architecture

- Digital transmission \& switching
- Digital voice; Time Division Multiplexing
- Circuit switching
- User signals for call setup and tear-down
- Route selected during connection setup
- End-to-end connection across network
- Signaling coordinates connection setup
- Hierarchical Network
- Decimal numbering system
- Hierarchical structure; simplified routing; scalability
- Signaling Network
- Intelligence inside the network

