Chapter 1 Communication Networks and Services

Computer Networks & Packet Switching

Alberto Leon-Garcia

Indra Widiaia

Computer Network Evolution Overview

1950s - 1960s: Terminal-Oriented Computer Networks

1960s - 1970s:Computer-to-Computer Networks:the ARPANET - first Wide Area Network (WAN)

1980s:

Local Area Networks (LANs)

1980s:

Terminal-Oriented Networks

- Early computer systems very expensive
- Time-sharing methods allowed multiple terminals to share local computer
- Remote access via telephone modems

Terminal-Oriented Networks

Example [modulation / demodulation]

Medium Access Control

- Dedicated communication lines were expensive
- Terminals generated messages sporadically
- Frames carried messages to/from attached terminals
- Address in frame header identified terminal
- Medium Access Controls for sharing a line were developed
- Example: Polling protocol on a multidrop line

Host computer

Terminals at different locations in a city Must avoid collisions on inbound line

Statistical Multiplexing

- Statistical multiplexer allows a line to carry *frames* that contain messages to/from multiple terminals
- Frames are buffered at *multiplexer* until line becomes available, i.e. store-and-forward
- Address in frame header identifies terminal
- Header carries other *control* information

Error Control Protocol

- Communication lines introduced errors
- Error checking codes used on frames
 - "Cyclic Redundancy Check" (CRC) "check bits"
 - (1) CRC is calculated based on frame header and payload
 - (2) CRC is appended to frame
 - (3) if receiver detects error, retransmission is requested

CRC	Information	Header	
•			Terminal
Header	Information	CRC	

1950s - 1960s:Terminal-Oriented Computer Networks

1960s - 1970s:Computer-to-Computer Networks:the ARPANET - first Wide Area Network (WAN)

1980s:Local Area Networks (LANs)

1980s:The Internet

Computer-to-Computer Networks

- As cost of computing dropped, terminal-oriented networks viewed as too inflexible and costly
- Need to develop flexible computer networks
 - Interconnect computers as required
 - Support many applications
- Application Examples
 - File transfer between arbitrary computers
 - Execution of a program on another computer
 - Multiprocess operation over multiple computers

Packet Switching

- Network should support multiple applications
 - Transfer arbitrary message size
 - Low delay for interactive applications
 - But in store-and-forward operation, long messages induce high delay on interactive messages
- Packet switching introduced
 - Network transfers packets using store-and-forward
 - Packets have maximum length
 - Break long messages into multiple packets
- ARPANET testbed led to many innovations

ARPANET Packet Switching

Host generates message

Source packet switch converts message to packet(s) Packets transferred independently across network Destination packet switch reasembles message Destination packet switch delivers message

ARPANET Routing

Routing is highly nontrivial in mesh networks

Other ARPANET Protocols

Error control between adjacent packet switches

ARPANET Applications

- ARPANET introduced many new applications
- Email, remote login, file transfer, ...
- Intelligence at the edge

1950s - 1960s: Terminal-Oriented Computer Networks

1960s – 1970s:Computer-to-Computer Networks:the ARPANET – first Wide Area Network (WAN)

1980s: Local Area Networks (LANs)

1980s:The Internet

Local Area Networks

LAN History

- in 1980s affordable computers became available
- subsequently, need for <u>low-cost</u>, high-speed, and low error-rate networks arose
 - to interconnect local workstations over small radius < 1km
 - to enable sharing of local resources (printers, servers, etc.)
- complex packet switching, congestion and flow control were unnecessary
- variety of LAN topologies emerged, including: bus, ring

Local Area Networks (cont.)

Bus Topology (Ethernet)

one long cable, so-called backbone, links all devices in the network

- each workstation connects to backbone through Network Interface Card (NIC); each NIC has globally unique address
- data frames are broadcast into coaxial cable
- receive: NIC listens to medium for frames with its address
- send: NIC listens to medium for presence of ongoing transmission if no transmission is found, send frame
- collision: if frame collides with somebody else's frame, abort transmission and retry later

Local Area Networks (cont.)

- **Bus Topology (Ethernet)**
- advantages: simple & inexpensive installation
- **disadvantages**: 1) backbone = single point of failure
 - 2) <u>collisions \Rightarrow diminishing capacity</u>
- if two or more devices transmit simultaneously their signals will interfere

Local Area Networks (cont.)

Ring Topology – each device has a dedicated point-to-point connection

only with the two devices on either side of it

- a small frame token circulates around the ring; only the station that possesses the token is allowed to transmit at any given time
- signal is passed along the ring in one direction, from device to device, until it reaches its destination
- advantages: fairness in access / effective use of bandwidth— token-passing provides each station with a turn to transmit
- **disadvantages**: entire network will fail if there is a failure in any transmission link or in the mechanism that relays the token

1950s - 1960s:Terminal-Oriented Computer Networks

1960s – 1970s:Computer-to-Computer Networks:the ARPANET – first Wide Area Network (WAN)

1980s:Local Area Networks (LANs)

1980s:The Internet

The Internet

Internet = Internetwork – two or more interconnected networks –

network of networks

The Internet: Past

- LANs that emerged in 1970s were different in terms of their underlying technology and operation
- a protocol that would enable communication across multiple dissimilar networks was needed
 - "higher level of abstraction" protocol
- Internet Protocol / Addressing were soon developed and enabled creation of a single global internetwork

The Internet: Present

- spread over 200 countries
- made up of 100,000s of interconnected networks, 10,000,000s of interconnected hosts, and 100,000,000s of users
- still grows exponentially ...

The Internet (cont.)

IP Network = the Internet

- each component network must contain special packet switch, gateway / router, through which it interconnects with rest of the Internet
- host computers place data in IP packets (data + IP header) and deliver them to nearest router
- router, with help of other routers, attempts to forward packet across the Internet
- "best effort service" IP provides no mechanism to deal with packet loss, corruption, reordering

Addressing & Routing

- Hierarchical address: Net ID + Host ID
- IP packets routed according to Net ID
- Routers compute routing tables using distributed algorithm

Names and IP Addresses

- Routing is done based on 32-bit IP addresses
- Dotted-decimal notation
 - 128.100.11.1
- Hosts are also identified by name
 - Easier to remember
 - Hierarchical name structure
 - cse.yorku.ca
- Domain Name System (DNS) provided conversion between names and addresses

Disadvantages

- circuit establishment delay circuit establishment introduces 'initial delay'
- inefficient use of capacity channel capacity is dedicated for the duration of a connection, even if no data is being transferred (e.g. silent periods in speech)
- network complexity end-to-end circuit establishment and bandwidth allocation requires complex signaling software to coordinate operation of switches

Packet vs. Circuit Switching (cont.)

Packet-Switched Networks (the Internet)

Advantages

greater line efficiency – network links are dynamically shared

by many packets / connections

- no blocked traffic packets are accepted even under heavy traffic. but delivery delay may increase
- Disadvantages • variable delay – each node introduces additional variable delay due to processing and queuing
 - overhead to route packets through a packet-switching network, overhead information including the address of destination and/or sequence information must be added to each packet 26