## Chapter 1

 Communication Networks and Services

# Computer Network Evolution Overview 

1950s - 1960s: Terminal-Oriented Computer Networks

1960s - 1970s: Computer-to-Computer Networks: the ARPANET - first Wide Area Network (WAN)

1980s:
Local Area Networks (LANs)

1980s:
The Internet

## Terminal-Oriented Networks

- Early computer systems very expensive
- Time-sharing methods allowed multiple terminals to share local computer
- Remote access via telephone modems



## Terminal-Oriented Networks

## Example [ modulation / demodulation]



## Medium Access Control

- Dedicated communication lines were expensive
- Terminals generated messages sporadically
- Frames carried messages to/from attached terminals
- Address in frame header identified terminal
- Medium Access Controls for sharing a line were developed
- Example: Polling protocol on a multidrop line


Terminals at different locations in a city Must avoid collisions on inbound line

## Statistical Multiplexing

- Statistical multiplexer allows a line to carry frames that contain messages to/from multiple terminals
- Frames are buffered at multiplexer until line becomes available, i.e. store-and-forward
- Address in frame header identifies terminal
- Header carries other control information



## Error Control Protocol

- Communication lines introduced errors
- Error checking codes used on frames
- "Cyclic Redundancy Check" (CRC) "check bits"
(1) CRC is calculated based on frame header and payload
(2) CRC is appended to frame
(3) if receiver detects error, retransmission is requested



## 1950s - 1960s:

1960s - 1970s: Computer-to-Computer Networks:

1980s:

1980s:
the ARPANET - first Wide Area Network (WAN)

## Terminal-Oriented Computer Networks

Local Area Networks (LANs)

The Internet

## Computer-to-Computer Networks

- As cost of computing dropped, terminal-oriented networks viewed as too inflexible and costly
- Need to develop flexible computer networks
- Interconnect computers as required
- Support many applications
- Application Examples
- File transfer between arbitrary computers
- Execution of a program on another computer
- Multiprocess operation over multiple computers


## Packet Switching

- Network should support multiple applications
- Transfer arbitrary message size
- Low delay for interactive applications
- But in store-and-forward operation, long messages induce high delay on interactive messages
- Packet switching introduced
- Network transfers packets using store-and-forward
- Packets have maximum length
- Break long messages into multiple packets
- ARPANET testbed led to many innovations


## ARPANET Packet Switching

Host generates message
Source packet switch converts message to packet(s) Packets transferred independently across network

Destination packet switch reasembles message Destination packet switch delivers message


## ARPANET Routing

Routing is highly nontrivial in mesh networks

No connection setup prior to packet transmission Packets header includes source \& destination addresses Packet switches have table with next hop per destination Routing tables calculated by packet switches using distributed algorithm


## Other ARPANET Protocols

Error control between adjacent packet switches

Congestion control between source \& destination packet switches limit number of packets in transit

Flow control between host computers prevents buffer overflow


## ARPANET Applications

- ARPANET introduced many new applications
- Email, remote login, file transfer, ...
- Intelligence at the edge



## 1950s-1960s:

1960s - 1970s:

1980s:

1980s:

## Terminal-Oriented Computer Networks

Computer-to-Computer Networks:
the ARPANFT - first Wide Area Network (WAN)

Local Area Networks (LANs)

The Internet

## Local Area Networks

## LAN History

- in 1980s affordable computers became available
- subsequently, need for low-cost, high-speed, and low error-rate networks arose
- to interconnect local workstations over small radius $<1 \mathrm{~km}$
- to enable sharing of local resources (printers, servers, etc.)
- complex packet switching, congestion and flow control were unnecessary
- variety of LAN topologies emerged, including: bus, ring



## Local Area Networks

## Bus Topology (Ethernet)

one long cable, so-called backbone, links all devices in the network

- each workstation connects to backbone through

Network Interface Card (NIC); each NIC has globally unique address

- data frames are broadcast into coaxial cable
- receive: NIC listens to medium for frames with its address
- send: NIC listens to medium for presence of ongoing transmission if no transmission is found, send frame
- collision: if frame collides with somebody else's frame, abort transmission and retry later


## Local Area Networks

## Bus Topology (Ethernet)

- advantages: simple \& inexpensive installation
- disadvantages: 1) backbone $=$ single point of failure

2) collisions $\Rightarrow$ diminishing capacity

- if two or more devices transmit simultaneously their signals will interfere



## Local Area Networks

Ring Topology - each device has a dedicated point-to-point connection only with the two devices on either side of it

- a small frame - token - circulates around the ring; only the station that possesses the token is allowed to transmit at any given time
- signal is passed along the ring in one direction, from device to device, until it reaches its destination
- advantages: fairness in access / effective use of bandwidth- token-passing provides each station with a turn to transmit
- disadvantages: entire network will fail if there is a failure in any transmission link or in the mechanism that relays the token

1950s - 1960s:
1960s - 1970s: Computer-to-Computer Networks:
the ARPANFT - first Mide Area Network (WAN)
Local Area Networks (LANs)

The Internet

## The Internet

Internet = Internetwork - two or more interconnected networks network of networks

## The Internet: Past

- LANs that emerged in 1970s were different in terms of their underlying technology and operation
- a protocol that would enable communication across multiple dissimilar networks was needed
- "higher level of abstraction" protocol
- Internet Protocol / Addressing were soon developed and enabled creation of a single global internetwork


## The Internet: Present

- spread over 200 countries
- made up of 100,000 s of interconnected networks, 10,000,000s of interconnected hosts, and 100,000,000s of users
- still grows exponentially ...


## The Internet

## IP Network = the Internet

- each component network must contain special packet switch, gateway / router, through which it interconnects with rest of the Internet
- host computers place data in IP packets (data + IP header) and deliver them to nearest router
- router, with help of other routers, attempts to forward packet across the Internet
- "best effort service" - IP provides no mechanism to deal with packet loss, corruption, reordering



## Addressing \& Routing

- Hierarchical address: Net ID + Host ID
- IP packets routed according to Net ID
- Routers compute routing tables using distributed algorithm



## Names and IP Addresses

- Routing is done based on 32-bit IP addresses
- Dotted-decimal notation
- 128.100.11.1
- Hosts are also identified by name
- Easier to remember
- Hierarchical name structure
- cse.yorku.ca
- Domain Name System (DNS) provided conversion between names and addresses


## Packet vs. Circuit Switching

Circuit-Switched Networks (telephone networks)


Advantages • guaranteed Quality of Service - data is ${ }^{\text {User } 5}$ transmitted at fixed (guaranteed) rate; delay at nodes is negligible

- circuit establishment delay - circuit establishment introduces 'initial delay’
- inefficient use of capacity - channel capacity is dedicated for the duration of a connection, even if no data is being transferred (e.g. silent periods in speech)
- network complexity - end-to-end circuit establishment and bandwidth allocation requires complex signaling software to coordinate operation of switches


## Packet vs. Circuit Switching (cont.)

Packet-Switched Networks (the Internet)


Advantages

- greater line efficiency - network links are dynamically shared by many packets / connections
- no blocked traffic - packets are accepted even under heavy traffic, but delivery delay may increase

Disadvantages

- variable delay - each node introduces additional variable delay due to processing and queuing
- overhead - to route packets through a packet-switching network, overhead information including the address of destination and/or sequence information must be added to each packet

