Signals

Periodic vs. Aperiodic Signals

- periodic signal - completes a pattern within some measurable time frame, called a period (T), and then repeats that pattern over subsequent identical periods

$$
\exists \mathrm{T} \in \mathrm{R} \quad \text { s.t. } \quad \mathrm{s}(\mathrm{t}+\mathrm{T})=\mathrm{s}(\mathrm{t}), \forall \mathrm{t} \in\langle-\infty,+\infty\rangle
$$

- T is the smallest value that satisfies the equation
- T is (typically) expressed in seconds
- aperiodic signal - changes without exhibiting a pattern that repeats over time

Analog Signals

Classification of Analog Signals

The origin is usually
taken as the last previous passage through zero from the negative to the positive direction.
(1) Simple Analog Signal - cannot be decomposed into simpler signals

- sinewave - most fundamental form of periodic analog signal - mathematically described with 3 parameters

$$
\mathrm{s}(\mathrm{t})=\mathrm{A} \cdot \sin (2 \pi \mathrm{ft}+\varphi)
$$

(1.1) peak amplitude (A) - absolute value of signal's highest intensity - unit: volts [V]
(1.2) frequency (f) - number of periods in one second unit: hertz [Hz] = [1/s] - period and frequency are inverses of each other!
(1.3) phase (φ) - absolute position of the waveform relative to an arbitrary origin - unit: degrees [${ }^{\circ}$] or radians [rad]

(2) Composite Analog Signal - composed of multiple sinewaves

Simple Analog Signals

Phase in Simple - measured in degrees or radians Analog Signals

- $360^{\circ}=2 \pi \mathrm{rad}$
- $1^{\circ}=2 \pi / 360 \mathrm{rad}$
- $1 \mathbf{r a d}=(360 / 2 \pi)^{\circ}=57.29578^{\circ}$
- phase shift of $360^{\circ}=$ shift of 1 complete period
- phase shift of $180^{\circ}=$ shift of $\mathbf{1 / 2}$ period
- phase shift of $90^{\circ}=$ shift of $\mathbf{1 / 4}$ period

$\boldsymbol{\varphi}=0^{\circ}$ or 360°

Example [period and frequency]

Unit	Equivalent	Unit	Equivalent
seconds (s)	1 s	hertz (Hz)	1 Hz
milliseconds (ms)	$10^{-3} \mathrm{~s}$		
microseconds $(\mu \mathbf{s})$	$10^{-6} \mathrm{~s}$		
nanoseconds (ns)	$10^{-9} \mathrm{~s}$		
picoseconds (ps)	$10^{-12} \mathrm{~s}$		

units of period and respective frequency
(a) Express a period of 100 ms in microseconds.
(b) Express the corresponding frequency in kilohertz.

Frequency in Simple - rate of signal change with respect to time

Analog Signals

- change in a short span of time \Rightarrow high frequency
- change over a long span of time \Rightarrow low frequency
- signal does not change at all \Rightarrow zero frequency
(signal never completes a cycle $T=\infty \Rightarrow f=0$) - DC signal
- signal changes instantaneously $\Rightarrow \infty$ frequency
(signal completes a cycle in $T=0 \Rightarrow f=\infty$)

Time Domain Plot - specifies signal amplitude at each instant of time

- does NOT express explicitly signal's phase and frequency

Frequency Domain Plot - specifies peak amplitude with respect to frequency - phase CANNOT be shown in the frequency domain


```
One 'spike' in frequency domain
    shows two characteristics
        of the signal:
spike position = signal frequency,
spike height = peak amplitude.
```

b. A signal with frequency 8

Time
domain

Frequency domain

Analog signals are best represented in the frequency domain.

Composite Analog Signals

Fourier Analysis - any composite signal can be represented as a combination of simple sine waves with different frequencies, phases and amplitudes

$$
\mathbf{s}(\mathrm{t})=\mathrm{A}_{1} \sin \left(2 \pi \mathrm{f}_{1} t+\varphi_{1}\right)+\mathrm{A}_{2} \sin \left(2 \pi \mathrm{f}_{2} \mathrm{t}+\varphi_{2}\right)+\ldots
$$

- periodic composite signal (period=T, frequency $=f_{0}=1 / T$) can be represented as a sum of simple sines/cosines known as Fourier series:

$$
s(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(2 \pi n f_{0} t\right)+B_{n} \sin \left(2 \pi n f_{0} t\right)\right]
$$

With the aid of good table of integrals,
it is easy to determine the
frequency-domain nature of many signals.

$$
\begin{aligned}
& A_{n}=\frac{2}{T} \int_{0}^{T} s(t) \cos \left(2 \pi n f_{0} t\right) d t, n=0,1,2, \ldots \\
& B_{n}=\frac{2}{T} \int_{0}^{T} s(t) \sin \left(2 \pi n f_{0} t\right) d t, \quad n=1,2,3, \ldots
\end{aligned}
$$

- f_{0} is referred to as 'fundamental frequency'
- integer multiples of f_{0} are referred to as 'harmonics'

Angular Frequency - aka radian frequency - number of 2π revolutions during a single period of a given signal

$$
\omega=\frac{2 \pi}{T}=2 \pi \cdot T
$$

- simple multiple of ordinary frequency

$$
\begin{aligned}
& s(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(n \omega_{0} t\right)+B_{n} \sin \left(n \omega_{0} t\right)\right] \\
& \\
& A_{n}=\frac{2}{T} \int_{0}^{T} s(t) \cos \left(n \omega_{0} t\right) d t, \quad n=0,1,2, \ldots \\
& \rightarrow B_{n}=\frac{2}{T} \int_{0}^{T} s(t) \sin \left(n \omega_{0} t\right) d t, \quad n=1,2, \ldots
\end{aligned}
$$

Example [periodic square wave]

$$
s(t)=\frac{4 A}{\pi} \sin (2 \pi f t)+\frac{4 A}{3 \pi} \sin (2 \pi(3 f) t)+\frac{4 A}{5 \pi} \sin (2 \pi(5 f) t)+\ldots
$$

three harmonics

adding three harmonics

With three harmonics we get an approximation of a square wave. To get the actual square, all harmonics up to ∞ should be added.

Frequency Spectrum - range (set) of frequencies that signal contains of Analog Signal

Absolute Bandwidth - width of signal spectrum: $B=f_{\text {highest }}-\boldsymbol{f}_{\text {lowest }}$ of Analog Signal

Effective Bandwidth - range of frequencies where signal contains most of Analog Signal of its power/energy

3-harmonic representation

b. Frequency spectrum of an approximation with only three harmonics

Example [frequency spectrum and bandwidth of analog signal]

A periodic signal is composed of five sinewaves with frequencies of 100, 300, 500, 700 and 900 Hz .
What is the bandwidth of this signal?
Draw the frequency spectrum, assuming all components have a max amplitude of 10 V .

Solution:
$B=f_{\text {highest }}-f_{\text {lowest }}=900-100=800 \mathrm{~Hz}$
The spectrum has only five spikes, at 100, 300, 500, 700, and 900.

Example [frequency spectrum of a data pulse]

periodic signal \Rightarrow discrete frequency spectrum

aperiodic signal \Rightarrow continuous frequency spectrum

What happens if $\tau \rightarrow 0$???

1. Before data can be transmitted, they must be transformed to \qquad .
(a) periodic signals
(b) electromagnetic signals
(c) aperiodic signals
(d) low-frequency sinewaves
2. In a frequency-domain plot, the vertical axis measures the \qquad .
(a) peak amplitude
(b) frequency
(c) phase
(d) slope
3. In a time-domain plot, the vertical axis measures the \qquad .
(a) peak amplitude
(b) amplitude
(c) frequency
(d) time
4. If the bandwidth of a signal is 5 KHz and the lowest frequency is 52 KHz , what is the highest frequency \qquad .
(a) 5 KHz
(b) 10 KHz
(c) 47 KHz
(d) 57 KHz
5. If one of the components of a signal has a frequency of zero, the average amplitude of the signal \qquad .
(a) is greater than zero
(b) is less than zero
(c) is zero
(d) (a) or (b)
6. Give two sinewaves A and B, if the frequency of A is twice that of B, then the period of B is \qquad that of A.
(a) one-half
(b) twice
(c) the same as
(d) indeterminate from
7. A device is sending out data at the rate of 1000 bps.
(a) How long does it take to send out 10 bits?
(b) How long does it take to send out a single character (8 bits)?
(c) How long does it take to send a file of $\mathbf{1 0 0 , 0 0 0}$ characters?
