

Chapter 3 Digital Transmission Fundamentals

Analog vs. Digital Digital Representation of Analog Signals Why Digital Communications?

Data vs. Signal

- Data: piece of information formatted in human/machine readable form: voice, music, image, file
- Signal: electric or electromagnetic (EM) representation of data; transmission media work by conducting energy along a physical path; thus, to be transmitted, data must be turned into energy in the form of EM signals
- Transmission : communication of <u>data</u> through propagation and processing of <u>signals</u>

Signal Representation

Signal Representation:

- when the horizontal axis is time, graph displays the value of a signal at <u>one particular point in space</u> as a function of time
- when the horizontal axis is space, graph displays the value of a signal at <u>one particular point in time</u> as a function of space

Analog vs. Digital

Analog data: representation variable takes on continuous values in some interval, e.g. voice, temperature, etc.

Digital data : representation variable takes on discrete

- (a <u>finite & countable number</u> of) values in a given interval, e.g. text, digitized images, etc.
- Analog signal: <u>continuous in time</u> and can assume an <u>infinite</u> No. of values in a given range (continuous in time and value)
- **Discrete (digital) signal:** signal that is <u>continuous in time</u> and can assume only a <u>limited</u> number of values (maintains a constant level and then changes to another constant level)

Digitization of Analog Signal

- Sample analog signal in time and amplitude
- Find closest approximation

R_s = Bit rate = # bits/sample x # samples/second

Example: Voice and Audio

Telephone voice

- $W_s = 4 \text{ kHz} \rightarrow 8000$ samples/sec
- 8 bits/sample
- *R_s*=8 x 8000 = 64 kbps
- Cellular phones use more powerful compression algorithms: 8-12 kbps

CD Audio

- $W_s = 22 \text{ kHertz} \rightarrow 44000 \text{ samples/sec}$
- 16 bits/sample
- *R_s*=16 x 44000= 704 kbps per audio channel
- MP3 uses more powerful compression algorithms: 50 kbps per audio channel

Sampling Rate and Bandwidth

• Bandwidth measures how fast a signal varies

- What is the bandwidth of a signal?
- How is bandwidth related to sampling rate?

Periodic Signals

• A periodic signal with period *T* can be represented as sum of sinusoids using Fourier Series:

- • $|a_k|$ determines amount of power in *k*th harmonic
- •Amplitude specturm $|a_0|$, $|a_1|$, $|a_2|$, ...

Example Fourier Series

t

. . .

$$\begin{aligned} x_1(t) &= 0 + \frac{4}{\pi} \cos(2\pi 4000t) & x_2(t) = 0 + \frac{4}{\pi} \cos(2\pi 1000t) \\ &+ \frac{4}{3\pi} \cos(2\pi 3(4000)t) & + \frac{4}{3\pi} \cos(2\pi 3(1000)t) \\ &+ \frac{4}{5\pi} \cos(2\pi 5(4000)t) + \dots & + \frac{4}{5\pi} \cos(2\pi 5(1000)t) + \dots \\ &\text{Only odd harmonics have power} \end{aligned}$$

http://www.nst.ing.tu-bs.de/schaukasten/fourier/en_idx.html

Spectra & Bandwidth

- Spectrum of a signal: magnitude of amplitudes as a function of frequency
- $x_1(t)$ varies faster in time & has more high frequency content than $x_2(t)$
- Bandwidth W_s is defined as range of frequencies where a signal has non-negligible power, e.g. range of band that contains 99% of total signal power

Spectrum of $x_1(t)$

Spectrum of $x_2(t)$

Chapter 3 Communication Networks and Services

Digital Representation of Analog Signals

Alberto Leon-Garcic

Indra Widia

Digital Transmission of Analog Information

2W samples / sec

Digital Transmission of Analog Signals (Cont.)

Digitization Procedure consists of two steps:

(1) sampling – obtain signal values at equal intervals (T)

(2) quantization – approximate samples to certain values

Sampling Theorem

According to the Nyquist theorem, the sampling rate must be at least 2 times the highest frequency contained in the signal.

Sampling Theorem (Cont.)

c. Undersampling: $f_s = f$

Nyquist rate can create a good approximation of the original sine wave (part a).

Oversampling in part b can also create the same approximation, but it is redundant and unnecessary. Sampling below the Nyquist rate (part c) does not produce a signal that looks like the original sine wave.

Quantization

 \Box PAM signal samples have amplitudes of ' ∞ precision" –direct encoding of such amplitudes would require ∞ number of bits (digital pulses) per sample

 \Box to convert PAM signal to digital signal (that is practical for transmission), each sample has to be 'rounded up' to the nearest of M possible quantization levels

M quantization levels : $m = log_2(M)$ bits per level

$$\begin{split} M\uparrow \Rightarrow better \ precision \ , \ more \ bits \ per \ sample \\ M\downarrow \Rightarrow poor \ precision \ , \ fewer \ bits \ per \ sample \end{split}$$

Quantization

Quantizer Performance

 $M = 2^m$ levels, Dynamic range $(-V, V) \Delta = 2V/M$

If the number of levels *M* is large, then the error is approximately uniformly distributed between $(-\Delta/2, \Delta 2)$

Average Noise Power = Mean Square Error:

$$\sigma_e^2 = \int_{\frac{\Delta}{2}}^{\frac{\Delta}{2}} x^2 \frac{1}{\Delta} dx = \frac{\Delta^2}{12}$$

Quantizer Performance

Figure of Merit:

Signal-to-Noise Ratio = Avg signal power / Avg noise power

Let σ_x^2 be the signal power, then

SNR = $\frac{{\sigma_x}^2}{{\Delta^2}/{12}} = \frac{12{\sigma_x}^2}{4V^2/M^2} = 3\left(\frac{{\sigma_x}}{V}\right)^2 M^2 = 3\left(\frac{{\sigma_x}}{V}\right)^2 2^{2m}$

The ratio V/ $\sigma_x \approx 4$

The SNR is usually stated in decibels: SNR dB = 10 log₁₀ $\sigma_x^2 / \sigma_e^2 = 6m + 10 \log_{10} 3\sigma_x^2 / V^2$ SNR dB = 6*m* - 7.27 dB for $V / \sigma_x = 4$.

Quantization (Cont.)

Example [Quantization of PAM Signal]

Assume an analog signal, as shown below, has to be quantized using at most 8-bits per sample. How many different quantization levels are allowed / should be used?

Sign bit + is $0 - is 1$						
+026	00011010	+127	01111111	+077	01001101	
+039	00100111	+052	00110110	+088	01011000	
+048	00110000	-050	10110010	+090	01011010	
+0.38	00100110	-080	1010000	+110	01101110	

Quantization (Cont.)

Example [voice signal in telephone system]

Natural human voice occupies the range of 80 – 4000 [Hz]. Human ear can tolerate SNR of 40 [dB]. Assume we want to transmit human voice in digitized form. What bit rate [bps] should be supported by the channel to enable such transmission?

(1) Sampling rate?!

Based on Nyquist Sampling Theorem: max frequency = 4 [kHz] ⇒ sampling rate = 2*4 [kHz] = 8000 [samples/sec]

(2) # of bits per sample?!

Based on SNR formula: 40 [dB] = $6*m - 7.76 \Rightarrow \#$ bits per sample = $8 \Rightarrow \#$ of levels = $2^8 = 256$

data rate = # samples per second * # bits per sample = 64 kbps

Digital Signals

- sequence of voltage pulses (DC levels) each pulse represents a signal element
 - binary data are transmitted using only 2 types of signal elements (1 = positive voltage, 0 = negative voltage)
 - key digital-signals terms:
 - bit interval time required to send one single bit unit: [sec]
 - bit rate number of bit intervals per second unit: [bps]

Most digital signals are aperiodic, so it is not appropriate / correct to talk about their period.

Digital Signals (Cont.)

Digital Signal as a Composite Analog Signal

- digital signal, with all its sudden changes, is actually a composite signal having an infinite number of frequencies
 - a digital signal is a composite signal with an infinite bandwidth
 - if a <u>medium has a wide bandwidth</u>, a digital signal can be sent through it
 - some frequencies will be weakened or blocked; still, enough frequencies will be passed to preserve a decent signal shape
 - what is the <u>minimum required bandwidth</u>
 B [Hz] of a <u>band-limited medium</u> if we want to send n [bps]?

FIGURE 4.6 Frequency Components of a Square Wave $(T = 1/f_1)$.