

# Chapter 3 Digital Transmission Fundamentals

Line Coding Modems and Digital Modulation





### **Digital transmission of Digital Signals**



#### Data Level vs. Signal Level

- data levels number of values / levels used to represent data (typically only two: 0 & 1)
- signal levels number of values / levels allowed in a particular signal Amplitude





# Chapter 3 Digital Transmission Fundamentals

#### Line Coding

# What is Line Coding?



- Mapping of binary information sequence into the digital signal that enters the channel
- process of converting binary data (sequence of bits) to a digital signal
- digital signal depends 'linearly' on information bits, i.e. bits are transmitted 'one-by-one' – different from block coding
  - Ex. "1" maps to +A square pulse; "0" to -A pulse



# Line Coding: Design Consideration

#### **DC Component in Line Coding**

- some line coding schemes have a residual (DC) component, generally undesirable
  - transformers do not allow passage of DC component
  - DC component ⇒ extra energy − useless!

#### Self-Synchronization (Clocking)

- to correctly interpret signal received from sender, receiver's bit interval must correspond exactly to sender's bit intervals
  - if receiver clock is faster/slower, bit intervals are not matched ⇒ receiver might misinterpret signal
  - self-synchronizing digital signals include timing information in itself, to indicate the <sup>56 kbps ⇒</sup> beginning and end of each pulse <sup>0,0178 ms</sup>





### **Line Coding Schemes**







### **Unipolar Code**

- Unipolar Line Coding uses only <u>one non-zero</u> and one zero voltage level

- (e.g.) 0 = zero level, 1 = non-zero level
- simple to implement, but obsolete due to two main problems:
  - DC component present 😕
  - lack of synchronization for long series of 1-s or 0-s  $\otimes$



### **Polar Coding**

#### **Polar Line Coding**

 uses <u>two non-zero voltage level</u> for representation of two data levels – one positive and one negative

- "DC-problem" alleviated ③
- 4 main types of polar coding:



(1) Nonreturn to Zero (NRZ)

- NRZ-level: signal level represents particular bit, (e.g.) 0 = positive volt., 1 = negative volt.
  - lack of synchronization for long series of 1-s & 0-s  $\ensuremath{\mathfrak{S}}$
- NRZ-invert: inversion of voltage level represents bit 1, no voltage change represents bit 0
  - 1s in data streams enable synchronization
  - long sequence of 0-s still a problem  $\ensuremath{\mathfrak{S}}$





NRZ-I is better than NRZ-L, but it still does not provide complete synchronization. To ensure complete synchronization, there must be a signal change for each bit.<sub>11</sub>

# Polar Coding (RZ)

(2) Return to Zero (RZ) - (e.g.) 0 = negative volt., 1 = positive volt., AND signal must return to zero halfway through each bit interval

- perfect synchronization 🙂
- drawback 2 signal changes to encode each bit
  ⇒ pulse rate is x2 rate of NRZ coding, i.e. more bandwidth is required, regardless of bit sequence ☺



Non-zero level  $\Rightarrow$  beginning of a new bit.

#### **Manchester code**

(3) Manchester

 inversion at the middle of each bit interval is used for both synchronization and bit representation



- 0 = pos-to-neg transition, 1 = neg-to-pos transition
- perfect synchronization 😳
- there is always transition at the middle of the bit, and maybe one transition at the end of each bit
- fine for alternating sequences of bits (10101), but wastes bandwidth for long runs of 1-s or 0-s ☺
- used by IEEE 802.3 (Ethernet)



#### **Differential Manchester code**

(4) Differential Manchester – inversion in the middle of bit interval is used

for synchronization – presence or absence of additional transition at the beginning of next bit interval identifies the bit

- 0 =transition, 1 =no transition
- perfect synchronization 😳
- fine for long runs of 1s, but wastes bandwidth for long runs of 0-s  $\otimes$
- used by IEEE 802.5 (Token Ring)



### **Bipolar Code**

**Bipolar Line Coding** – uses <u>two non-zero and zero voltage level</u> for representation of two data levels



- 0 = zero level; 1 = alternating pos and neg level
- e.g. if 1<sup>st</sup> 'bit 1' is represented by positive amplitude, the 2<sup>nd</sup> will be represented by negative amplitude, the 3<sup>rd</sup> by positive, etc.
- less bandwidth required than with Manchester coding (for any sequence of bits)
- loss of synchronization is possible for long runs of 0-s 😕



# Line Coding (Multilevel)

#### 2B1Q (2 Binary 1 Quaternary) Coding

- data patterns of size 2 bits are encoded as one signal element belonging to a four-level signal
  - data is sent two time faster than with NRZ-L
  - receiver has to discern 4 different thresholds





### Data Rate vs. Baud Rate



**Data Rate** 

- number of data elements (bits) sent in 1 sec unit: bps
- Signal Rate
- number of signal elements (pulses) sent in 1 sec unit: baud



a. One data element per one signal element (r = 1)



2 signal elements b. One data element per two signal elements  $(r = \frac{1}{2})$ 4 data elements 1101

1 data element



d. Four data elements per three signal elements  $\left(r = \frac{4}{2}\right)$ 

One goal of data communications is to increase data rate (speed of transmission) while decreasing signal rate (bandwidth requirements).

#### Exercise

- 1. Pulse rate is always \_\_\_\_\_\_ the bit rate.
  - (a) greater than
  - (b) less than
  - (c) greater than or equal to
  - (d) less than or equal to
- 2. Which encoding type always has a nonzero average amplitude?
  - (a) unipolar
  - (b) polar
  - (c) bipolar
  - (d) all the above
- 3. Which of the following encoding methods does not provide for synchronization.
  - (a) NRZ-L
  - (b) RZ
  - (c) NRZ-I
  - (d) Manchester