
Chapter 3
Digital Transmission

Fundamentals
Error Detection and Correction

CSE 3213, Winter 2010
Instructor: Foroohar Foroozan

Other Error Detection Codes
Many applications require very low error rate
Need codes that detect the vast majority of errors
Single parity check codes do not detect enough
errors
Two-dimensional codes require too many check bits
The following error detecting codes used in practice:

Internet Check Sums
CRC Polynomial Codes

3

Single Parity
detects all error involving

an odd # of errors

2-D Parity
detects & corrects 1-bit errors
detects all 2- and 3- bit errors

detects some 4-bit errors

Internet Checksum
detects all errors involving

an odd # of bits
detects most errors involving

an even # of bits

Error Detection:
Internet Checksum

Several Internet protocols (e.g. IP, TCP, UDP) use
check bits to detect errors in the IP header
A checksum is calculated for header contents and
included in a special field.
Checksum recalculated at every router, so algorithm
selected for ease of implementation in software
Let header consist of L, 16-bit words,
b0, b1, b2, ..., bL-1

The algorithm appends a 16-bit checksum bL

Checksum Calculation
• checksum calculation:

IP/TCP/UDP packet is divided into n-bit sections
n-bit sections are added using “1-s complement
arithmetic” – the sum is also n-bits long!
the sum is complemented to produce checksum
(complement of a number in 1-s arithmetic is the
negative of the number)

• advantages:
relatively little packet overhead is required – n bits
regardless of packet size
easy / fast to implement in software

• disadvantages:
weak protection compared to CRC – e.g. will NOT
detect misordered bytes/words !!!

detects all errors involving an odd number of bits
and most errors involving an even number of bits

sum checksum

6

Sender:

• data is divided into k sections
each n bits long

• all sections are added using 1-s
complement to get the sum

• the sum is bit-wise complemented
andbecomes the checksum

• the checksum is sent with the data

Receiver:

• data is divided into k sections
each n bits long

• all sections are added using 1-s
complement to get the sum

• the sum is bit-wise complemented
• if the result is zero, the data is

accepted, otherwise it is rejected

Checksum Calculation

Example [Internet Checksum]

Checksum Calculation
Suppose the following block of 8 bits is to be sent using a checksum of 4 bits:
1100 1010. Find the checksum of the given bit sequence.

1100
1010
0000

sum: 10110

0110
1

1-s complement addition: 0111 (7)

checksum: 1000 (-7)

1-s complement addition:
Perform standard binary addition.
If a carry-out (>nth) bit it produced,
swing that bits around and
add it back into the summation.

Negative binary numbers:
Negative binary numbers are
bit-wise complement of
corresponding positive numbers.

8

If one or more bits of a segment are damaged, and the corresponding bit of
opposite value in a second segment is also damaged, the sums of those columns
will not change and the receiver will not detect the problem.

Suppose the receiver receives the bit sequence and the checksum with no error.

1100
1010
1000

sum: 11110
1-s complement addition: 1111

bit-wise complement: 0000

When the receiver adds the three blocks, it will get all 1s, which,
after complementing, is all 0s and shows that there is no error.

Checksum Calculation

9

Example [Internet Checksum]
Suppose the following block of 16 bits is to be sent using a checksum of 8 bits.
10101001 00111001. The numbers are added using one’s complement:

10101001
00111001
00000000

Sum 11100010
Checksum 00011101

The pattern sent is 10101001 00111001 00011101.
Now suppose the receiver receives the pattern with no error.
10101001 00111001 00011101
When the receiver adds the three blocks, it will get all 1s, which, after complementing, is all
0s and shows that there is no error.

10101001

00111001

00011101

Sum 11111111
Complement 00000000

means that the pattern is OK.

Checksum Calculation

10

Example [Internet Checksum]

Now suppose that in the previous example, there was a burst error of length 5 that affected
4 bits.

10101111 11111001 00011101

When the receiver added the three sections, it got

10101111

11111001

00011101

Partial Sum 1 11000101

Checksum 11000110

Complement 00111001

the pattern is corrupted.

Checksum Calculation

CRC (Polynomial Codes)
Polynomials instead of vectors for codewords
Polynomial arithmetic instead of check sums
Implemented using shift-register circuits
Also called cyclic redundancy check (CRC) codes
Most data communications standards use polynomial
codes for error detection
Polynomial codes also basis for powerful error-correction
methods

Addition:

Multiplication:

Binary Polynomial Arithmetic
Binary vectors map to polynomials

(ik-1 , ik-2 ,…, i2 , i1 , i0) ik-1xk-1 + ik-2xk-2 + … + i2x2 + i1x + i0

(x7 + x6 + 1) + (x6 + x5) = x7 + x6 + x6 + x5 + 1

= x7 +(1+1)x6 + x5 + 1

= x7 +x5 + 1 since 1+1=0 mod2

(x + 1) (x2 + x + 1) = x(x2 + x + 1) + 1(x2 + x + 1)

= x3 + x2 + x + (x2 + x + 1)

= x3 + 1

Binary Polynomial Division
Division with Decimal Numbers

32

35) 1222
3

105
17 2

4

140
divisor

quotient

remainder

dividend
1222 = 34 x 35 + 32

dividend = quotient x divisor +remainder

Polynomial
Division x3 + x + 1) x6 + x5

x6 + x4 + x3

x5 + x4 + x3

x5 + x3 + x2

x4 + x2

x4 + x2 + x
x

= q(x) quotient

= r(x) remainder

divisor
dividend

+ x+ x2x3

Note: Degree of r(x) is less than
degree of divisor

Polynomial Coding
Code has binary generating polynomial of degree n–k

k information bits define polynomial of degree k – 1

Find remainder polynomial of at most degree n – k – 1

g(x)) xn-k i(x)
q(x)

r(x)
xn-ki(x) = q(x)g(x) + r(x)

Define the codeword polynomial of degree n -1

b(x) = xn-ki(x) + r(x)
n bits k bits n-k bits

g(x) = xn-k + gn-k-1xn-k-1 + … + g2x2 + g1x + 1

i(x) = ik-1xk-1 + ik-2xk-2 + … + i2x2 + i1x + i0

Transmitted codeword:
b(x) = x6 + x5 + x
b = (1,1,0,0,0,1,0)

1011) 1100000
1110

1011

1110
1011

1010
1011

010

x3 + x + 1) x6 + x5

x3 + x2 + x

x6 + x4 + x3

x5 + x4 + x3

x5 + x3 + x2

x4 + x2

x4 + x2 + x

x

Polynomial example: k = 4, n–k = 3
Generator polynomial: g(x)= x3 + x + 1
Information: (1,1,0,0) i(x) = x3 + x2

Encoding: x3i(x) = x6 + x5

16

CRC Polynomial
Arithmetic (cont.) divisor / generator polynomial: G (n-k+1 bits)

information: I (k bits, k<n)
CRC remainder: R (≤ n-k bits)
transmitted frame – I+R: B (n bits)

• CRC process can now be described as:

step 1)

step 2)

• note, from step 2) and 1)

and in modulo-2 arithmetic

G(X)
R(X)Q(X)

G(X)
I(X)X k-n

+=
⋅

R(X)I(X)XB(X) k-n +⋅=
transmitted frame

[] R(X)R(X)Q(X)G(X)R(X)I(X)XB(X) k-n ++⋅=+⋅=

Q(X)G(X)B(X) ⋅=

transmitted frames,
i.e. all valid codewords
are multiples of the
generator polynomial

remainder no Q(X), B(X)/G(X)=

Polynomial Coding (Cont.)

17

Error Detection
with CRC
Polynomial
Arithmetic

– receiver can check whether there have been any
transmission errors by dividing the received polynomial
(B’(X)) by G(X)

• if there are no errors, remainder = 0

• if remainder ≠ 0, an error is detected

• note: if error polynomial E(X) is divisible by G(X), error
pattern will be undetectable !!!

• design of polynomial codes involves:

1) identifying error polynomials we want to be able to detect

2) synthesizing a generator polynomial that will not divide
the given error polynomials without remainder

remainder no Q(X),
G(X)

Q(X)G(X) :B(X)(X)B' =
⋅

=

G(X)
E(X)Q(X)

G(X)
E(X)Q(X)G(X) :E(X)B(X)(X)B' +=

+⋅
+=

Polynomial Coding (Cont.)

18

Designing Good Polynomial Codes – G(X)

(1) Codes that Detect Single Errors

• codeword of n bits ⇒ Esingle = (0,0,0,1,0,0, …, 0) ⇒ E(X) = Xi , 0 ≤ i < n

• if G(X) has more than one term, it cannot divide E(X) without remainder

(2) Codes that Detect Double Errors

• codeword n bits ⇒ Edouble = (0,0,0,1,0,1, …, 0) ⇒

⇒ E(X) = Xi + Xj , 0 ≤ i < j ≤ n

⇒ E(X) = Xi (1+ Xi-j) , 0 ≤ i < j ≤ n

• from (1), we have picked G(X) such that it has more than one term and cannot
divide Xi ⇒ E(X) will be divisible by G(X) only if G(X) divides (1 + Xi-j) ⇒ so
we are interested in G(X) that does NOT divide (1 + Xi-j) without remainder

• if G(x) is a primitive polynomial of degree N, it cannot divide Xm+1 for all
m<2N-1 ⇒ need to keep codeword length less than 2N-1

Polynomial Coding

19

Example [CRC-16 polynomial generator / code]

G(X) = X16 + X15 + X2 + 1 = (X + 1)*(X15 + X + 1)

⇒ (X15 + X + 1) is a primitive polynomial of degree N=15

⇒ (X15 + X + 1) cannot divide (Xm+1) for all m < 2N-1 = 32,767

⇒ G(X) will detect all double errors as long as codeword length < 32,767

Example [primitive polynomial]

Primitive polynomial – cannot be factorized!

X2 + 1 = (X+1)(X+1) - is NOT a primitive polynomial

X2 + X + 1 - is a primitive polynomial

Example [CRC-12 polynomial generator / code]

G(X) = X12 + X11 + X3 + X2 + X + 1 = (1 + X)*(X11 + X2 + 1)

Primitive polynomials
can be found by consulting

coding theory books!

Polynomial Coding

20

Designing Good Polynomial Codes – G(X) (cont.)

(3) Codes that Detect Odd Number of Errors

• we want to make sure that CRC performs as good as single parity check

• E(X) has an odd number of terms, hence at X=1 ⇒ E(1) = 1

• G(X) must have a factor (X+1), since there is no polynomial E(X) with an
odd number of terms that has (1+X) as a factor

PROOF: assume such a polynomial, E(X), exists, then

E(X) = (1+X) Q(X) ⇒ E(1) = (1+1)*Q(1) = 0

and this contradicts the fact that E(1) = 1, due to an odd number of terms

• pick G(X)=(X+1)*Pprimitive(X) to be able to detect all single, double, and odd-
number of errors

Polynomial Coding

21

Example [CRC error control]
Let G(x) = (x3+x2+1). Consider the information bits (1,1,0,1,1,0).

(a) Find the codeword corresponding to these information bits if G(x) is used as
the generating polynomial.

(b) Can G(x) detect single errors? Double errors?

G(X) = X3 + X2 + 1, n=4

I(X) = X5 + X4 + X2 + X

X3*I(X) = X8 + X7 + X5 + X4

R(X) = X2 + X + 1 ⇒ R = (1,1,1)

B = (1,1,0,1,1,0,1,1,1)

x3 + x2 + 1) x8 + x7 + x5 + x4

x5 + x + 1

x8 + x7 + x5

x4

x4 + x3 + x

x3 + x
x3 + x2 + 1

x2 + x + 1
• Single errors can be detected since G(X) has more than one term.
• Double errors cannot be detected even though G(X) is primitive, because the

codeword length exceeds 23 – 1 = 7.

Polynomial Coding

22

1. Which error detection method uses ones complement arithmetic?
(a) single parity check
(b) 2-D parity check
(c) CRC
(d) checksum

2. In cyclic redundancy checking, the divisor is _____________________ the CRC.
(a) the same size as
(b) 1 bit less than
(c) 1 bit more than
(d) 2 bits more than

3. In CRC there is no error if the remainder at the receiver is _______________.
(a) equal to the remainder at the sender
(b) zero
(c) nonzero
(d) the quotient at the sender

4. Which error detection method can detect a burst error?
(a) the parity check
(b) 2-D parity check
(c) CRC
(d) (b) and (c)

Polynomial Coding (Exercise)

	 Chapter 3 �Digital Transmission Fundamentals
	Other Error Detection Codes
	Slide Number 3
	Error Detection:�Internet Checksum
	Checksum Calculation
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	CRC (Polynomial Codes)
	Binary Polynomial Arithmetic
	Binary Polynomial Division
	Polynomial Coding
	Polynomial example: k = 4, n–k = 3
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

