
Chapter 5
Peer-to-Peer Protocols

and Data Link Layer
Error and Flow Control

CSE 3213, Winter 2010
Instructor: Foroohar Foroozan

2

Error Control
Approaches

(2) Error Detection + Automatic Retransmission Req. (ARQ)
• not enough redundant info to enable error correction

case (a) receiver detects no errors
an ACK packet is sent back to sender

case (b) receiver detects errors
no ACK sent back to sender
sender retransmits frame after a ‘time-out’

(1) Forward Error Correction (FEC)

Error Control

frame

ACK

frame

3

Challenges of ARQ-based Error Control
• send one frame at the time, wait for ACK

easy to implement, but inefficient in terms of channel usage

• send multiple frames at once

better channel usage, but more complex to implement -
sender must keep (all) sent but unACKed frame(s) in a
buffer, as such frame(s) may have to be retransmitted

frame

ACK

frame

frame

ACK

frame
buffer of
finite size

How many frames should be sent
at any point in time?

How should frames be released from
the sending buffer?

Error Control (Cont.)

4

Flow Control
– set of procedures used to restrict the amount of data that

sender can send while waiting for acknowledgment

• two main strategies
(1) Stop-and-Wait: sender waits until it receives ACK

before sending next frame
(2) Sliding Window: sender can send W frames before

waiting for ACKs

Error Detection + ARQ (error detection with retransmissions)
must be combined with methods that intelligently limit the number of

‘outstanding’ (unACKed) frames.

Fewer unACKed frames ⇒ fewer packets buffered at sender and receiver.

Flow and Error Control

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

ARQ Protocols and Reliable
Data Transfer

Purpose: to ensure a sequence of information
packets is delivered in order and without errors or
duplications despite transmission errors & losses
We will look at:

Stop-and-Wait ARQ
Go-Back N ARQ
Selective Repeat ARQ

Basic elements of ARQ:
Error-detecting code with high error coverage
ACKs (positive acknowledgments
NAKs (negative acknowlegments)
Timeout mechanism

Automatic Repeat Request (ARQ)

CRC
Information

packet

Header

Information frame Control frame: ACKs

CRC
Header

Packet Error-free
packetInformation frame

Control frame

Transmitter
(Process A)

Receiver
(Process B)

Stop-and-Wait ARQ

Timer set after
each frame

transmission

• sender sends an information frame to receiver
• sender, then, stops and waits for an ACK
• if no ACK arrives within time-out, sender resends the frame, and again stops

and waits time-out period > roundtrip time

8

Lost Acknowledgment
• frame is received correctly, but ACK undergoes

errors / loss
after time-out period, sender resends frame
receiver receives the same frame twice

• frames must be numbered so that receiver can
recognize and discard duplicate frames

sequence number are included in packet header

ACK

How will receiver know
that this is NOT
a new packet?!

ACK

ACK

retransmitted
frame

ACK

0

ACK

ACK

Receiver has already
received frame 2 –

it resends an ACK and
discards the duplicate.

1

2

2

without packet numbering with packet numbering

frame 0

frame 1

frame 2

frame 2

frame

frame

frame

frame

• abnormalities:
(1) lost acknowledgment
(2) delayed acknowledgment

Stop-and-Wait ARQ (Cont.)

9

ACK
receiver sees this as
ACK for 2nd frame-0

and sends frame-1

Delayed Acknowledgment
(Premature Timeout)

• ACKs can be delayed due to problems with
links or network congestion

time-out expires early, sender resends frame

when delayed ACK arrives, sender assumes
that given ACK corresponds to last frame sent

• ACKs must be numbered to prevent gaps in
delivered packet sequence

0

0

1receiver sees this as
ACK for frame-1

and sends frame-2

ACK

2

frame-1 not
delivered !!!

ACK 1

0

0

1 ACK 1

cannot send
frame-2

0

0

How large should the packet / ACK sequence be? Only 1-bit long !!!
without ACK numbering with ACK numbering

frame 0

frame 0

frame 0

frame 0

Stop-and-Wait ARQ (Cont.)

10

Stop-and-Wait ARQ (Cont.)

frame
tf time

A

B

tprop tacktproc tprop

tproc

t0 = total time to transmit 1 frame

Stop-and-Wait Model

R
n

R
n

tt

ttttt

af
procprop

ackfprocprop

+++=

+++=

22

220 bits/info frame

channel transmission rate

bits/ACK frame

S&W Efficiency on Error-free
channel

.)(2
1

1
0

0

f

procprop

f

a

f

oof

eff

n
Rtt

n
n

n
n

R
t

nn

R
R

+
++

−
=

−

==η

bits for header & CRC

,
bitsn informatio edeliver th torequired timetotal

ndestinatio todelivered bitsn informatio ofnumber

0

0

t
nn

R of
eff

−
==

Effect of
frame overhead

Effect of
ACK frame

Effect of
Delay-Bandwidth Product

Effective transmission rate:

Transmission efficiency:

13

Bandwidth-delay product = 2*(tprop + tproc)*R =
= capacity of the transmission pipe from the sender to the receiver and back.

Stop-and-Wait ARQ (Cont.)

14

frame size in comparison
to bandwidth-delay product

max number of bits in transit –
‘the pipe is full’

tprop + tproc > tframe tprop + tproc < tframe

Stop-and-Wait ARQ becomes inadequate when data is fragmented into
small frames, such that nf / R = tframe is small relative to tprop .

Stop-and-Wait ARQ (Cont.)

15

Example [impact of delay-bandwidth product]

nf = 1250 bytes = 10000 bits
nACK = nheader = 25 bytes = 200 bits

Efficiency
200 km

(tprop = 1 ms)
2000 km

(tprop = 10 ms)
20000 km

(tprop = 100 ms)
200000 km

(tprop = 1 sec)

1 Mbps
103

88%
104

49%
105

9%
106

1%

1 Gbps
106

1%
107

0.1%
108

0.01%
109

0.001%

Stop-and-Wait does NOT work well for very high speeds or long propagation delays.

0.02
n

n
n

n

f

header

f

ACK ==⇒

f

procprop

f

procprop

f

ACK

f

header

eff
SW

n
)Rt(t2

1.02

0.98

n
)Rt(t2

n
n1

n
n1

R
R

+⋅
+

=
+⋅

++

−
==η

Stop-and-Wait ARQ (Cont.)

16

• Pf = probability that transmitted frame has errors and
need to be retransmitted

(1-Pf) – probability of successful transmission

– average # of (re)transmission until first correct arrival

total delay per frame:

Stop-and-Wait
Efficiency in
Channel with Errors

fP1-
1

f
00 P1-

1tretrans.) of #(averaget ⋅=⋅

f

procprop

f

ACK

f

header

f
f

0

headerf

eff_error
SW_error

n
)Rt2(t

n
n1

n
n1

P(1-
R
P(1-

t
nn

R
R

+
++

−
⋅=

−

==))η

0fSW_error P(1- ηη ⋅=)

Pf increases ⇒ ηSW decreases

(∗)

and including

Stop-and-Wait ARQ (Cont.)

17
0

ff

f
00 t

P1-
1

P1-
Pout-timet]E[out-timet error in transmiss of# ≈⋅+=⋅+

successful
transmission

Probability that i transmission are needed to deliver frame successfully
(i-1 transmission in error and the ith transmission is error free):

P[# of trans. in error = i-1] = (1-Pf) Pf
i-1

Total average
delay per frame:

f

f

2
f

ff
1n

1n
fff

1n

n
ff

1i

1i
ff

1i

1i
ff

1i
error in trans

P1
P

)P(1
1P)P(1PnP)P(1

Pn)P(1P1)-(i)P(1

)PP(11)-(i1]-iP[n1)-(ierror] in onstransmissi of E[#

−
=

=
−

⋅⋅−=⋅⋅⋅−=

=⋅⋅−=⋅⋅−=

=−⋅==⋅=

∑

∑∑

∑∑

∞

=

−

∞

=

∞

=

−

∞

=

−
∞

=

time-out time-out time-out t0

average # of transmissions in error
before a successful transmission

Stop-and-Wait ARQ (Cont.)

18

Piggybacking • Stop-and-Wait discussed so far was ‘unidirectional’

• in ‘bidirectional’ communications, both parties send and
acknowledge data, i.e. both parties implement flow control

• piggybacking method: outstanding ACKs are placed in the
header of information frames

• piggybacking can save bandwidth since the overhead from
a data frame and an ACK frame (addresses, CRC, etc) can
be combined into just one frame

S(0)

0

R(0)S(1)

0
1

R(1)S(2)

1

S(0)

R(0)

S(1)

R(1)

S(2)

without piggybacking with piggybacking

Stop-and-Wait ARQ (Cont.)

Applications of Stop-and-Wait
ARQ

IBM Binary Synchronous Communications
protocol (Bisync): character-oriented data
link control
Xmodem: modem file transfer protocol
Trivial File Transfer Protocol (RFC 1350):
simple protocol for file transfer over UDP

Go-Back-N ARQ
Improve Stop-and-Wait by not waiting!
Keep channel busy by continuing to send frames
Allow a window of up to Ws outstanding frames
Use m-bit sequence numbering
If ACK for oldest frame arrives before window is
exhausted, we can continue transmitting
If window is exhausted, pull back and retransmit all
outstanding frames
Alternative: Use timeout

21

Go-Back-N ARQ – overcomes inefficiency of Stop-and-Wait ARQ –
sender continues sending enough frames to keep
channel busy while waiting for ACKs

• a window of Ws outstanding frames is allowed
• m-bit sequence numbers are used for both - frames

and ACKs, and Ws = 2m-1

Assume: Ws= 4
1) sender sends frames one by one
2) frame 3 undergoes transmission error – receiver ignores frame 3 and all subsequent frames
3) sender eventually reaches max number of outstanding frames, and takes following action:

go back N=Ws frames and retransmit all frames from 3 onwards

Go-Back-N ARQ

22

Sender Sliding Window • all frames are stored in a buffer, outstanding
frames are enclosed in a window

frames to the left of the window are already ACKed
and can be purged

frames to the right of the window cannot be sent
until the window slides over them

whenever a new ACK arrives, the window slides
to include new unsent frames

once the window gets full (max # of outstanding
frames is reached), entire window gets resent

Receiver Sliding Window

before ACKs for frames 0 and 1 arrive

after ACKs for frames 0 and 1 arrive
and window slides

• the size of receiver window is always 1

receiver is always looking for a specific frame
to arrive in a specific order

any frame arriving out of order is discarded
and needs to be resent

The complexity of the receiver in Go-Back-N is the same as that of Stop-and-Wait!!!
Only the complexity of the transmitter increases.

Go-Back-N ARQ (Cont.)

23

Problems with Go-Back-N
(Go-Back-N with Timeout)

• Go-Back-N works correctly (retransmission of
damaged frames gets triggered) as long as the
sender has an unlimited supply of packets that
need to be transmitted

but, in case when packets arrive sporadically,
there may not be Ws-1 subsequent transmissions
⇒ window will not be exhausted, retransmissions
will not be triggered

this problem can be resolved by modifying
Go-Back-N such that:
1) set a timer for each sent frame
2) resend all outstanding frames either when

the window gets full or when the timer of
first frame expires

Go-Back-N ARQ (Cont.)

24

Example [lost frame in Go-Back-N with time-out]

Note:
• ACKs number always defines the number of the next expected frame !!!
• in Go-Back-N, receiver does not have to acknowledge each frame received –

it can send one cumulative ACK for several frames

Go-Back-N ARQ (Cont.)

25

Sequence Numbers
and Window Size • m bits allotted within a header for sequence numbers

⇒ 2m possible sequence numbers

how big should the sender window be!?

W > 2m cannot be accepted – multiple frames with
same seq. number in the window ⇒ ambiguous ACKs

W = 2m can still cause some ambiguity – see below

W = 2m – 1 acceptable !!!

ACK1

ACK2

ACK3

ACK0

ACK1

ACK1

ACK2

ACK3

ACK3

window size 2m = 4 window size 2m-1 = 3

Go-Back-N ARQ (Cont.)

26

• completely efficient if Ws is large enough to keep channel busy,
and if channel is error free

• in case of error-prone channel, with Pf frame loss probability,
time to deliver a frame is:

- if 1st transmission succeeds – prob. (1-Pf)

- if 1st transmission does NOT succeeds –
prob. Pf

• total average time required to transmit a frame:

• transmission efficiency

Go-Back-N
Efficiency

frames
f

frame tW
P1

1t ⋅⋅
−

+

framet
average # of

frame/window
(re)transmission

until a successful
transmission

frames
f

f
frames

f
framefframefGBN tW

P1
PtW

P1
1tPt)P(1t ⋅⋅

−
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

−
+⋅+⋅−=

)P(1
1)P(W1

n
n1

R
t
nn

f
fs

f

header

GBN

headerf

GBN −
−+

−
=

−

=η (∗∗)

Go-Back-N ARQ (Cont.)

27

0 1 2 3 4 5 6 7 8 9 1011

f

f

P1
Perror] in onstransmissi of E[#
−

=

frameGBN tt =

frameS
f

f
frameGBN tW

P1
Ptt ⋅
−

+=

What is total average time required to transmit a frame, assuming Pf?
successful

transmission

0 1 2 3 4 5 6 7 R R R R R R R R 1110

WS WS

8 9

successful
transmission

tframe

1st attempt successful:

frameSframeGBN tWtt ⋅+=2nd attempt successful:

frameSframeGBN tWerror] in onstransmissi of E[#tt ⋅⋅+=average case:

)P(1
1)P(W1

n
n1

R
t
nn

f
fs

f

header

GBN

headerf

GBN −
−+

−
=

−

=η⇒

tframeACK keeps window ‘sliding’

Go-Back-N ARQ (Cont.)

28

Example [Stop-and-Wait vs. Go-Back-N]

nf = 1250 bytes = 10000 bits
nACK = nheader = 25 bytes = 200 bits

Compare S&W with GBN efficiency for random bit errors with pb = 0, 10-6, 10-5, 10-4 and
bandwidth-delay product R*2*(tprop+tproc) = 1 Mbps * 100 ms = 100000 bits = 10 frames →
use Ws = 11.

Efficiency pb=0 pb=10-6 pb=10-5 pb=10-4

S&W 8.9% 8.8% 8.0% 3.3%
GBN 98% 88.2% 45.4% 4.9%

• Go-Back-N provides significant improvement over Stop-and-Wait for large delay-
bandwidth product

• Go-Back-N becomes inefficient as error rate increases

Go-Back-N ARQ (Cont.)

Applications of Go-Back-N ARQ

HDLC (High-Level Data Link Control): bit-
oriented data link control
V.42 modem: error control over telephone
modem links

Selective Repeat ARQ
Go-Back-N ARQ inefficient because multiple frames
are resent when errors or losses occur
Selective Repeat retransmits only an individual frame

Timeout causes individual corresponding frame to be resent
NAK causes retransmission of oldest un-acked frame

Receiver maintains a receive window of sequence
numbers that can be accepted

Error-free, but out-of-sequence frames with sequence
numbers within the receive window are buffered
Arrival of frame with Rnext causes window to slide forward by
1 or more

31

Selective Repeat ARQ • Go-Back-N is NOT suitable for ‘noisy links’ – in
case of a lost/damaged frame a whole window
of frames need to be resent

excessive retransmissions use up the bandwidth
and slow down transmission

• Selective Repeat ARQ overcomes the limitations
of Go-Back-N by adding 2 new features

(1) receiver window > 1 frame, so that out-of-order
but error-free frames can be accepted

(2) retransmission mechanism is modified – only
individual frames are retransmitted

• Selective Repeat ARQ is used in TCP !!!

sender window of size WS receiver window of size WR

Selective Repeat ARQ

32

Receiver:
• window advances whenever next

in-order frame arrives
• out-of-order frames are accepted only

if their sequence numbers satisfy

Rnext < Rframe < Rnext + Ws

• a negative ACK (NAK) with sequence
number Rnext is sent whenever an
out-of-sequence frame is observed

Sender:
• window advances whenever an ACK

arrives
• if a timer expires, the corresponding

frame is resent, and the timer is reset

• whenever a NAK arrives, Rnext frame
is resent

Selective Repeat ARQ Operation

Rnext

Rnext + WS -1

Selective Repeat ARQ

33

Window Sizes – WS and WR • m bits allotted within a header for sequence
numbers ⇒ 2m possible sequence numbers

how big should the windows be!?

WS and WR = 2m-1 cannot be accepted due
to possible ambiguity as shown below

W = 2m/2 = 2m-1 acceptable !!!

ACK1

ACK2

ACK3

ACK1

ACK2

window size 2m-1 = 3 window size 2m-1 = 2

Selective Repeat ARQ

34

Selective Repeat
Efficiency

• completely efficient if Ws is large enough to keep channel
busy, and if channel is error free

of course, sequence number space must be 2X sequence
sequence number space of Go-Back-N

• in case of error-prone channel, total average time required
to transmit a frame:

• transmission efficiency

)P(1R
n

P1
tt

f

f

f

frame
SR −⋅

=
−

=

)P(1
n

n1
R
t
nn

R
Rη f

f

headerSR

headerf

eff
SR −⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

−

== (∗∗∗)

Selective Repeat ARQ

35

0 1 2 3 4 5 6 7 8 9 1011

f

f

P1
P
−

frameSR tt =

R
n

P1
1t

P1
Ptt f

f
frame

f

f
frameSR ⋅

−
=⋅

−
+=

What is total average time required to transmit a frame, assuming Pf?
successful

transmission

0 1 2 3 4 5 6R 8 9 1011127

on NAK or time-out

successful
transmission

tframe

1st attempt successful:

frameframeSR ttt +=2nd attempt successful:

frameframeSR terror] in onstransmissi of E[#tt ⋅+=average case:

)P(1
n

n1
R
t
nn

f
f

headerSR

headerf

SR −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−

=η⇒

NAK 0

Selective Repeat ARQ

36

Performance
Comparison

• assume nACK and nheader are negligible relative to nf, and

• efficiencies of three ARQ techniques are

• for 0 < Pf < 1, Selective Repeat provides best performance

• for Pf → 0 Go-Back-N as good as Selective Repeat

size of the “pipe” in
multiples of frames

()fSW P1-
L1

1
⋅

+
=η

)P(1
LP1
1

f
f

GBN −
+

=η

)P(1 fSR −=η

ηSW < ηGBN < ηSR

1−==
+

s
f

procprop WL
n

)Rt2(t WS is for 1 less than the
number of frames currently in transit

Stop-&-Wait vs. Go-Back-N vs. Selective Repeat

37

ARQ Efficiency Comparison

0

0.5

1

1.5

-9 -8 -7 -6 -5 -4 -3 -2 -1

- LOG(p)

Ef
fic

ie
nc

y

Selective
Repeat

Go Back N 10

Stop and Wait
100

Go Back N 100

Stop and Wait
10

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

p

Delay-Bandwidth product = 10, 100

	 Chapter 5 �Peer-to-Peer Protocols and Data Link Layer
	Slide Number 2
	Slide Number 3
	Slide Number 4
	 Chapter 5 �Peer-to-Peer Protocols and Data Link Layer
	Automatic Repeat Request (ARQ)
	Stop-and-Wait ARQ
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Stop-and-Wait Model
	S&W Efficiency on Error-free channel
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Applications of Stop-and-Wait ARQ
	Go-Back-N ARQ
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Applications of Go-Back-N ARQ
	Selective Repeat ARQ
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

