
Chapter 6 Medium Access Control Protocols and Local Area Networks

Part I: Medium Access Control

Part II: Local Area Networks

CSE 3213, Winter 2010

Instructor: Foroohar Foroozan

Chapter Overview

Broadcast Networks

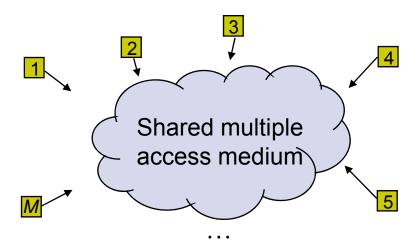
- All information sent to all users
- No routing
- Shared media
- Radio
 - Cellular telephony
 - Wireless LANs
- Copper & Optical
 - Ethernet LANs
 - Cable Modem Access

Medium Access Control

- To coordinate access to shared medium
- Data link layer since direct transfer of frames

Local Area Networks

- High-speed, low-cost communications between co-located computers
- Typically based on broadcast networks
- Simple & cheap
- Limited number of users


Part I: Medium Access Control
Multiple Access Communications
Random Access
Scheduling
Channelization

Multiple Access Communications

- Shared media basis for broadcast networks
 - Inexpensive: radio over air; copper or coaxial cable
 - M users communicate by broadcasting into medium
- Key issue: How to share the medium?

Approaches to Media Sharing

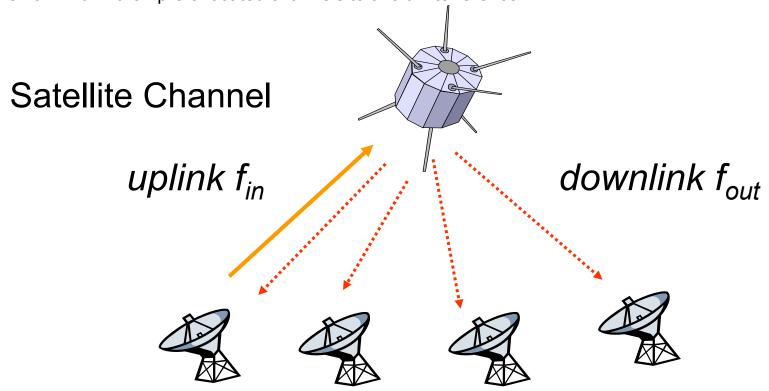
Medium sharing techniques

Static channelization

Dynamic medium access control

- Partition medium
- Dedicated allocation to users
- Satellite transmission
- Cellular Telephone

Scheduling


Random access

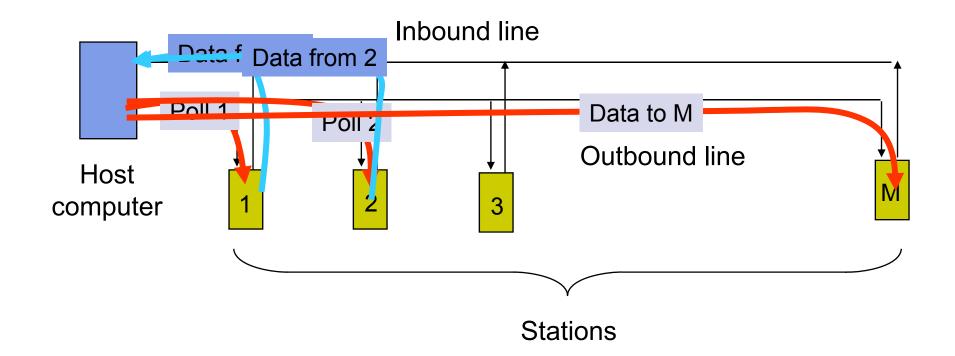
- Polling: take turns
- Request for slot in transmission schedule
- Token ring
- Wireless LANs

- Loose coordination
- Send, wait, retry if necessary
- Aloha
- Ethernet

Channelization: Satellite

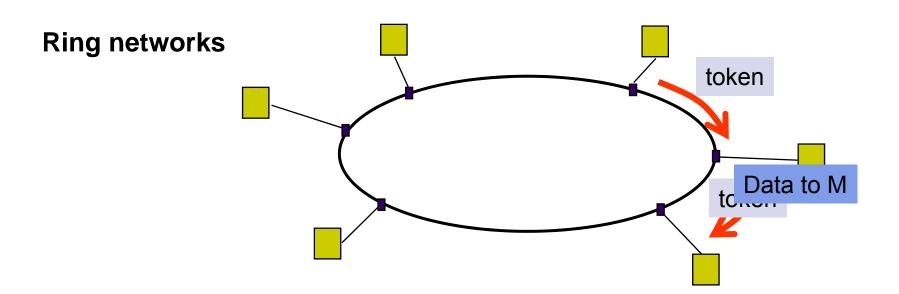
- two frequency bands: one for uplink and one for downlink
- each station is allocated a channel in the uplink and in the downlink frequency band
- different approaches can be employed to create uplink/downlink channels (FDMA, TDMA, CDMA)
- although each station can theoretically transmit to and listen to any channel, stations remain within their pre-allocated channels to avoid interference

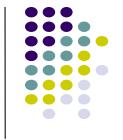
Channelization: Cellular

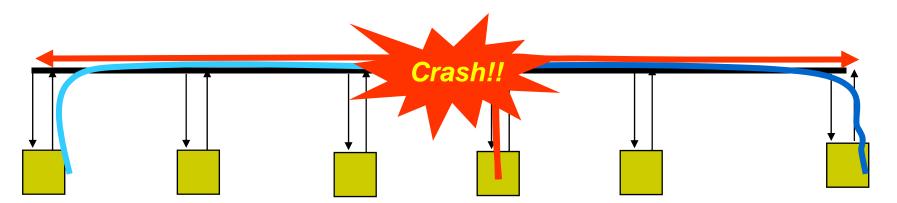


uplink f_1 ; downlink f_2

uplink f_3 ; downlink f_4


Scheduling: Polling


Scheduling: Token-Passing

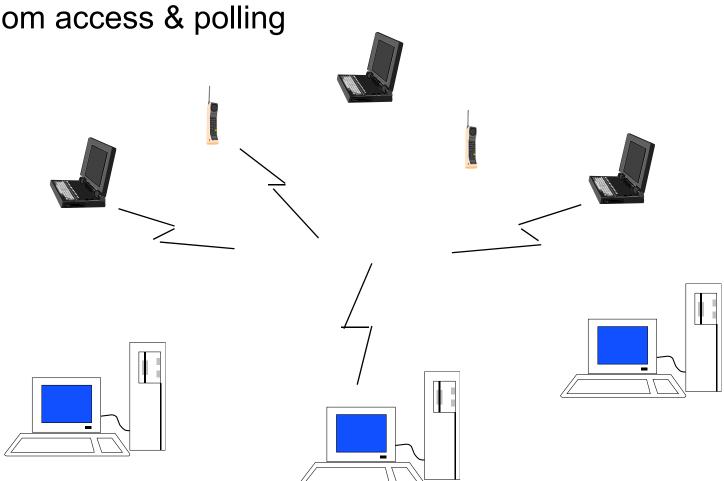


Station that holds token transmits into ring

Random Access

Multitapped Bus

Transmit when ready


Transmissions can occur; need retransmission strategy

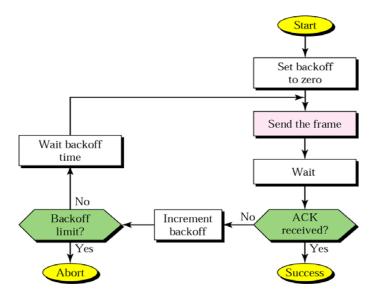
Wireless LAN

AdHoc: station-to-station

Infrastructure: stations to base station

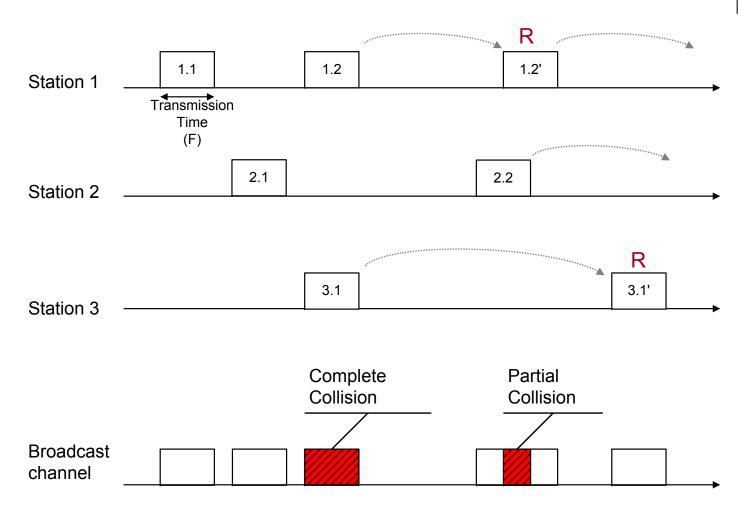
Random access & polling

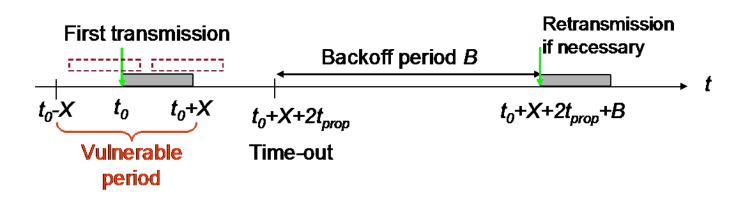
Chapter 6


Medium Access Control Protocols and Local Area Networks

Random Access

ALOHA

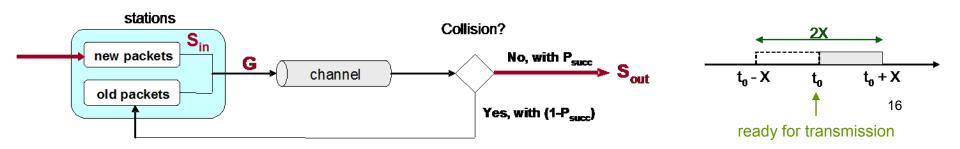

- Simplest solution: just do it
 - A station transmits whenever it has data to transmit
 - If more than one frames are transmitted, they interfere with each other (collide) and are lost
 - If ACK not received within timeout, then a station picks random backoff time (to avoid repeated collision)
 - Station retransmits frame after backoff time

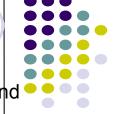

Example [Aloha throughput]

Vulnerable Period

- assume frames of constant length (L) and transmission time (X=L/R)
- consider a frame with starting transmission time t_o the frame will be successfully transmitted if no other frame collides with it
 - any transmission that <u>begins</u> in interval [t₀, t₀+X], or in the prior X seconds leads to collision

vulnerable period =
$$[t_0 - X, t_0 + X]$$


What is the probability of no other transmission, i.e. no collision, in the vulnerable period?!


Throughput • definitions and assumptions:

- S (S_{out}) throughput average # of successful <u>frame transmissions</u> <u>per X sec</u> (if network operates under '<u>stable conditions</u>' S_{out} = S_{in} , where S_{in} represents arrival rate of new frames to the system)
- G load average # <u>transmission attempts! per X sec</u>
- P_{succ} probability of a successful frame transmission

$$\boldsymbol{S} = \boldsymbol{P}_{\text{succ}} \cdot \boldsymbol{G}$$

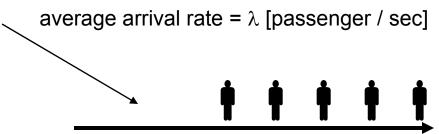
- How to find P_{succ}? suppose a frame is <u>ready for transmission</u> at time t₀ – frame will be transmitted successfully if no other frame attempts transmission <u>X sec before and after t₀</u>
- random backoff spreads retransmissions so that <u>frame transmission</u> (<u>arrivals</u>) are equally likely at any instant in time – Poisson process !!!

 if general, if frame arrivals are <u>equally likely</u> at any instant in time, and arrivals occur at an average rate of λ [arrivals per sec]

Poisson process
$$P[k \text{ arrivals in T seconds}] = \frac{(\lambda T)^k}{k!} e^{-\lambda T}$$

• in our case, λ=G/X [arrivals per second] and T=2X, hence

P[k transmissions in 2X seconds] =
$$\frac{(2G)^k}{k!}e^{-2G}$$


• accordingly, the probability of successful transmission (no collision) is:

$$P_{\text{succ}} = P[0 \text{ transmissions in 2X seconds}] = e^{-2G}$$

$$S = G \cdot P_{\text{succ}} = G \cdot e^{-2G}$$

Arrival: passengers arrive randomly and independently – a **Poisson process**.

Passenger arrivals are equally likely at any instant in time.

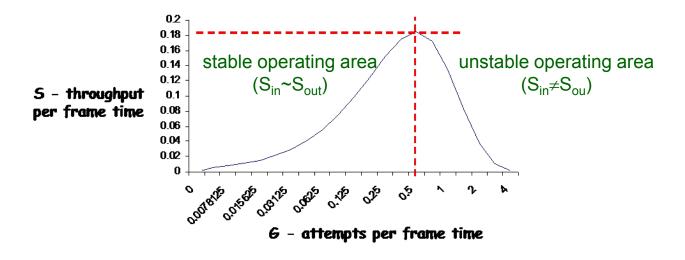
average # of arrived passengers in T [sec]:

average # of passengers in T [sec] = λT

probability of having exactly k passengers in line after T [sec]:

P[k arrivals in T seconds] =
$$\frac{(\lambda T)^k}{k!}e^{-\lambda T}$$

Departure: What is the probability that exactly 1 passenger arrives to the station, <u>off the buss</u>, in T sec?


 λ [passenger / sec]

Throughput of ALOHA

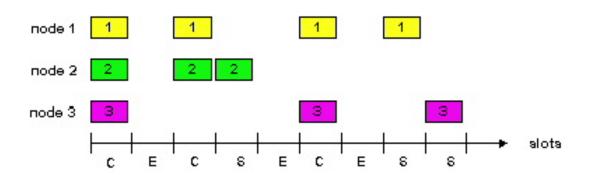
S vs. G in Pure ALOHA

- NOTE: our analysis assumed that <u>many nodes</u> share a common channel and have comparable transmission rates (if only one node uses the medium, S=1)
- initially, as G increases S increases until it reaches S_{max} after that point the network enters 'unstable operating conditions' in which collisions become more likely and the number of backlogged stations increases (consequently, $S_{in} > S_{out}$)
- max throughput of ALOHA (S_{max} = 0.184) occurs at G=0.5, which corresponds to a total arrival rate of 'one frame per vulnerable period'
- <u>S_{max} = 0.184</u> ⇒ max ALOHA throughput = 18% of channel capacity

18% of channel utilization, with Aloha, is not encouraging.
But, with everyone transmitting at will we could hardly expected a 100% success rate.

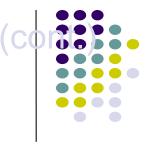
Example [Aloha]

- a) What is the vulnerable period (in milliseconds) of a pure ALOHA broadcast system with R=50-kbps wireless channel, assuming 1000-byte frames.
- b) What is the maximum throughput S of such a channel (system), in kbps?

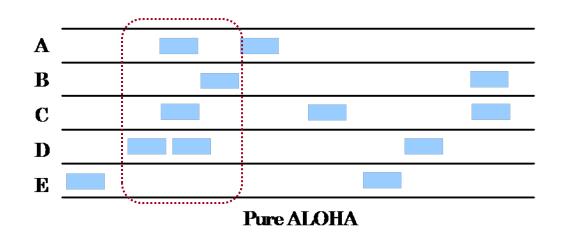

a) (frame transmission time =) X = 1000 bytes / 50 kbps = 8000 bits / 50 kbps ⇒ X = 160 milliseconds

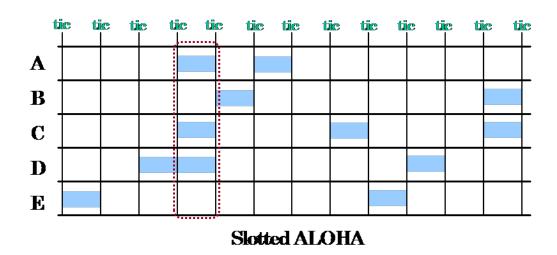
vulnerable period = 2*X = 320 milliseconds

b) From theory, max throughput = 0.18 * R = 0.18 * 50 kbps = 9.179 kbps


Slotted ALOHA

- "improved ALOHA", with reduced prob. of collision
 - assumptions:
 - time is divided into slots of size X=L/R (one frame time)
 - nodes start to transmit only at the beginning of a slot
 - nodes are synchronized so that each node knows when the slots begin
 - operation:
 - when node has a fresh frame to send, it waits until next frame slot and transmits
 - 3) if there is a collision, node retransmits the frame after a backoff-time (backoff-time = multiples of time-frames)



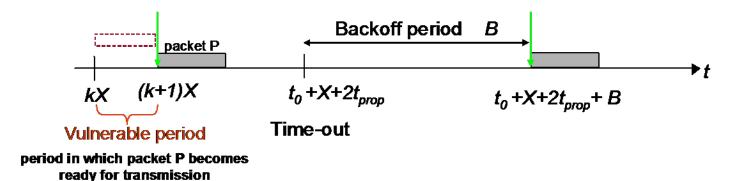


Random Access Techniques: Slotted ALOHA (d

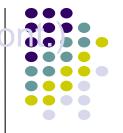
Example [Aloha vs. Slotted Aloha]

Random Access Techniques: Slotted ALOHA

eady for

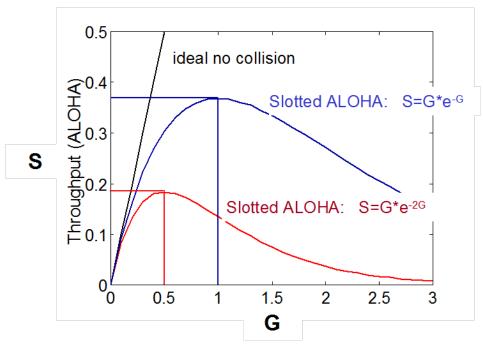

Vulnerable Period of Slotted ALOHA

- consider one arbitrary packet P that becomes ready for transmission at some time t during the time slot [k, k+1]
- packet P will be transmitted successfully if no other packet becomes available for transmission during the same time slot


vulnerable period = $[t_0 - X, t_0]$

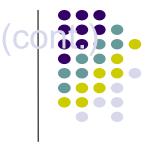
$$P_{\text{succ}} = P[0 \text{ arrivals in } X \text{ seconds}] = e^{-G}$$

$$S = G \cdot P_{\text{succ}} = G \cdot e^{-G}$$



Random Access Techniques: Slotted ALOHA

S vs. G in Slotted ALOHA


- max throughput of Slotted ALOHA (S_{max} = 0.36) occurs at G=1, which corresponds to a total arrival rate of 'one frame per vulnerable period'
- S_{max} = 0.36 ⇒ max Slotted ALOHA throughput = 36% of actual channel capacity

Slotted ALOHA vs. Pure ALOHA •

- slotted ALOHA reduces vulnerability to collision, but also adds a waiting period for transmission
- if contention is low, it will prevent very few collisions, and delay many of the (few) packets that are sent

Random Access Techniques: Slotted ALOHA (d

Example [slotted Aloha]

Measurements of <u>slotted ALOHA</u> channel with an infinite number of users show that 10% of the slots are idle.

- a) What is the channel load, G?
- b) What is the throughput, S?
- c) Is the channel underloaded or overloaded?

a) 10% of slots idle \Rightarrow frame will be successfully transmitted if sent in those 10% of slots \Rightarrow P_{succ} = 0.1

According to theory, $P_{succ} = e^{-G} \Rightarrow G = -ln(P_{succ}) = -ln(0.1) = 2.3$

- b) According to theory, $S = P_{succ} *G = G *e^{-G}$ as G=2.3 and $e^{-G} = 0.1 \implies S = 0.23$
- c) Whenever G>1, the channel is overloaded, so it is overloaded in this case.

Carrier Sensing Multiple Access

(CSMA)

 in ALOHA, node decides to transmit independently of other nodes attached to the broadcast channel

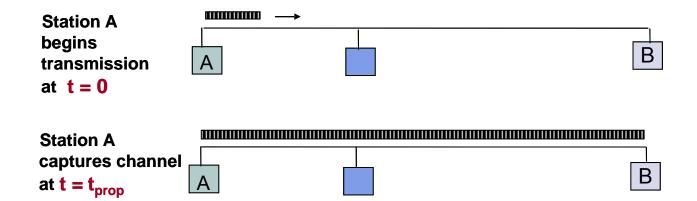
- node does not pay attention whether another node is transmitting (CSMA)
- node does not stop transmitting if another node begins to interfere with its transmission (CSMA/CD)

CSMA

- 'polite version of ALOHA' decreases the probability of collision by implementing the following rule:
 - carrier sensing node <u>listens</u> to the channel before transmitting
 - if sensed channel idle ⇒ transmit entire frame
 - if sensed channel busy ⇒ back-off (defer transmission), and sense the channel again after a random amount of time

Station A begins transmission at t = 0

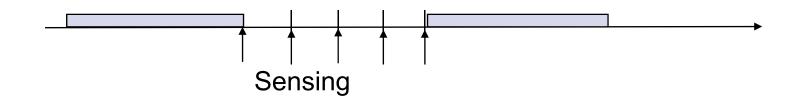
Station A captures channel at $t = t_{prop}$


Carrier Sense Multiple Access (cont.)

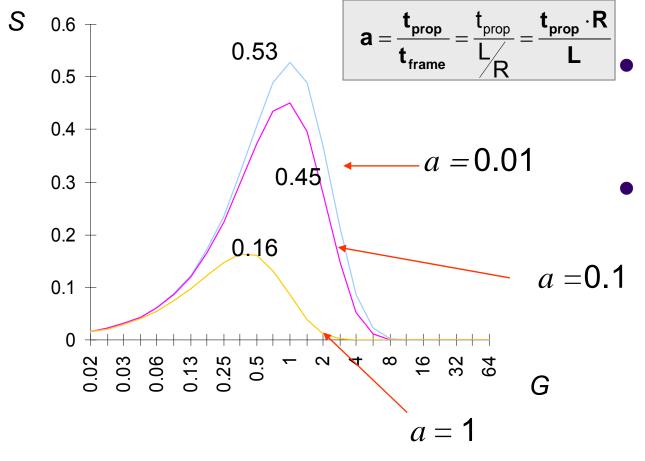
Vulnerable Period

- suppose station A begins transmission at one extreme end of a broadcast medium
 - as signal propagates through the medium, stations become aware of A's transmission
 - at time t=t_{prop} A's transmission reaches the other end of medium – if no other station initiates transmission during that period, station A will successfully capture the channel

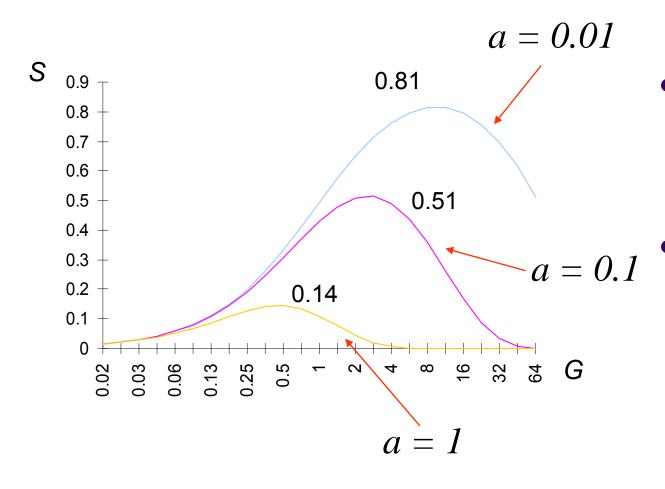
vulnerable period = t_{prop}


 NOTE: if t_{prop} > t_{frame}, CSMA provides no advantage over slotted ALOHA

CSMA Options


- Transmitter behavior when busy channel is sensed
 - 1-persistent CSMA (most greedy)
 - Start transmission as soon as the channel becomes idle
 - Low delay and low efficiency
 - Non-persistent CSMA (least greedy)
 - Wait a backoff period, then sense carrier again
 - High delay and high efficiency
 - p-persistent CSMA (adjustable greedy)
 - Wait till channel becomes idle, transmit with prob. p; or wait one mini-slot time & re-sense with probability 1-p
 - Delay and efficiency can be balanced

1-Persistent CSMA Throughput


• a annotates 'propagation delay normalized to frame transmission time' or so called 'normalized bandwidth-delay product'

- Better than Aloha & slotted Aloha for small *a*
- Worse than Aloha for a > 1

Non-Persistent CSMA Throughput

- Higher maximum throughput than
 1-persistent for small a
- Worse than Aloha for a > 1

CSMA with Collision Detection (CSMA/CD)

- Monitor for collisions & abort transmission
 - Stations with frames to send, first do carrier sensing
 - After beginning transmissions, stations continue listening to the medium to detect collisions
 - If collisions detected, all stations involved stop transmission, reschedule random backoff times, and try again at scheduled times
- In CSMA collisions result in wastage of X seconds spent transmitting an entire frame
- CSMA-CD reduces wastage to time to detect collision and abort transmission

CSMA/CD reaction time

It takes 2 t_{prop} to find out if channel has been captured

CSMA-CD Model

- Assumptions
 - Collisions can be detected and resolved in 2t_{prop}
 - Time slotted in $2t_{prop}$ slots during contention periods
 - Assume n busy stations, and each may transmit with probability p in each contention time slot
 - Once the contention period is over (a station successfully occupies the channel), it takes X seconds for a frame to be transmitted
 - It takes t_{prop} before the next contention period starts.

Contention Resolution

- How long does it take to resolve contention?
- Contention is resolved ("success') if exactly 1 station transmits in a slot:

$$P_{success} = np(1-p)^{n-1}$$

By taking derivative of P_{success} we find max occurs at p=1/n

$$P_{success}^{\max} = n \frac{1}{n} (1 - \frac{1}{n})^{n-1} = (1 - \frac{1}{n})^{n-1} \to \frac{1}{e}$$

• On average, $1/P^{max} = e = 2.718$ time slots to resolve contention

Average Contention Period = $2t_{prop}e$ seconds

CSMA/CD Throughput

 At maximum throughput, systems alternates between contention periods and frame transmission times

$$\rho_{\text{max}} = \frac{X}{X + t_{prop} + 2et_{prop}} = \frac{1}{1 + (2e + 1)a} = \frac{1}{1 + (2e + 1)Rd/vL}$$

where:

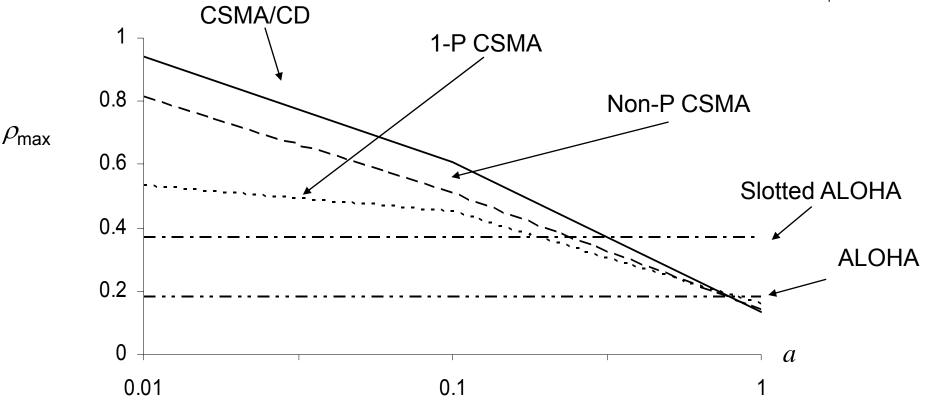
R bits/sec, L bits/frame, X=L/R seconds/frame

$$a = t_{prop}/X$$

 ν meters/sec. speed of light in medium

d meters is diameter of system

$$2e+1 = 6.44$$


CSMA-CD Application: Ethernet

- First Ethernet LAN standard used CSMA-CD
 - 1-persistent Carrier Sensing
 - R = 10 Mbps
 - t_{prop} = 51.2 microseconds
 - 512 bits = 64 byte slot
 - accommodates 2.5 km + 4 repeaters
 - Truncated Binary Exponential Backoff
 - After nth collision, select backoff from {0, 1,..., 2^k 1}, where k=min(n, 10)

Throughput for Random Access MACs

- For small a: CSMA-CD has best throughput
- For larger a: Aloha & slotted Aloha better throughput