

Micriµm, Inc.

C Coding Standard

Application Note
AN-2000

Jean J. Labrosse
Jean.Labrosse@Micrium.com

www.Micrium.com

mailto:Jean.Labrosse@Micrium.com
http://www.micrium.com/

 Micriµm, Inc.
 C Coding Standard

1.00 Introduction

Conventions should be established early in a project. These conventions are necessary to
maintain consistency throughout the project. Adopting conventions increases productivity and
simplify project maintenance.

There are many ways to code programs in C (or any other language). The style you use is just
as good as any other as long as you strive to attain the following goals:

Portability
Consistency
Neatness
Easy maintenance
Easy understanding
Simplicity

Whichever style you use, I would emphasize that it should be adopted consistently throughout all
your projects. I would further insist that a single style be adopted by all team members in a large
project. Adopting a common coding style reduces code maintenance headaches and costs.
Adopting a common style will avoid code rewrites. This application note describes the style I’ve
been adopting for years.

 2

 Micriµm, Inc.
 C Coding Standard

2.00 Basic Principals

The fundamental purpose of these standards is to promote maintainability of the code. This
means that the code must be readable, understandable, testable and portable.

Keep the spirit of the standards.
Where you have a coding decision to make and there is no direct standard, then you should
always keep within the spirit of the standard.

All code should be written to ANSI C standards.
This means that function prototypes should be ANSI and therefore, the type definitions should be
included within the parenthesis.

Keep the code simple.

Be explicit.
Avoid implicit or obscure features of the language. Say what you mean.

Be consistent.
Use the same rules as much as possible.

Avoid complicated statements.
Statements comprising many decision points are hard to follow and especially test.

Do not use GOTO.

Updating old code.
Whenever existing code is modified try to update the document to abide with the conventions
outlined in this document. This will ensure that old code will be upgraded over time.

 3

 Micriµm, Inc.
 C Coding Standard

3.00 Source Files

Line width.
You should NOT limit the width of C source code to 80 characters just because yesterday’s
monitors only allowed you to display 80 characters wide. The width of a line could be based on
how many characters can be printed on an 8.5" by 11" page using a reasonable font size. You
should be able to accommodate up to 132 characters (portrait mode) and have enough room on
the left of the page for holes for insertion in a three ring binder. Allowing 132 characters per line
prevents having to interleave source code with comments. If more characters are needed to
make the code clearer then you should not be limited to 132 characters. In fact, you could have
code that contains initialized structures (placed in Read-Only-Memory, ROM) that are over 300
characters wide. Of course, you can’t see (nor print) all the elements of these tables at once but
at least the different fields line up neatly.

Use of TAB character.
TAB characters (ASCII character 0x09) MUST NOT be used. Indentation MUST be done using
the SPACE character only (ASCII character 0x20).

TAB characters expand differently on different computers and printers. Avoiding them ensures
that the intended spacing is maintained.

Indent level is 4 spaces.
Indentation of code will consist of 4 spaces (ASCII character 0x20). Note that statements under
a case statement is actually indented by 5 spaces (see the section on Construct). Always try to
start on multiples of 4 spaces (column 1, 5, 9, 13, 17 etc.).

Include a file heading.
At the beginning of each file, include a comment block containing the company name, address,
copyright notice, list of programmers, description of the file, etc. See below.

/*
**
* Company Name
* Company Address
* City, State ZIP
* Country
*
* (c) Copyright YYYY, Company Name, City, State
*
* All rights reserved. Company Name’s source code is an unpublished work and the
* use of a copyright notice does not imply otherwise. This source code contains
* confidential, trade secret material of Micrium, Inc. Any attempt or participation
* in deciphering, decoding, reverse engineering or in any way altering the source
* code is strictly prohibited, unless the prior written consent of Company Name
* is obtained.
*
* Filename :
* Programmer(s): Joe Programmer (JP)
* John Doe (JD)
* Created : YYYY/MM/DD
* Description :
**
*/

An implementation file is a file that contains executable statements whereas a header file does
not. Both types of files are laid out in a similar fashion as shown below. A file will contain either

 4

 Micriµm, Inc.
 C Coding Standard

part or all of the these sections. Empty sections can be ommitted but, if a section is included it
must take its place in the following order as shown below.

 Implementation File Layout:
 File heading
 Revision history
 #include
 #define constants
 Macros
 Local data types
 Local variables
 Local tables
 Local function prototypes
 Same order as they are implementated
 Global functions
 Order functions by functionality
 Local functions
 Order functions by functionality

 Header File Layout:
 File heading
 Revision history
 #define constants
 Global macros
 Global data types
 Global variables
 Externals
 Global function prototypes
 Same order as the implementation file
 Separate sections for functions declared in other files.
 #error section
 Section used for ‘flagging’ missing or illegal #define values.

Separate major sections.
Every section should be preceded with a comment block as shown below.

/*
**
* DATA TYPES
**
*/

typedef unsigned char BOOLEAN;

/*
**
* PROTOTYPES
**
*/

BOOLEAN OSIsTaskRdy(void);

 5

 Micriµm, Inc.
 C Coding Standard

Header files SHOULD be guarded from duplicate inclusion by testing
for the definition of a value.
Note that !defined(X) is preferable to #ifndef X.

#if !defined(module_H)
#define module_H

 Body of the header file.

#endif /* End of module_H */

Use #error to flag missing #define constants or macros and, to
check for invalid values.
The standard C preprocessor directive #error should be used to notify the programmer when
#define constants or macros are not present and to indicate that a #define value is out of
range. These statements are normally found in a module’s .H file. The #error directive will
display the message within the double quotes when the condition is not met.

#ifndef OS_MAX_TASKS
#error "OS_CFG.H, Missing OS_MAX_TASKS: Max. number of tasks in your application"
#else
 #if OS_MAX_TASKS < 2
 #error "OS_CFG.H, OS_MAX_TASKS must be >= 2"
 #endif
 #if OS_MAX_TASKS > 63
 #error "OS_CFG.H, OS_MAX_TASKS must be <= 63"
 #endif
#endif

 6

 Micriµm, Inc.
 C Coding Standard

4.00 Commenting

Only use C style comments (i.e. /* and */) and not the C++ style
comments (i.e. //).

Make every comment count.

Keep code and comments visually separate.
Minimize comments embedded among statements. NEVER start comments immediately above
the code as shown below. This makes the code difficult to follow because the comments are
distracting the visual scanning of the code.

void ClkUpdateTime (void)
{ /* DO NOT comment like this! */
 /* Update the seconds */
 if (ClkSec >= CLK_MAX_SEC) {
 ClkSec = 0;
 /* Update the minutes */
 if (ClkMin >= CLK_MAX_MIN) {
 ClkMin = 0;
 /* Update the hours */
 if (ClkHour >= CLK_MAX_HOURS) {
 ClkHour = 0;
 } else {
 ClkHour++;
 }
 } else {
 ClkMin++;
 }
 } else {
 ClkSec++;
 }
}

Don't use multi-line comments with a single comment terminator.
NEVER do the following:

/* This type of comment can lead to confusion especially when describing a function like
 ClkUpdateTime (). The function looks like actual code! */

Use comment blocks to separate sections of code.
A comment block is shown below. Note that the comment block heading is centered and is
written using UPPER CASE characters.

/*
**
* VARIABLES
**
*/

 7

 Micriµm, Inc.
 C Coding Standard

Do not use ‘Emotions’ in comments.
For example, do NOT use comments such as “Let’s make this one big happy structure!”.

Use structured sentences as much as possible.

You can use UPPER CASE words to emphasize the meaning.

It’s also appropriate to use acronyms, abbreviations and mnemonics as long as everybody
understand the meaning of those.

Use trailing comments as much as possible.
As much as possible, always start the trailing comment on the same column. If the code goes
beyond the selected column, place the comment on the line just above while still starting at the
same column. As much as possible, line up the terminating comment charaters. Using trailing
comments allows the code to be visually separate from the code.

void ClkUpdateTime (void)
{
 if (ClkSec >= CLK_MAX_SEC) { /* Update the seconds */
 ClkSec = 0;
 if (ClkMin >= CLK_MAX_MIN) { /* Update the minutes */
 ClkMin = 0;
 if (ClkHour >= CLK_MAX_HOURS) { /* Update the hours */
 ClkHour = 0;
 } else {
 ClkHour++;
 }
 } else {
 ClkMin++;
 }
 } else {
 ClkSec++;
 }
}

Use #if 0 and #endif to comment out blocks of code.
Comments should never be nested. Instead, use #if 0 and #endif to ‘comment out’ large
portions of code.

#if 0 /* Indicate the reason the code is commented out */
#define DISP_TBL_SIZE 5 /* Size of display buffer table */
#define DISP_MAX_X 80 /* Max. number of characters in X axis */
#define DISP_MAX_Y 25 /* Max. number of characters in Y axis */
#define DIS

#endif
P_MASK 0x5F

Use special comments to indicate the presense of known bugs, past and
future implementations.
For example, you can use the following comments. You can then easily search through your
code to find these instances.

/*

 ???? Bug or known technical issue */

/*

 $$$$ Future function that needs to be implemented */

/* @@@@ Old code to leave as-is because … */

 8

 Micriµm, Inc.
 C Coding Standard

5.00 Naming Convention

General conventions:
 #define constants:
 #define macros:
 typedefs:
 enum tags:
 All upper case characters
 Words separated by an underscore (i.e. ‘_’)
 Examples: DISP_BUF_SIZE, MIN(), MAX(), etc.
 Local variables (i.e. function scope):
 All lower case
 Words separated by an underscore (i.e. ‘_’)
 Use standard names (e.g. i, j, k for loop counters, p for pointers etc.)
 File scope variables:
 Prefixed with the module name followed by an underscore (i.e. ‘_’).
 Names separating words start with an initial capital.
 Declared static.
 Examples: Disp_Buf[], Comm_Ch, etc.
 Global variables:
 Prefixed with the module name.
 Names separating words start with an initial capital.
 Examples: DispMapTbl[], CommErrCtr, etc.
 Local functions:
 Prefixed with the module name followed by an underscore (i.e. ‘_’).
 Names separating words start with an initial capital.
 Declared static.
 Example: static void Comm_PutChar()
 Global functions:
 Prefixed with the module name followed by an underscore (i.e. ‘_’).
 Names separating words start with an initial capital.
 Example: void CommInit()

Name separate words with an initial capital (e.g. DispBuf[]).
Old code which contains only lower case characters MUST be separated by the underscore
character (i.e. '_', ASCII character 0x2D).

Use acronyms, abbreviations and mnemonics consistently.
Create a standard acronyms, abbreviation and mnemonics dictionary for all to use and adopt.
Below is an example of such a list although, not complete. A reverse list sorted by the Acronym,
Abbreviation, or Mnemonic field should be generated as well.

 9

 Micriµm, Inc.
 C Coding Standard

Use 'module-object-operation' format with acronyms, abbreviations and
mnemonics.
When creating global constant, variable and function identifiers, specify the name of the module
(or sub-system) first, followed by the object and then the operation as shown below.

OSSemPost()
OSSemPend()
etc.

Acronyms, Abbreviation and Mnemonics (AAM) Dictionary
Description Acronym, Abbreviation, or Mnemonic
Argument Arg
Buffer Buf
Clear Clr
Clock Clk
Compare Cmp
Configuration Cfg
Context Ctx
Delay Dly
Device Dev
Display Disp
Error Err
Function Fnct
Hexadecimal Hex
High Priority Task HPT
I/O System IOS
Initialize Init
Mailbox Mbox
Manager Mgr
Maximum Max
Message Msg
Minimum Min
Operating System OS
Overflow Ovf
Pointer Ptr
Previous Prev
Priority Prio
Read Rd
Ready Rdy
Schedule Sched
Semaphore Sem
Stack Stk
Synchronize Sync
Timer Tmr
Trigger Trig
Write Wr

ALWAYS use the standard acronyms, abbreviations or mnemonics.
Always use the acronym, abbreviation or mnemonic even though you can write the full word. For
example, ALWAYS use Init instead of Initialize!

 10

 Micriµm, Inc.
 C Coding Standard

6.00 Data Types

All data types MUST be declared using upper case characters.
Words are separated by the underscore character (i.e. '_', ASCII character 0x2D).

Use the following portable data types.
All standard C data types MUST be avoided because their size is not portable. Instead, the
following data types (INT?? and FP??) should be declared based on the target processor and
compiler used.

typedef unsigned char BOOLEAN; /* Logical data type (TRUE or FALSE) */
typedef unsigned char CHAR; /* Unsigned 8 bit character */
typedef unsigned char INT08U; /* Unsigned 8 bit value */
typedef signed char INT08S; /* Signed 8 bit value */
typedef unsigned short INT16U; /* Unsigned 16 bit value */
typedef signed short INT16S; /* Signed 16 bit value */
typedef signed short INT32U; /* Unsigned 32 bit value */
typedef signed short INT32S; /* Signed 32 bit value */
typedef signed short INT64U; /* Unsigned 64 bit value (if available)*/
typedef signed short INT64S; /* Signed 64 bit value (if available)*/
typedef float FP32; /* 32 bit, single prec. floating-point */
typedef double FP64; /* 64 bit, double prec. floating-point */

2 spaces

Structures and Unions MUST be typed.
All structures and unions MUST be typed as shown below. Also, the data type MUST be written
using ALL upper case characters. Context will make it obvious that all upper case characters in
front of a variable or function must mean that it's a data type as opposed to a constant or macro.

typedef struct {
 char RxBuf[COMM_RX_SIZE]; /* Storage of characters received */
 char *RxInPtr; /* Pointer to next free loc. in buffer */
 char *RxOutPtr; /* Pointer to next char. to extract */
 INT16U RxCtr; /* Number of characters in Rx buffer */
 char TxBuf[COMM_TX_SIZE]; /* Storage for characters to send */
 char *TxInPtr; /* Pointer to next free loc. in Tx Buf */
 char *TxOutPtr; /* Pointer to next char to send */
 INT16U TxCtr; /* Number of characters left to send */
} COMM_BUF;

Structure alignment.
The data types of each member are indented 4 spaces and the structure member names are also
ligned up with respect to each other. Notice also that the comments are lined up starting at the
same column (possibly starting on the previous line if the structure member ends up going
beyond this column).

Data type scope.
If a data type is only to be used in the implementation file then, it MUST be declared in the
implementation file. If the data type is global, it MUST be placed in the module’s header file.

 11

 Micriµm, Inc.
 C Coding Standard

7.00 Layout

Only have one action per line of code:
Example #1:

DispSegTblIx = 0;
DispDigMsk = 0x80;

I Instead of:

DispSegTblIx = 0; DispDigMsk = 0x80;

Example #2:

ptcb++;
*ptcb = (OS_TCB *)0;

 Instead of:

*++ptcb = (OS_TCB *)0;

Separate code chuncks with blank lines or comments.

Parentheses after function names have no space(s) before them when
calling functions:
 DispInit();

At least one space is needed after each comma to separate function
arguments:
 DispStr(x, y, s);

The unary operators are written with no space between them and their
operand:
 !value
 ~bits
 ++i
 j--
 (INT32U)x
 *ptr
 &x
 sizeof(x)

 12

 Micriµm, Inc.
 C Coding Standard

The binary operators (and the ternary operator) are written with at
least one space between them and their operand:
 c1 = c2;
 x + y
 i += 2;
 n > 0 ? n : -n;
 a < b
 c >= 2

At least one space is needed after each semicolon:
 for (i = 0; i < 10; i++)

The keywords if, else, while, for, switch and return are
followed by one space.

 if (a > b)

 while (x > 0)

 for (i = 0; i < 10; i++)

 } else {

 switch (x)

 return (y);

For assignments, the equal signs (i.e. '='), and numbers should be
vertically aligned to keep layout tidy.
Note also that the least significant portion of integers and floating-point numbers are lined up.

DispSegTblIx = 0;
DispDigMsk = 0x80;
DispScale = 1.25;

Expressions within parentheses are written with no space after the
opening parenthesis and no space before the closing parenthesis:
 x = (a + b) * c;

At least 1 space

 13

 Micriµm, Inc.
 C Coding Standard

8.00 Constructs

The following construct style should be use.
 Indentation is 4 spaces.
 TABs MUST not be used.
 Always use braces, even for null statements.
 Use K&R style for braces.

if (x > 0) {
 y = 10;
 z = 5;
}

if (z < LIM) {

Indent 4 spaces. 1 space after for, if, else,
while, and switch.

 x = y + z;
 z = 10;
} else {
 x = y - z;
 z = -25;
}

for (i = 0; i < MAX_ITER; i++) {

Use K&R style for braces.

1 space after the ';'.

 *p2++ = *p1++;
 Array[i] = 0;
}

while (*p1) {
 *p2++ = *p1++;

Line up '=' sign.

 cnt++;
}

do {
 cnt--;
 *p2++ = *p1++;
} while (cnt > 0);

switch (key) {
 case KEY_BS:
 if (cnt > 0) {

1 space before and after binary operators

 p--;
 cnt--;
 }
 break;

 case KEY_CR:
 *p = NUL;
 break;

 case KEY_LINE_FEED:
 p++;
 break;

 default:
 break;

Indent 5 spaces for cases.

}

 14

 Micriµm, Inc.
 C Coding Standard

9.00 Functions

The format of a function should be as shown below.

/*
**

Comment block to describe the function, always use the same format!

* DESCRIPTION: Function to update all analog inputs.
*
* ARGUMENTS : none
*
* RETURNS : none
*
* NOTES : none
**
*/

static void AI_Update (void)

Always declare the return type.
2 spaces between all qualifiers.

1 space after the function name (but only in function
declarations). This allows you to quickly find the function
declaration instead of the multiple invocations of the function.

{
 INT8U i;
 AIO *paio;

 paio = &AITbl[0]; /* Point at first analog input channel */
 for (i = 0; i < AIO_MAX_AI; i++) { /* Process all analog input channels */
 if (paio->AIOBypassEn == FALSE) { /* See if analog input channel is bypassed */
 paio->AIOPassCtr--; /* Decrement pass counter */
 if (paio->AIOPassCtr == 0) { /* When pass counter reaches 0, read and scale AI */
 paio->AIOPassCtr = paio->AIOPassCnts; /* Reload pass counter */
 paio->AIORaw = AIRd(i); /* Read ADC for this channel */
 paio->AIOScaleIn = ((FP32)paio->AIORaw + paio->AIOOffset)
 * paio->AIOGain;
 if ((void *)paio->AIOScaleFnct != (void *)0) { /* See if scaling function defined */
 (*paio->AIOScaleFnct)(paio); /* Yes, execute function */
 } else {
 paio->AIOScaleOut = paio->AIOScaleIn; /* No, just copy data */
 }
 paio->AIOEU = paio->AIOScaleOut; /* Output of scaling fnct to E.U. */
 }
 }
 paio++; /* Point at next AI channel */
 }
}

Local function contains underscore after module name.

2 space
between
locals
and
code

Comments should start
after the code and end
at column 121

Keep local variable declaration
separate from initial value. In other
words, don't declare and initialize a
variable at the same time.

Long expression
continues on the
next line to stay
within the 120
columns limit. The
multiply operator
lines up with the
equal sign.

Functions with many arguments.
When a function has many arguments, it doesn’t make sense to list them all on the same line.
Instead, declare the function as shown below.

INT8U OSTaskCreateExt (
 void (*task)(void *pd),
 void *pdata,
 OS_STK *ptos,
 INT8U prio,
 INT16U id,
 OS_STK *pbos,
 INT32U stk_size,
 void *pext,
 INT16U opt)
{
 /* Function body */ Line up the first character of each variable.

Indent 4 spaces.

 15

 Micriµm, Inc.
 C Coding Standard

One function per page.
As much as possible, there will be one function declared per page.

More than one very small functions can be declared on a single page. However, they must all
contain the comment block describing the function. The beginning of a function must start
between two and three lines after the end of the previous function.

Functions should be made to fit on one page. There are few instances where it makes sense to
have functions spanning pages and pages. In those rare instances that this is absolutely
necessary, page breaks should occur in logical positions within the function.

More than one small function could share a page by separating the function declarations by at
least 2 spaces. Functions must also start on page boundaries.

Functions that are only used within the file should be declared static to hide them from other
functions in different files.

 16

 Micriµm, Inc.
 C Coding Standard

10.00 Initialized Tables

Line up similar fields in a table.
Very often, it’s useful to create tables that are based on data structures as shown in the example
below. You should note that the initialized fields are neatly organized in columns. This makes
the code quite easy to read. You should also not limit yourself to a column width for such a
situation since it doesn’t make sense to wrap table entries at the beginning of the next line.

typedef struct {
 INT16U ParamNbr;
 void *ParamAddr;
 void *ParamMin;
 void *ParamMax;
 void *ParamDflt;
 void *ParamInc;
} PARAM;

const PARAM RPM_ParamTbl[] = {
/*-- ParamNbr ----- *ParamAddr ------------- *ParamMin ---- *ParamMax ---- *ParamDflt ----- *ParamInc
*/
 { 2981, (void *)&RPM, (void *)&FP0, (void *)&FP0, (void *)&FP0, (void *)&FP0},
 { 2982, (void *)&RPMAvg, (void *)&FP0, (void *)&FP0, (void *)&FP0, (void *)&FP0, },
 { 2984, (void *)&RPMFilterConst, (void *)&FP0, (void *)&FP1, (void *)&FP0Pt1, (void
*)&FP0Pt01},
 { 2985, (void *)&RPMTeeth, (void *)&W4, (void *)&W500, (void *)&W60, (void *)&W1},
};

const UWORD RPM_ParamTblSize = sizeof(RPM_ParamTbl) / sizeof(PARAM);

 17

 Micriµm, Inc.
 C Coding Standard

11.00 Global Variables

Only place global variable declarations in the .H file.
As you know, a global variable needs to be allocated storage space in RAM and must be
referenced by other modules using the C keyword extern. Declarations must thus be placed in
both the .C and the .H files. This duplication of declarations, however, can lead to mistakes.
The technique described below only requires that the declaration be done in one place, the .H
file.

In all .H files that define global variables, you will need to add the following code:
#ifdef xxx_GLOBALS
#define xxx_EXT
#else
#define xxx_EXT extern
#endif

Each variable that needs to be declared global will be prefixed with xxx_EXT in the .H file as
shown below. ‘xxx’ represents a prefix identifying the module name.

xxx_EXT INT16U ParamVars;
xxx_EXT FP32 ParamMaxVal;

The module’s .C file will contain the following declaration:

#define xxx_GLOBALS
#include “INCLUDES.H”

The module for which the global variables belongs to will ‘allocate’ storage for the variables while
all the other modules that simply includes the .H file will see extern statements in front of those
variables.

 18

 Micriµm, Inc.
 C Coding Standard

 19

References

µC/OS-II, The Real-Time Kernel, 2nd Edition
Jean J. Labrosse
R&D Technical Books, 2002
ISBN 1-57820-103-9

Embedded Systems Building Blocks
Jean J. Labrosse
R&D Technical Books, 2000
ISBN 0-87930-604-1

C Style: Standards and Guidelines
David Straker
Prentice Hall, 1992
ISBN 0-13-116898-3

Contacts

Micriµm, Inc.
949 Crestview Circle
Weston, FL 33327
954-217-2036
954-217-2037 (FAX)
e-mail: Jean.Labrosse@Micrium.com
WEB: www.Micrium.com

R&D Books, Inc.
1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950
(785) 841-1631
(785) 841-2624 (FAX)
WEB: http://www.rdbooks.com
e-mail: rdorders@rdbooks.com

mailto:Jean.Labrosse@Micrium.com
http://www.micrium.com/
http://www.rdbooks.com/
mailto:rdorders@rdbooks.com

	C Coding Standard
	References
	Contacts

