COSC 6222 :: Test \#2

Attempt all questions. All questions have equal weight.

Take home exam: Due Monday, April 26, 11:59 PM. Submit by email to: aeckford@yorku.ca Consulting with others is prohibited. Otherwise, any reference material is permitted. You must declare all references you consulted.

1. A channel with multiplicative noise has inputs $X \in\{+1,-1\}$, noise $Z \in\{0,1, a\}$ for some known real number a, and outputs Y, related by

$$
Y=Z X
$$

Let $\operatorname{Pr}(X=+1)=\operatorname{Pr}(X=-1)=1 / 2$, and let $\operatorname{Pr}(Z=0)=\operatorname{Pr}(Z=1)=\operatorname{Pr}(Z=a)=1 / 3$. Find $I(X ; Y)$ as a function of a.
2. Suppose you have a telephone keypad with 10 buttons, corresponding to the numbers 0-9.
a. If pushing a button transmits the associated letter, and the receiver observes the transmission perfectly, what is the capacity of the channel?
b. Suppose the keypad contains errors, so that pressing $k \in\{0,1, \ldots, 9\}$ transmits either k or $(k+1) \bmod 10$. For each key press, the correct transmission occurs with probability ($1-p$), and the erroneous transmission occurs with probability p, where $0<p<1$. For example, if 0 is pressed, 0 is transmitted with probability ($1-p$), and 1 is transmitted with probability p. Find the capacity of the resulting channel.
c. Propose a transmission strategy so that keypresses are always transmitted without error. For what values of p does this achieve the capacity of the channel that you obtained in part b?
3. Let $\mathbf{X}=\left[X_{1}, X_{2}, \ldots, X_{k}\right] \in\{0,1\}^{k}$ represent a vector of channel inputs, and let $\mathbf{Y}=$ $\left[Y_{1}, Y_{2}, \ldots, Y_{k}\right] \in\{0,1\}^{k}$ represent the corresponding vector of channel outputs. Furthermore, $p(\mathbf{Y} \mid \mathbf{X})=\prod_{i=1}^{k} p\left(Y_{i} \mid X_{i}\right)$, where the channel is a binary symmetric channel (BSC) for each i, i.e.,

$$
p\left(Y_{i} \mid X_{i}\right)=\left\{\begin{array}{cc}
1-p_{i}, & Y_{i}=X_{i} \\
p_{i}, & Y_{i} \neq X_{i} .
\end{array}\right.
$$

The values of p_{i} are known in advance, and $p_{i} \neq p_{j}$ in general for $i \neq j$.
a. Show that the capacity-achieving input distribution $p(x)$ is given by $p(x)=\prod_{i=1}^{k} p\left(x_{i}\right)$, where $p\left(x_{i}=1\right)=p\left(x_{i}=0\right)=1 / 2$.
b. Using the input distribution from part a, calculate $I(\mathbf{X} ; \mathbf{Y})$.
4. Let X be a channel input, and let Y be a channel output. Let $f(\cdot)$ represent any function of Y.
a. Show that $I(X ; f(Y)) \leq I(X ; Y)$ for any $f(\cdot)$.
b. Under what circumstances does $I(X ; f(Y))=I(X ; Y)$?

