
Concurrent Red-Black Trees

Franck van Breugel

York University, Toronto

January 13, 2010

Franck van Breugel Concurrent Red-Black Trees

Red-Black Tree

A red-black tree is a binary search tree the nodes of which are
coloured either red or black and

the root is black,
every leaf is black,
if a node is red, then both its children are black,
for every node, every path from that node to a leaf contains
the same number of black nodes.

[Bayer, 1972] and [Guibas and Sedgewick, 1978]

3

1

Franck van Breugel Concurrent Red-Black Trees

Red-Black Tree

Theorem

A red-black tree with n internal nodes has height at most
2 log2(n + 1).

Corollary

The SET operations ADD and CONTAINS can be
implemented in O(log2(n)).

Franck van Breugel Concurrent Red-Black Trees

Java Standard Library

The class java.util.TreeSet
� �

1 class TreeSet<T>

2 {
3 boolean add (T element)
4 boolean con ta ins (T element)
5 . . .
6 }

� �

has been implemented by means of a red-black tree.

This implementation is not synchronized.

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

� �

1 add (3) ;
2 add (1) ;
3 (add (2) | | p r i n t (con ta ins (1)))

� �

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

� �

1 add (3) ;
� �

3

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

� �

1 add (3) ;
2 add (1) ;

� �

3

1

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

� �

1 add(3);
2 add(1);
3 (add(2) | | print(contains(1)))

� �

3

1

2

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

� �

1 add(3);
2 add(1);
3 (add(2) | | print(contains(1)))

� �

3

1

2

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

� �

1 add(3);
2 add(1);
3 (add(2) | | print(contains(1)))

� �

3

1

2

Franck van Breugel Concurrent Red-Black Trees

Concurrent Red-Black Trees

With the arrival of multicore machines, implementations of data
structures such as Set should support concurrency.

In the remainder of this talk, three concurrent implementations
of red-black trees are presented.

Franck van Breugel Concurrent Red-Black Trees

The Monitor Solution

� �

1 RedBlackTree : moni tor
2 begin
3 procedure add (element : in t ,
4 r e s u l t added : boolean)
5 procedure con ta ins (element : in t ,
6 r e s u l t con ta ins : boolean)
7 end

� �

Franck van Breugel Concurrent Red-Black Trees

The Readers-Writers Solution

The processes of the first class, named writers, must have
exclusive access, and the processes of the second class, the
readers, may share the resource with an unlimited number of
other readers.

Franck van Breugel Concurrent Red-Black Trees

The Readers-Writers Solution

The processes of the first class, those that call add, must have
exclusive access, and the processes of the second class, those
that call contains, may share the red-black tree with an
unlimited number of such processes.

Franck van Breugel Concurrent Red-Black Trees

The Readers-Writers Solution

� �

1 con ta ins (element : i n t) : boolean
2 [manipulate shared va r iab les , b lock / unblock]
3 manipulate red−black t ree
4 [manipulate shared va r iab les , unblock]

� �

Franck van Breugel Concurrent Red-Black Trees

My Paper

Carla Schlatter Ellis. Concurrent Search and Insertion in AVL
Trees. IEEE Transactions on Computers, 29(9):811–817,
September 1980.
Carla Schlatter Ellis. The Design and Evaluation of Algorithms
for Parallel Processing. PhD thesis, University of Washington,
Seattle, 1979.

Franck van Breugel Concurrent Red-Black Trees

The Main Idea

Processes lock the nodes of the red-black tree in three different
ways:

ρ-lock: lock to read

α-lock: lock to exclude writers

ξ-lock: exclusive lock

Although a node can be locked by multiple processes, there are
some restrictions.

ρ α

ξ

Franck van Breugel Concurrent Red-Black Trees

Example Revisited

� �

1 add (3) ;
2 add (1) ;

� �

3

1

Franck van Breugel Concurrent Red-Black Trees

Example Revisited

� �

1 add(3);
2 add(1);
3 (add(2) | | print(contains(1)))

� �

3

1

Franck van Breugel Concurrent Red-Black Trees

Example Revisited

� �

1 add(3);
2 add(1);
3 (add(2) | | print(contains(1)))

� �

3

1

Franck van Breugel Concurrent Red-Black Trees

Example Revisited

� �

1 add(3);
2 add(1);
3 (add(2) | | print(contains(1)))

� �

3

1

Franck van Breugel Concurrent Red-Black Trees

Example Revisited

� �

1 add(3);
2 add(1);
3 (add(2) | | print(contains(1)))

� �

3

1

2

Franck van Breugel Concurrent Red-Black Trees

Example Revisited

� �

1 add(3);
2 add(1);
3 (add(2) | | print(contains(1)))

� �

3

1

2

Franck van Breugel Concurrent Red-Black Trees

Example Revisited

� �

1 add(3);
2 add(1);
3 (add(2) | | print(contains(1)))

� �

3

1

2

Franck van Breugel Concurrent Red-Black Trees

Example Revisited

� �

1 add(3);
2 add(1);
3 (add(2) | | print(contains(1)))

� �

3

1

2

Franck van Breugel Concurrent Red-Black Trees

Example Revisited

� �

1 add(3);
2 add(1);
3 (add(2) | | print(contains(1)))

� �

3

1

2

Franck van Breugel Concurrent Red-Black Trees

Example Revisited

� �

1 add(3);
2 add(1);
3 (add(2) | | print(contains(1)))

� �

3

1

2

Franck van Breugel Concurrent Red-Black Trees

Looking Ahead

Plan

implement all three algorithms

compare their performance

Challenges

adjust algorithm for AVL trees to red-black trees

modify red-black tree algorithms of [Cormen, Leiserson,
Rivest and Stein, 2001]

when a process unlocks a node, which of the processes
that are waiting to lock the node is chosen? (not addressed
in the paper, PhD thesis is not available)

Franck van Breugel Concurrent Red-Black Trees

