Model Checking MST Construction Algorithm

Haneen Dabain

Department of Computer Science and Engineering York University

March 31, 2010

1 / 28

- Introduction
 - The Algorithm
 - Algorithm Framework
 - Dead Lock
- 2 The Implementation
 - Communication Channels
 - Parallelism
- Model Checking
 - Testing
 - Desults
- Results
- Summary

- Introduction
 - The Algorithm
 - Algorithm Framework
 - Dead Lock
- 2 The Implementation
 - Communication Channels
 - Parallelism
- Model Checking
 - Testing
 - Results
- 4 Summary

3 / 28

The Algorithm

- V₀: A special node in the graph, e.g., the node with the smallest ID in the graph.
- I(F): A leader of cluster F, e.g. the node with the smallest ID in the cluster.
- g(e): A guardian node assigned to each minimum weight edge e.

- Introduction
 - The Algorithm
 - Algorithm Framework
 - Dead Lock
- The Implementation
 - Communication Channels
 - Parallelism
- Model Checking
 - Testing
 - Results
- 4 Summary

The Model

- Nodes are considered as processes which are wired together using One2OneChannels
- Channels communication is synchronous.

- Introduction
 - The Algorithm
 - Algorithm Framework
 - Dead Lock
- 2 The Implementation
 - Communication Channels
 - Parallelism
- Model Checking
 - Testing
 - Results
- Summary

Dead Lock

- Two processes executing a receive (read) command and waiting the other process to send (write)
- Both processes will be locked
- A single process can either send or receive but not both
- Each node has two processes running in parallel

8 / 28

- Introduction
 - The Algorithm
 - Algorithm Framework
 - Dead Lock
- The Implementation
 - Communication Channels
 - Parallelism
- Model Checking
 - Testing
 - Results
- 4 Summary

Communication Channels

final One2OneChannel[] inputOutputChannels = Channel.createOne2One(totalNumberOfChannel);

- Introduction
 - The Algorithm
 - Algorithm Framework
 - Dead Lock
- The Implementation
 - Communication Channels
 - Parallelism
- Model Checking
 - Testing
 - Results
- 4 Summary

Parallelism


```
Parallel par = new Parallel;
CSProcess[] activeProcesses = new CSProcess[] {
    new Parallel(ActiveSendingProcs),
    new Parallel(ActiveReceivingProcs)}
par = new Parallel(activeProcesses);
par.run ();
par.releaseAllThreads();
```

- Introduction
 - The Algorithm
 - Algorithm Framework
 - Dead Lock
- 2 The Implementation
 - Communication Channels
 - Parallelism
- Model Checking
 - Testing
 - Results
- 4 Summary

Testing - Listeners

- No shared objects were used. Therefore, we do not need to check the implementation for Data Races
- Deadlocks.
- Unhandled Exception.

Testing - Assertion

- MST algorithm solves the problem in $O(\log \log n)$ communication rounds.
- Algorithm woks in phases.
- Clusters have to grow faster by merging clusters.
- $\beta_{k+1} \ge \beta_k(\beta_k + 1)$, where β_k denotes the minimum cluster size in phase k.

assert(beta >= oldBeta * (oldBeta + 1));

- Introduction
 - The Algorithm
 - Algorithm Framework
 - Dead Lock
- 2 The Implementation
 - Communication Channels
 - Parallelism
- Model Checking
 - Testing
 - Results
- Summary

JCSP Library

```
Parallel par = new Parallel(processArray);
par.run ();
at org.jcsp.lang.Barrier.sync(Barrier.java:458)
at org.jcsp.lang.ParThread.run(ParThread.java:129)
error #1: gov.nasa.jpf.jvm.NotDeadlockedProperty "deadlock encountered:
thread index=0.name=main.s..."
elapsed time: 0:00:01
states: new=121, visited=0, backtracked=7, end=8
max memory: 7MB
loaded code: classes=118, methods=1514
                                                      ===== search finished
```

JCSP Library

```
Parallel par = new Parallel(processArray);
par.run ();
par.releaseAllThreads();
```

Our Implementation - Trial 1 (Entire Algorithm)

- 2 nodes
- One edge
- 4 threads

```
Parallel par;
CSProcess[] activeProcesses = new CSProcess[] {
        new Parallel(ActiveSendingProcs),
        new Parallel(ActiveReceivingProcs)}
par = new Parallel(activeProcesses);
par.run ();
par.releaseAllThreads();
```

Our Implementation - Trial 1 (Entire Algorithm)

```
at org.jcsp.lang.Barrier.sync(Barrier.java:458)
at org.jcsp.lang.ParThread.run(ParThread.java:129)
```

```
error #1: gov.nasa.jpf.jvm.NotDeadlockedProperty "deadlock encountered:
thread index=0,name=main,s..."
```

Our Implementation - Trial 1 (Entire Algorithm)

```
CSProcess[] activeProcesses = new CSProcess[] {
         new Parallel(ActiveSendingProcs),
         new Parallel(ActiveReceivingProcs)}
```

CSProcess[] activeProcesses = getNodeProcessesArray(allSendProc,currentRecProc);

```
par = new Parallel(activeProcesses);
par.run ();
par.releaseAllThreads();
```

Our Implementation - Trial 2 (Entire Algorithm)

```
[SEVERE] JPF out of memory
no errors detected
elapsed time: 8:51:06
states: new=38636247, visited=94670414, backtracked=133306104, end=420036
search: maxDepth=778, constraints=0
choice generators: thread=38472906, data=0
heap: gc=158521261, new=14311429, free=239043276
instructions: 737303224
max memory: 888MB
loaded code: classes=143, methods=1973
                                                 ====== search finished
```

Our Implementation - Trial 3 (First Step)

```
no errors detected
```

elapsed time: 0:17:50

states: new=1370626, visited=3782731, backtracked=5153356, end=130

search: maxDepth=260, constraints=0

choice generators: thread=1370499, data=0

heap: gc=5166044, new=1598525, free=573435

instructions: 110903870 max memory: 93MB

loaded code: classes=140, methods=1918

Our Implementation - Trial 4 (Second Step)

```
no errors detected
```

elapsed time: 0:46:12

states: new=1298159, visited=3571225, backtracked=4869383, end=519

search: maxDepth=311, constraints=0

choice generators: thread=1298032, data=0 heap: gc=4887670, new=1528776, free=608617

instructions: 105324508 max memory: 49MB

loaded code: classes=136, methods=1866

Our Implementation - Trial 5 (Third Step)

```
no errors detected
```

elapsed time: 0:49:30

states: new=3990376. visited=8583713. backtracked=12574088. end=14033

search: maxDepth=484, constraints=0

choice generators: thread=3983486, data=0

heap: gc=14013309, new=7736566, free=20215534

instructions: 621762099 max memory: 143MB

loaded code: classes=142, methods=1944

Our Implementation - Trial 6 (Fourth Step)

```
no errors detected
```

elapsed time: 7:56:43

states: new=38076153, visited=82309538, backtracked=120385690, end=528700

search: maxDepth=609, constraints=0

choice generators: thread=37991259, data=0

heap: gc=140860290, new=18254546, free=213635583

instructions: 217063450 max memory: 880MB

loaded code: classes=142, methods=1944

Summary

- Graph of size 2.
- Over than 38 million states, no error detected
- First 5 steps, no error detected
- Could not check the assertion

Questions?