
Some Features of
Java PathFinder

Nastaran Shafiei
nastaran@cse.yorku.ca

York University, Toronto

mailto:nastaran@cse.yorku.ca

Outline

State explosion problem
Partial order reduction (POR)
The POR of Java PathFinder (JPF)
Java Native Interface (JNI)
Model Java Interface (MJI)
Native Peers
Model Classes
Handle native calls in JPF
Examples

State explosion problem

Main challenge in model checking

Caused by extremely large state space
Number of states is growing (at most) exponentially in the
number of components

N components of size k => (at most) kN states

Variable domain influences the state space size
Data structures that can assume many different values
e.g. f = (new Random()).nextFloat(); 224

possible values!!!

How to deal with? Partial order reduction

Partial Order Reduction (POR)

Example
T1: α
T2: β

β

β

α

α

Partial Order Reduction (POR)

Example
T1: α = (x = x -1)
T2: β = (y = y - 2)

β

β

α

α

Partial Order Reduction (POR)

β

α

Example
T1: α = (x = x -1)
T2: β = (y = y - 2)

Analyzing 1 ordering instead of 2!

Partial Order Reduction (POR)

Example
T1: α = (x = x -1)
T2: β = (y = y - 2)
T3: γ = (z = z + 3)

β

γα

α

α

αγ

γ
ββ

βγ

β

Partial Order Reduction (POR)

Example
T1: α = (x = x -1)
T2: β = (y = y - 2)
T3: γ = (z = z + 3)

Analyzing 1 ordering instead of 3!

α

β

γ

Generalization: Analyzing 1 ordering, instead of n!
Reduced system: grows linearly in n
Original system: grows exp. in number of components

Assumption
No synchronizations are involved, e.g. shared variables
The property of interest is independent of intermediate states

Aim of POR: reduce the number of possible ordering to
be analyzed

Partial Order Reduction (POR)

POR of JPF

On-the-fly partial order reduction

Basic idea: combining a sequence of bytecodes in a
thread that do not have any effects outside of the thread

Where POR is applied?
On accessing shared variables, JPF performs some tests to
decide to break the transition

Bytecodes to access a shared variable
getfield, putfield, getstatic, putstatic

POR of JPF

Example
T1: α1 α2

T2: β1 β 2

β1

α2

β2 β1

β1

β2

β2

α1

α1

α1

α2

α2

POR of JPF

Example
T1: α1 α2

T2: β1 β 2

α1 and α2 does not have
any effects outside T1
β 1 and β2 does not have
any effects outside T2

β1

α2

β2 β1

β1

β2

β2

α1

α1

α1

α2

α2

POR of JPF

Example
T1: α1 α2

T2: β1 β 2

α1 and α2 does not have
any effects outside T1
β 1 and β2 does not have
any effects outside T2

β1 β2 α1

α2

α1

α2 β1 β2

POR of JPF

Some POR tests performed while thread T accesses
the field, f, of object o

1.

Does not break the transition, if o is immutable, i.e. is of type
String, Integer, Long, or Class

2.

Does not break the transition, if f is protected by lock

3.

Does not break the transition, if f is defined as final

4.

If the type of f starts with java.*,javax.*,sun.*

...

Configuring POR in jpf.properties

By default POR is in effect
vm.por.field_boundaries.never = java.*,javax.*,sun.*
vm.por.sync_detection = true

To disable POR, set following in jpf.properties file
vm.por.field_boundaries.never =
vm.por.sync_detection = false

The Effect of JPF POR

Java Native Interface (JNI)

Allowing JVM to call or to be called by native applications (such as
C code)
JNI is used to transfer the execution from the Java level to the native
layer

Java
application

JVM JNI native application

Java Native Interface (JNI)

public class Hello
{
public native void sayHello();
public static void main(String[] args)
{

(new Hello()).sayHello();
}

}

JNIEXPORT void JNICALL Java_Hello_sayHello
(JNIEnv *env, jobject obj)
{
printf("Hello world!\n");
return;

}

Model Java Interface (MJI)

In analogy to JNI, MJI is used to transfer the execution from the JPF
level to the host JVM
The classes called native peers, executed by the underlying JVM,
are playing a key role in MJI

target
application

JPF MJI native peers

Native Peers

A specific name pattern is used to map a native peer to the class
executed by JPF
JPF does not model check these classes

Example: When bytecode Invoking StrictMath.sin() is reached, its
corresponding method in the native peer is invoked

package java.lang;

public class StrictMath
{

…
public static native double
sin (double d);
…

}

package gov.nasa.jpf.jvm;

public class JPF_java_lang_StrictMath
{

…
public double sin__D__D (MJIEnv env,
int cref, double d)
{…}
…

}

Model Classes

JPF has special classes called model classes

they are executed by JPF and they are unknown to the
host JVM

Model classes are used as a replacement for Java
classes.

Example: by defining the model class java.lang.StrictMath, JPF
never uses the java.lang.StrictMath class included in the Java
standard library.

How does JPF handle native calls?

1.

Using a native peer

2.

Using a model class

3.

Using both a model class

and a native peer

Example of Unhandled Native Code

package java.lang;

public class StrictMath
{

…
public static native double
sin (double d);
…

}

public class Operation
{

public static void main(String[] args)
{
System.out.println

(StrictMath.sin(10.1));
}

}

Results from running JPF on Operation:
"java.lang.UnsatisfiedLinkError: cannot find native..."

Handle Native Calls

1.Using a native peer
Implement a native peer that implements the native method
including the native call
Example: using the following native peer to handle strictMath.sin()

package gov.nasa.jpf.jvm;

public class JPF_java_lang_StrictMath
{

public double sin__D__D (MJIEnv env,
int cref, double d)
{
return StrictMath.sin(d);

}
}

native peer

Handle Native Calls

package java.lang;

public class StrictMath
{

public static double sin (double d);
{
return -0.625;

}
}

2.Using a model class
Implement a model class that implements the native method
Example: using the following model class to handle strictMath.sin()

model class

Handle Native Calls

3.Using both a model class and a native peer
Implement a model class that defines the method with the native
call as native and create a native peer implementing this method

package java.lang;

public class StrictMath
{

public static native double
sin(double d);

}

package gov.nasa.jpf.jvm;

public class JPF_java_lang_StrictMath
{

public double sin__D__D (MJIEnv env,
int cref, double d)
{
return StrictMath.sin(d);

}
}

model class native peer

Application of Different Methods

When to use native peer?
In cases that the class/object invoking the method is stateless,
i.e. does not have any fields
In cases that the handled native does not change the state of the
class/object invoking the method

When to use model class?
In cases that the class/object invoking the method contains some
state and handled method changes the state of the class/object

When to use both native peer and model class?
In cases that the class/object invoking the method contains some
state, and some of the native calls changes the state and some of
them not

Examples

Race

Example: x++ || x++

Bytecode for x++

getfield

iconst_1

iadd

putfield

Race

Example: x++ || x++

Bytecode for x++

getfield

iconst_1

iadd

putfield

getfield

iconst_1

iadd

putfield

x = 0

T1 T2

Race

Example: x++ || x++

Bytecode for x++

getfield

iconst_1

iadd

putfield

getfield

iconst_1

iadd

putfield

x = 0

T1 T2

Race

Example: x++ || x++

Bytecode for x++

getfield

iconst_1

iadd

putfield

getfield

iconst_1

iadd

putfield

x = 0

T1 T2

Race

Example: x++ || x++

Bytecode for x++

getfield

iconst_1

iadd

putfield

getfield

iconst_1

iadd

putfield

x = 0

T1 T2

Race

Example: x++ || x++

Bytecode for x++

getfield

iconst_1

iadd

putfield

getfield

iconst_1

iadd

putfield

x = 0

T1 T2

Race

Example: x++ || x++

Bytecode for x++

getfield

iconst_1

iadd

putfield

getfield

iconst_1

iadd

putfield

x = 0

T1 T2

Race

Example: x++ || x++

Bytecode for x++

getfield

iconst_1

iadd

putfield

getfield

iconst_1

iadd

putfield

x = 0

T1 T2

Race

Example: x++ || x++

Bytecode for x++

getfield

iconst_1

iadd

putfield

getfield

iconst_1

iadd

putfield

x = 1

T1 T2

Race

Example: x++ || x++

Bytecode for x++

getfield

iconst_1

iadd

putfield

getfield

iconst_1

iadd

putfield

x = 1

T1 T2

ConcurrentStack

Example

getfield

dup

astore

monitorenter

putfield

T1: synchronized (top) T2: top = null

ConcurrentStack

Example

getfield

dup

astore

monitorenter

putfield

T1: synchronized (top) T2: top = nullReading
non-null value

ConcurrentStack

Example

getfield

dup

astore

monitorenter

putfield

T1: synchronized (top) T2: top = null

ConcurrentStack

Example

getfield

dup

astore

monitorenter

putfield

T1: synchronized (top) T2: top = null

ConcurrentStack

Example

getfield

dup

astore

monitorenter

putfield

T1: synchronized (top) T2: top = null

Set top
to null

ConcurrentStack

Example

getfield

dup

astore

monitorenter

putfield

T1: synchronized (top) T2: top = null

Monitorenter
On null

ConcurrentStack

Example

getfield

dup

astore

monitorenter

putfield

T1: synchronized (top) T2: top = null

Monitorenter
On null

NullPointerException

	Some Features of �Java PathFinder
	Outline
	State explosion problem
	Partial Order Reduction (POR)
	Partial Order Reduction (POR)
	Partial Order Reduction (POR)
	Partial Order Reduction (POR)
	Partial Order Reduction (POR)
	Partial Order Reduction (POR)
	POR of JPF
	POR of JPF
	POR of JPF
	POR of JPF
	POR of JPF
	Configuring POR in jpf.properties
	The Effect of JPF POR
	Java Native Interface (JNI)
	Java Native Interface (JNI)
	Model Java Interface (MJI)
	Native Peers
	Model Classes
	How does JPF handle native calls?
	Example of Unhandled Native Code
	Handle Native Calls
	Handle Native Calls
	Handle Native Calls
	Application of Different Methods
	Slide Number 28
	Race
	Race
	Race
	Race
	Race
	Race
	Race
	Race
	Race
	Race
	ConcurrentStack Example
	ConcurrentStack Example
	ConcurrentStack Example
	ConcurrentStack Example
	ConcurrentStack Example
	ConcurrentStack Example
	ConcurrentStack Example

