Name:	Student no.:

CSE 4214

Midterm Examination

Thursday, October 23, 2008

Instructions

- **This is a closed book exam.** You are permitted one 8 ½ by 11 inch sheet of handwritten personal notes, as well as a calculator.
- **Attempt all questions, and give your answer in the space provided.** There are four questions on this exam, worth a total of 40 marks.
- **Read each question carefully before answering.** If you find any question unclear, **state your assumptions with your answer**. You will not be penalized for any reasonable assumption.
- Time limit: **80 minutes.**

Question 1 (16 marks)

Hints for question 1:

$$\int_{0}^{T} \sin(\pi t/T) dt = 2T/\pi, \quad \int_{0}^{T} \sin^{2}(\pi t/T) dt = T/2.$$

Consider the following modulation signal:

$$s_0(t) = \begin{cases} \sin(\pi t/T), & 0 \le t \le T; \\ 0, & t < 0, t > T. \end{cases}$$

a. (8 marks) Suppose $s_1(t) = -s_0(t)$ for all t. Find the probability of error in terms of erfc, assuming that the signal is received in the presence of additive white Gaussian noise with power spectral density $N_0/2$, using the optimal decision rule, and assuming the matched filter is matched to $s_0(t)$.

b. (8 marks) For the same $s_0(t)$ and $s_1(t)$ as in part a, say the matched filter is replaced by a filter having impulse response

$$h(t) = \begin{cases} 1, & 0 \le t \le T; \\ 0, & t < 0, t > T. \end{cases}$$

Find the probability of error in terms of erfc using the optimal decision rule. Is this better or worse than the case in part a? Explain.

Question 2 (9 marks)

- a. (4 marks) Suppose f(t) and g(t) each satisfy the Nyquist criterion for zero inter-symbol interference. Show that f(t)g(t) also satisfies the Nyquist criterion.
- b. (1 mark) Data is transmitted at a rate of 10 kilobits per second. Assuming binary signaling, give the signaling time (T).
- c. (2 marks) For the system in part b, what is the minimum bandwidth (W), counting only positive frequencies, so that the Nyquist criterion is satisfied?
- d. (2 marks) For the system in part b, suppose 7.5 kHz of bandwith is available, counting only positive frequencies. Can a raised-cosine pulse be used in this amount of bandwidth? If so, give the largest possible value for the excess bandwidth. If not, explain why not.

Question 3 (10 marks)

- a. (2 marks) What conditions must a random process satisfy in order to be a wide-sense stationary random process?
- b. (4 marks) Let X(t) be a wide-sense stationary random process with mean $\mu = 0$ and autocorrelation $R_X(\tau)$. Let Y(t) = X(t) + t. Is Y(t) wide-sense stationary? Explain.
- c. (4 marks) Let Z(t) be a random process where Z(t) = At, where A is the outcome of a single roll of a fair die (i.e., $f_A(a) = 1/6$ if a = 1, 2, ..., 6). Find the probability density function $f_{Z(t)}(z)$.

Question 4 (5 marks)

Consider the signal sets:

#1	$\begin{bmatrix} -1, & 0 \le t < T/2 \end{bmatrix}$	$s_1(t) = 0$
	$s_0(t) = \begin{cases} -1, & 0 \le t < T/2 \\ 1, & T/2 \le t < T \\ 0, & t < 0, t > T \end{cases}$	
	0, t < 0, t > T	
#2	$\int_{T_{t}} f(t) 0 \le t \le T$	$s_1(t) = -s_0(t)$
	$s_0(t) = \begin{cases} t, & 0 \le t \le T \\ 0, & t < 0, t > T \end{cases}$	

- a. (2 marks) Sketch the impulse response of the filter matched to $s_0(t)$ for both signals.
- b. (3 marks) Find the average energy per bit for both signals.

$$Hint: \int t \, dt = \frac{1}{2}t^2$$