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CHAPTER 1

Review: Probability, Random Processes, and

Linear Systems

1.1. Probability

In this section, we briefly review some necessary concepts of probability that

will be used throughout this text.

1.1.1. Foundations. Basics of probability; joint probability; independence;

conditional probability; Bayes’ rule.

1.1.2. Discrete-valued random variables. Probability mass function; ex-

pected value; mean and variance; examples.

1.1.3. Continuous-valued random variables. Probability density function;

expected value; mean and variance; examples.

1.1.4. The Gaussian distribution. Definition; properties (e.g., even func-

tion).

A Gaussian random variable x with with mean µ and variance σ2 has a prob-

ability density function given by

(1.1) f(x) =
1√

2πσ2
exp

(

− 1

2σ2
(x − µ)2

)

.

Integrals over this pdf may be expressed in terms of the error function complemen-

tary, erfc(·), which is defined as

(1.2) erfc(z) =
2√
π

∫ ∞

t=z

exp(−t2)dt.

The function erfc(·) has the following mathematical interpretation: if t is a Gaussian

random variable with mean µ = 0 and variance σ2 = 1/2, then erfc(z) = Pr(|t| >

z). Furthermore, due to the symmetry of the Gaussian pdf about the mean, we

1
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illustrate in Figure X that

(1.3) Pr(t > z) = Pr(t < z) =
1

2
erfc(z).

Using a change of variables, erfc(·) may be used to calculate an arbitrary Gauss-

ian integral. For instance, for the random variable x with pdf f(x) in (1.1), suppose

we want to calculate the probability Pr(x > z). This probability can be expressed

as

Pr(x > z) =

∫ ∞

x=z

f(x)dx(1.4)

=

∫ ∞

x=z

1√
2πσ2

exp

(

− 1

2σ2
(x − µ)2

)

dx.(1.5)

Now we make the substitution

(1.6) t =
x − µ√

2σ2
.

To perform a change of variables in an integral, we need to replace both x and dx

with the equivalent functions of t. Solving for x, we have that

(1.7) x =
√

2σ2t + µ,

so taking the first derivative of x with respect to t, dx is given by

(1.8) dx =
√

2σ2dt.

Substituting (1.7)-(1.8) into (1.5), we get

Pr(x > z) =

∫ ∞

x=z

1√
2πσ2

exp

(

− 1

2σ2
(x − µ)2

)

dx(1.9)

=

∫ ∞

√
2σ2t+µ=z

1√
2πσ2

exp
(

−t2
)
√

2σ2dt(1.10)

=

∫ ∞

t=(z−µ)/
√

2σ2

1√
π

exp
(

−t2
)

dt(1.11)

=
1

2
erfc

(

z − µ√
2σ2

)

.(1.12)

1.2. Discrete-Time Random Processes

There are many ways to define a random process, but for our purposes, the

following is sufficient:

• A random process is a function of time X(t), so that for each fixed time

t∗, X(t∗) is a random variable.
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As a result, we can write the probability density function (pdf) of the random

process at any given time. For example, fX(t∗)(x) represents the pdf of the random

process at time t∗. Joint probability density functions measure the joint probability

of the process at k different times; these are called kth order statistics of the random

process. For example, for k = 2 and times t1 and t2, we can write the second order

statistics as fX(t1),X(t2)(x1, x2).

1.2.1. Definition, Mean, and Variance. It’s easy to imagine a random

process in discrete time, as merely a sequence of random variables, one for each

time interval. For instance, consider the following two random processes defined at

integer times t ∈ {. . . ,−2,−1, 0, 1, 2, . . .}:

Example 1.1. At each time t ∈ {. . . ,−2,−1, 0, 1, 2, . . .}, a fair coin is flipped.

If the coin shows heads after the flip at time t, then X(t) = 1; otherwise, X(t) = −1.

Thus, for any integer t∗, we can write

fX(t∗)(x) =



















0.5, x = +1;

0.5, x = −1;

0 otherwise.

Since, at each fixed time t, the random process is a random variable, we can

calculate the mean and variance of the process at each fixed time as usual for

random variables. Thus, for the process as a whole, the mean and variance for a

random process are calculated as functions of time. For instance, for the process in

Example 1.1, the mean of this process is given by

µ(t) =
∑

x∈{+1,−1}
xfX(t)(x)

= (+1)(0.5) + (−1)(0.5)

= 0

for all t. The variance of the process is given by

σ2(t) =
∑

x∈{+1,−1}
(x − µ(t))2fX(t)(x)

= (+1 − 0)2(0.5) + (−1 − 0)2(0.5)

= 1



4 1. REVIEW: PROBABILITY, RANDOM PROCESSES, AND LINEAR SYSTEMS

for all t.

As an alternative, the following more compicated example has mean and vari-

ance that are non-trivial functions of time:

Example 1.2. Let X(0) = 0. For each t ∈ {1, 2, . . .}, a fair coin is flipped. If

the coin shows heads after the flip at time t, then X(t) = X(t − 1) + 1; otherwise,

X(t) = X(t − 1).

For any t, it is clear that X(t) is the number of heads in the previous t trials.

Such random variables are represented by the binomial distribution [1]. Thus,

fX(t)(x) =

(

t

x

)

1

2t
.

The mean of this random process is given by

µ(t) =
t

2
,

and the variance is given by

σ2(t) =
t

4
.

The reader is asked to prove these values in the exercises.

Instances of the random processes from Examples 1.1 and 1.2 are given in

Figure 1.1.

1.2.2. Autocorrelation. Suppose you wanted a measure of correlation be-

tween two random variables, X1 and X2, with the same mean µ = 0 and the same

variance σ2 > 0. As a candidate for this measure, consider

(1.13) R = E[X1X2].

If the random variables are independent (i.e., uncorrelated), then since E[X1X2] =

E[X1]E[X2] for independent random variables, we would have

R = E[X1]E[X2] = µ2 = 0,

bearing in mind that each of the random variables are zero mean. On the other

hand, if the two random variables are completely correlated (i.e., X1 = X2), we

would have

R = E[X1X2] = E[X2
1 ] = σ2.
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Figure 1.1. Illustration of the discrete-time random processes

from Examples 1.1 and 1.2.

Further, if they were completely anticorrelated (i.e., X1 = −X2), it is easy to see

that R = −σ2.

This measure of correlation also has the following nice property:

Theorem 1.1. Given the above definitions, |R| ≤ σ2.

Proof: Start with E[(X1 + X2)
2]. We can write:

E[(X1 + X2)
2] = E[X2

1 + 2X1X2 + X2
2 ]

= E[X2
1 ] + 2E[X1X2] + E[X2

2 ]

= σ2 + 2R + σ2

= 2σ2 + 2R.

Since (X1 + X2)
2 ≥ 0 for all X1 and X2, it is true that E[(X1 + X2)

2] ≥ 0. Thus,

2σ2 + 2R ≥ 0, so R ≥ −σ2. Repeating the same procedure but starting with

E[(X1 − X2)
2], we have that R ≤ σ2, and the theorem follows.

Since R = 0 when X1 and X2 are independent, R = σ2 (the maximum possible

value) when they are completely correlated, and R = −σ2 (the minimum possible
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value) when they are completely anticorrelated, R is a good candidate for a cor-

relation measure. The magnitude of R indicates the degree of correlation between

X1 and X2, while the sign indicates whether the variables are correlated or anti-

correlated. Properties of this correlation measure when the variances are unequal,

or when the means are nonzero, are considered in the exercises.

We apply this correlation measure to different time instants of the same random

process, which we refer to as the autocorrelation. In particular, let X(t) be a

discrete-time random process defined on t ∈ {. . . ,−2,−1, 0, 1, 2, . . .}. Then the

autocorrelation between X(t1) and X(t2) is defined as

(1.14) R(t1, t2) = E[X(t1)X(t2)].

Note the similarity with (1.13), since X(t) is merely a random variable for each

time t. For the same reason, R(t1, t2) has all the same properties as R.

1.2.3. Stationary random processes. A stationary discrete-time random

process is a process for which the statistics do not change with time. Formally, a

process is stationary if and only if

(1.15)

fX(t1),X(t2),...,X(tk)(x1, x2, . . . , xk) = fX(t1+τ),X(t2+τ),...,X(tk+τ)(x1, x2, . . . , xk)

for all k ∈ {1, 2, . . .} and all τ ∈ {. . . ,−2,−1, 0, 1, 2, . . .}. This does not imply that

the process X(t) is constant with respect to time, only that the statistical variation

of the process is the same, regardless of when you examine the process. The process

in Example 1.1 is stationary; intuitively, this is because we keep flipping the same

unchanging coin, and recording the outcome in the same way at all t.

We now examine the effects of stationarity on the mean, variance, and auto-

correlation of a discrete-time random process X(t). The mean µ(t) is calculated as

follows:

µ(t) =

∫

x

xfX(t)(x)dx

=

∫

x

xfX(t+τ)(x)dx

= µ(t + τ),
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where the second line follows from the fact that fX(t) = fX(t+τ) for all τ ∈
{. . . ,−2,−1, 0, 1, 2, . . .}. Thus, µ(t) = µ(t+ τ) for all τ , so µ(t) must be a constant

with respect to t. Using a similar line of reasoning, we can show that σ2(t) is a

constant with respect to t. Thus, for stationary random processes, we will write

µ(t) = µ and σ2(t) = σ2 for all t.

For the autocorrelation, we can write

R(t1, t2) = E[X(t1)X(t2)]

=

∫

x1

∫

x2

x1x2fX(t1),X(t2)(x1, x2)dx2dx1(1.16)

=

∫

x1

∫

x2

x1x2fX(t1+τ),X(t2+τ)(x1, x2)dx2dx1.(1.17)

Let τ = τ ′ − t1. Substituting back into (1.17), we have

R(t1, t2) =

∫

x1

∫

x2

x1x2fX(t1+τ ′−t1),X(t2+τ ′−t1)(x1, x2)dx2dx1

=

∫

x1

∫

x2

x1x2fX(τ ′),X(t2−t1+τ ′)(x1, x2)dx2dx1.(1.18)

However, in (1.18), since X(t) is stationary, fX(τ ′),X(t2−t1+τ ′)(x1, x2) does not

change for any value of τ ′. Thus, setting τ ′ = 0, we can write

R(t1, t2) =

∫

x1

∫

x2

x1x2fX(0),X(t2−t1)(x1, x2)dx2dx1,

which is not dependent on the exact values of t1 or t2, but only on the difference

t2 − t1. As a result, we can redefine the autocorrelation function for stationary

random processes as R(t2 − t1); further, reusing τ to represent this difference, we

will usually write R(τ), where

R(τ) = E[X(t)X(t + τ)]

for all t.

The properties that µ(t) = µ, σ2(t) = σ2, and R(t1, t2) = R(t2 − t1) apply only

to the first and second order statistics of the process X(t). In order to verify whether

a process is stationary, it is necessary to prove the condition (1.15) for every order

of statistics. In general this is a difficult task. However, in some circumstances, only

first and second order statistics are required. In this case, we define a wide-sense

stationary (WSS) process as any process which satisfies the first and second order

conditions of µ(t) = µ, σ2(t) = σ2, and R(t1, t2) = R(t2 − t1). We have shown that
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all stationary processes are WSS, but it should seem clear that a WSS process is

not necessarily stationary.

1.2.4. Power spectral density. For a wide-sense stationary random process,

the power spectral density (PSD) of that process is the Fourier transform of the

autocorrelation function:

(1.19) Sx(jω) = F [Rx(τ)] =

∫ ∞

τ=−∞
Rx(τ)e−jωτ dτ.

Properties of PSD:

(1.20) Var(x[k]) = Rx(0) =
1

2π

∫ ∞

−∞
Sx(jω)dω.

1.3. Linear systems

1.3.1. Review of linear systems.

1.3.2. Linear systems and random processes. Apply a linear filter with

frequency-domain transfer function H(jω) to a wide-sense stationary random pro-

cess with PSD Sx(jω). The output is a random process with PSD Sw(jω), where

(1.21) Sw(jω) = Sx(jω)|H(jω)|2.

1.4. Problems

(1) For the random process in Example 1.2, show that µ(t) = t/2, and σ2(t) =

t/4. Is this process stationary? Explain.

(2) Suppose X1 and X2 are zero-mean random variables with variances σ2
1

and σ2
2 , respectively. For the correlation measure R defined in (1.13),

show that

|R| ≤ σ2
1 + σ2

2

2
.

(3) Suppose X1 and X2 have the same nonzero mean µ, and the same variance

σ2. For the correlation measure R defined in (1.13), show that |R| ≤
σ2 + µ2.

(4) Give an example of a discrete-time random process for which µ(t) = µ

and σ2(t) = σ2 for all t, but there exist t1 and t2 such that R(t1, t2) 6=
R(t2 − t1).

(5) Calculate µ(t) and R(t1, t2) for the continuous time random process given

in Example ??. Is this process stationary? Explain.



1.5. LABORATORY EXERCISE: PROBABILITY AND RANDOM PROCESSES 9

(6) Let X(t) = X sin(2πt), where X is a random variable corresponding to

the result of a single fair coin flip: X = 1 if the coin is heads, and X = −1

is the coin is tails. Does X(t) satisfy the definition of a continuous-time

random process? If so, calculate fX(t)(x); if not, explain why not.

1.5. Laboratory Exercise: Probability and Random Processes

In this laboratory exercise, you will investigate the properties of discrete-valued

random variables and random processes.

1.5.1. Generating arbitrary random variables. Let x be a discrete-valued

random variable, taking values on 1, 2, . . . , 6, with probability mass function p(x).

• MATLAB provides a routine, rand, which generates uniformly distributed

random variables on the range from 0 to 1. Given p(x), propose a way to

generate instances of x, with probabilities p(x), from rand.

• Write a MATLAB function, called xrand, implementing the method you

describe. The routine takes a 1 × 6 vector, where the first element of the

vector is p(1), the second is p(2), and so on. The routine returns a value

on 1, 2, . . . , 6 at random according to the probabilities p(x).

Discussion of empirical distributions.

Given a distribution, write a function to calculate the mean and variance, both

empirically and theoretically.

Consider the following Gaussian random process: ... Plot the autocorrelation,

both empirically and





CHAPTER 2

Baseband Data Transmission

2.1. Hardware Model of Communication

2.1.1. Traditional communication system model.

2.1.2. Transmitter hardware model.

2.1.3. Receiver hardware model.

2.2. Noise

Although there are many sources of random distortion in communication sys-

tems, we will assume that the dominant source is thermal noise, arising from the

random motion of electrons in electrical components. This random motion results

in small current fluctuations, which can be significant in the presence of a very

weak signal. Because there are many independently-moving electrons, all of which

contribute randomly to the current fluctuations, the central limit theorem [2] can

be used to model noise as a Gaussian random variable.

Gaussian noise has zero mean. The autocorrelation of a continuous-time Gauss-

ian noise process n(t) is given by

(2.1) Rn(τ) =
N0

2
δ(τ),

and is thus wide-sense stationary. Taking the Fourier transform of Rn(τ), its power

spectral density is given by

(2.2) Sn(jω) =
N0

2
,

where N0 is a constant proportional to the temperature of the device. From (2.2),

the power spectrum is the same at all frequencies ω, so the noise is “white”, analo-

gously to white light; furthermore, the current fluctuations are added to whatever

deterministic signal is present. Thus, we refer to this type of noise as additive white

Gaussian noise (AWGN).

11
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In discrete time, the received signal y[k] is given by

(2.3) y[k] = As[k] + n[k],

where s[k] represents the signal, A is a scaling factor representing signal attenua-

tion/amplification, and n[k] is the sampled version of the continuous-time AWGN

process n(t).

We will now determine the properties of n[k]. In the hardware model, we

precede the A-to-D converter with an ideal lowpass filter having frequency-domain

transfer function HLP (jω), where

(2.4) HLP (jω) =







1, |ω| < π/Ts,

0 otherwise.

That is, the cutoff frequency of the filter is the Nyquist frequency 1/2Ts. Let w(t)

represent the noise random process at the output of the ideal lowpass filter, and let

Sw(jω) represent its PSD. From (1.21), Sw(jω) is given by

Sw(jω) = Sn(jω)|HLP (jω)|2(2.5)

=







N0/2, |ω| < π/Ts,

0 otherwise.
(2.6)

Thus, from (1.20), the variance of w(t) (and hence each sample w[k]) is given by

Var(w(t)) = Var(w[k])(2.7)

=
1

2π

∫ ∞

ω=−∞
Sw(jω)dω(2.8)

=
1

2π
· 2π

Ts
· N0

2
(2.9)

=
N0

2Ts
.(2.10)

We also need to know whether the samples w[k] are independent. Taking the

inverse Fourier transform of Sw(jω), since Sw(jω) is rectangular, we have that (see

Appendix A)

Rx(τ) = F−1 [Sw(jω)](2.11)

=
1

Ts
sinc

(

τ

Ts

)

.(2.12)
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If τ is a multiple of the sampling frequency, we have

Rx(kTs) =
1

Ts
sinc (k)(2.13)

=







1
Ts

, k = 0,

0, k 6= 0.
(2.14)

Thus, recalling our discussion of correlation in Chapter 1, the noise process w[k] is

uncorrelated from sample to sample. Since w[k] is a Gaussian random process, this

is sufficient to show that it is independent from sample to sample.

2.3. Modulation and Detection

2.3.1. Modulation. Data can be represented as an arbitrarily long vector of

binary {0, 1} symbols, as in Figure X. The goal of modulation is to transform such a

vector into a function of time, which is necessary before the bit can be transmitted

over the medium.

Since this book deals with discrete-time signal processing, the modulator will

replace each bit with a non-overlapping sequence of samples; the function of time

will then be generated in digital-to-analog conversion. From Section 2.1, each bit

consists of nb = Tb/Ts samples, so we should define two sequences of nb samples

each: one to represent 0, and one to represent 1. Let s0[k] and s1[k] represent these

sequences for bits 0 and 1, respectively.

The following examples illustrate modulation in detail.

Example 2.1 (Polar nonreturn-to-zero). In polar nonreturn-to-zero (NRZ),

for any nb, let

(2.15) s0[k] =







1, 1 ≤ k ≤ nb,

0, otherwise,

and

(2.16) s1[k] = −s0[k].

Example 2.2 (Binary phase shift keying). In binary phase shift keying (BPSK),

suppose for 0, the bit time Tb contains exactly one cycle of a sinusoid; thus, there
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would be exactly one cycle over nb samples. We can write

(2.17) s0[k] =







sin(2πk/nb), 1 ≤ k ≤ nb,

0, otherwise.

Furthermore, let

(2.18) s1[k] =







sin(2πk/nb + π), 1 ≤ k ≤ nb,

0, otherwise,

as depicted in Figure X. From (2.18), the phase is shifted by π radians in order to

transmit a 1, hence the terminology. However, also note that s1[k] = −s0[k].

Now let b = [0, 1, 1, 0, 1], and let nb = 5. Replacing 0 and 1 with s0[k] and

s1[k], respectively, from each example, we obtain discrete-time signals depicted in

Figure X.

2.3.2. Detection. From (2.3), the received signal is corrupted by an AWGN

random process n[k]. The detector’s job is to extract the value of the bit, 0 or 1,

from the noisy signal y[k], as accurately as possible.

The detector consists of two components: a filter, which performs signal pro-

cessing on y[k], and a decision device, which takes the output of the filter and

determines whether a 0 or 1 was sent. Typically, the decision device examines the

output value of the filter after each bit has been sent (i.e., at integer multiples of

the bit time Tb, or integer multiples of nb in discrete time); we will call these values

the filter outputs. We will assume that the filter is linear and time invariant, and

has impulse response h[k]. The filter outputs φ(j) are given by

(2.19) φ(j) = [y[k] ⋆ h[k]]jnb
,

where the notation ⋆ represents discrete-time convlution, and the notation [·]jnb

indicates that the expression is evaluated at time jnb.

Given φ(j), the decision device then assigns a bit, 0 or 1, to each possible

output of the filter. This is usually done through a threshold (i.e., the bit is a 0 if

the filter output exceeds the threshold, or a 1 if the filter output is less than the

threshold). Let dz(x) represent the decision function on x with threshold z, where

(2.20) dz(x) =







0, x ≥ z,

1, x < z.
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Thus, combining (2.19)-(2.20), the estimated bits b̂j are given by

(2.21) b̂j = dz(φ(j)).

Selection of optimal h[k] and z are non-trivial design problems, which will be

discussed extensively in the remainder of the book. However, the following example

illustrates a correctly designed detector, and its outputs in a noise-free channel.

Example 2.3. Let s0[t] and s1[t] be polar NRZ pulses, as defined in (2.15)-

(2.16). Let

(2.22) h[k] =







1, 0 ≤ k < nb,

0, otherwise.

Note that h[k] = s0[k + 1].

In the absence of noise, the filter output in response to s0[k] at time nb is

[s0[k] ⋆ h[k]]nb
=

∞
∑

i=−∞
s0[i]h[nb − i](2.23)

=

nb
∑

i=1

1(2.24)

= nb.(2.25)

Since s1[k] = −s0[k], the filter output in response to s1[k] is given by

[s1[k] ⋆ h[k]]nb
= −

∞
∑

i=−∞
s0[i]h[nb − i](2.26)

= −
nb
∑

i=1

1(2.27)

= −nb.(2.28)

From now on, we will let s0 represent the noise-free filter output when 0 is sent

(and, respectively, s1 when 1 is sent). Thus,

(2.29) s0 = [s0[k] ⋆ h[k]]nb
,

and

(2.30) s1 = [s1[k] ⋆ h[k]]nb
.

Because the detection filter is linear, the effect of noise will be added to the noise-

free output.
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Now consider the effect of noise. From (2.3), since convolution distributes over

addition, applying the filter h[k] to y[k] will result in

y[k] ⋆ h[k] = (s[k] + n[k]) ⋆ h[k](2.31)

= s[k] ⋆ h[k] + n[k] ⋆ h[k],(2.32)

which consists of a signal term s[k]⋆h[k] and a noise term n[k]⋆h[k]. The signal term

in (2.32) can be obtained by calculating h[k] ⋆ s0[k] and h[k] ⋆ s1[k], as in Example

2.3 for polar NRZ. Considering the noise term, evaluating the filter output at time

nb, we can write

(2.33) [n[k] ⋆ h[k]]nb
=
∑

i

h[i]n[nb − i],

where the sum is over all possible values of i (which can be restricted to those values

of i for which h[i] 6= 0, i.e., the “support” of h[i]). Since n[k] is an AWGN random

process with mean zero and variance N0/2Ts (from (2.10)), the sum in (2.33) is

a weighted sum of independent Gaussian random variables, with mean zero and

variance

(2.34) σ2 =
N0

2Ts

∑

i

h[i]2.

Recalling Chapter 1, the sum of Gaussian random variables is itself a Gaussian

random variable. Thus, if the transmitted symbol is known to be 0, the filter

output has mean [s0[k] ⋆ h[k]]nb
and variance σ2. Similarly, if the transmitted

symbol is known to be 1, the filter output has mean [s1[k]⋆h[k]]nb
and variance σ2.

2.4. Error analysis

2.4.1. General form of the probability of error. An error occurs if b̂j 6= bj

(we will refer to this event as error). Using the decision function dz(φ[j]) from

(2.20), we have that b̂j = 0 if φ[j] ≥ z; thus, an error occurs if bj = 1 and φ[j] ≥ z.

Similarly, an error occurs if bj = 0 and φ[j] < z.

Remember that if bj is known, then φ[j] is a Gaussian random variable. Thus,

using properties of Gaussian random variables, we can calculate the conditional

error probabilities Pr(error|bj = 0) and Pr(error|bj = 1). The average error proba-

bility is then given by

(2.35) Pr(error) = Pr(error|bj = 0)Pr(bj = 0) + Pr(error|bj = 1)Pr(bj = 1).



2.4. ERROR ANALYSIS 17

Let’s start with Pr(error|bj = 1). Clearly

(2.36) Pr(error|bj = 1) = Pr(φ[j] ≥ z)|bj = 1).

This event is illustrated in Figure X. Given bj = 1, φ[j] is a Gaussian random

variable with mean s1 (from (2.30)) and variance σ2 (from (2.34)). The PDF of

this random variable is given by

(2.37) f(φ[k]|bj = 1) =
1√

2πσ2
exp

(

− 1

2σ2
(φ[k] − s1)

2

)

.

Thus, since φ[k] is a continuous-valued random variable,

Pr(error|bj = 1) = Pr(φ[j] ≥ z)|bj = 1)(2.38)

=

∫ ∞

φ[k]=z

1√
2πσ2

exp

(

− 1

2σ2
(φ[k] − s1)

2

)

dφ[k].(2.39)

As we mentioned in Chapter 1, integrals over the Gaussian PDF, such as the

one in (2.39), cannot be directly computed. However, we can use a special function

known as the error function complementary, erfc(·), defined in (1.2), to represent

this integral. With a change of variables, the integral in (2.39) can be expressed in

terms of erfc(·) as

(2.40) Pr(error|bj = 1) =
1

2
erfc

(

z − s1√
2σ2

)

.

By a similar derivation, Pr(error|bj = 0) is given by

(2.41) Pr(error|bj = 0) =
1

2
erfc

(

s0 − z√
2σ2

)

.

Showing the correctness of (2.40) and (2.41) are left as exercises for the reader.

Finally, substituting into (2.35), we have

Pr(error)

= Pr(error|bj = 0)Pr(bj = 0) + Pr(error|bj = 1)Pr(bj = 1)(2.42)

=
1

2
erfc

(

s0 − z√
2σ2

)

Pr(bj = 0) +
1

2
erfc

(

z − s1√
2σ2

)

Pr(bj = 1).(2.43)
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2.4.2. Probability of error for Polar NRZ. Let’s return to Example 2.3,

which illustrated detection with Polar NRZ signals, and use a threshold z = 0. In

the example, we showed that s0 = −s1 = nb. Thus, substituting into (2.43), we

have

Pr(error)

=
1

2
erfc

(

nb − 0√
2σ2

)

Pr(bj = 0) +
1

2
erfc

(

0 − (−nb)√
2σ2

)

Pr(bj = 1)(2.44)

=
1

2
erfc

(

nb√
2σ2

)

Pr(bj = 0) +
1

2
erfc

(

nb√
2σ2

)

Pr(bj = 1)(2.45)

=
1

2
erfc

(

nb√
2σ2

)

(Pr(bj = 0) + Pr(bj = 1))(2.46)

=
1

2
erfc

(

nb√
2σ2

)

.(2.47)

From (2.47), since erfc(·) is a decreasing function, it seems like increasing nb leads

to a decrease in Pr(error). However, by examining (2.34), we can show that the

probability of error is independent of the sampling rate. In Example 2.3, we used

a filter impulse response h[k] = s0[k], so (2.34) becomes

σ2 =
N0

2Ts

nb
∑

i=1

s0[k]2(2.48)

=
N0

2Ts

nb
∑

i=1

1(2.49)

=
N0nb

2Ts
.(2.50)

However, the sample time Ts can be expressed as

(2.51) Ts =
Tb

nb
.

Substituting into (2.50), we have

(2.52) σ2 =
N0n

2
b

2Tb
,

and finally, substituting into (2.47), we have

Pr(error) =
1

2
erfc

(

nb
√

2(N0n2
b)/(2Tb)

)

(2.53)

=
1

2
erfc

(

√

Tb

N0

)

.(2.54)
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Thus, in this example, the only important factors in determining the probability of

error are the bit duration, Tb, and the AWGN power spectral density coefficient,

N0.

2.4.3. Summary and Examples. Our calculation of probability of error for

Polar NRZ followed a procedure that can be generalized to other signalling schemes.

Given modulation signals s0[k] and s1[k], detection filter h[k], threshold z, and all

relevant system parameters (e.g., i.e., probabilities Pr(bj = 0) and Pr(bj = 1), noise

coefficient N0, sample time Ts, samples per bit nb), the following procedure may

be used to calculate the probability of error:

(1) Calculate the noise-free filter outputs s0 and s1, using equations (2.29)-

(2.30).

(2) Calculate the variance of the noise σ2 at the output of the filter, using

equation (2.34). Given that the input bit is 0 (or 1), the output of the

filter is then a Gaussian random variable with mean µ = s0 (resp., s1)

and variance σ2.

(3) Obtain probability of error by substituting all these quantities into equa-

tion (2.43).

Using this procedure, we now present two additional examples.

Example 2.4 (Binary Phase Shift Keying). Returning to example 2.2, we now

calculate the probability of error for BPSK. Let

(2.55) h[k] =







sin
(

− 2πk
nb

)

, 1 ≤ k ≤ nb

0 otherwise
,

and let the threshold z = 0. We now follow the procedure given above.
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Noise-free filter outputs: Using (2.29), s0 is given by

s0 = [s0[k] ⋆ h[k]]nb
(2.56)

=

nb
∑

i=1

s0[i]h[nb − i](2.57)

=

nb
∑

i=1

sin

(

2πi

nb

)

sin

(

2π(i − nb)

nb

)

(2.58)

=

nb
∑

i=1

sin

(

2πi

nb

)

sin

(

2πi

nb
+ 2π

)

(2.59)

=

nb
∑

i=1

sin

(

2πi

nb

)2

.(2.60)

Furthermore, it is easy to show that

(2.61) s1 = −s0.

Variance of the noise: Using (2.34), σ2 is given by

σ2 =
N0

2Ts

nb
∑

i=1

h[i]2(2.62)

=
N0

2Ts

nb
∑

i=1

sin

(

−2πk

nb

)2

(2.63)

=
N0

2Ts

nb
∑

i=1

sin

(

2πk

nb

)2

(2.64)

=
N0

2Ts
s0,(2.65)

where (2.64) follows from (2.63) since sin(−x) = − sin(x).

Probability of error. Substituting into (2.43), we have

Pr(error)

=
1

2
erfc

(

s0 − z√
2σ2

)

Pr(bj = 0) +
1

2
erfc

(

z − s1√
2σ2

)

Pr(bj = 1)(2.66)

=
1

2
erfc

(

√

Tss0

N0

)

Pr(bj = 0) +
1

2
erfc

(

√

Tss0

N0

)

Pr(bj = 1)(2.67)

=
1

2
erfc

(

√

Tss0

N0

)

.(2.68)
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To obtain specific numbers for this system, let Tb = 10−4, nb = 8, and N0 =

1.25 · 10−5. Then from (2.60), s0 = 4, so

Pr(error) =
1

2
erfc

(
√

(10−4/8) · 4
1.25 · 10−5

)

(2.69)

= 0.00234.(2.70)

Example 2.5 (On-off keying). Let s0[k] be the same as (2.15), and let h[k] =

s0[k + 1], as in Polar NRZ. However, let s1[k] = 0 for all k. This is referred to as

on-off keying, since the transmitter is “on” (all +1) to transmit 0, and “off” (all

zero) to transmit 1. Suppose Pr(bj = 0) = Pr(bj = 1) = 1/2. We consider two

cases: first, z = 0, and second, z = nb/2.

Noise-free filter outputs: Since s0[k] and h[k] are the same as in Polar NRZ,

s0 is also the same, so

(2.71) s0 = [s0[k] ⋆ h[k]]nb
= nb.

Since s1[k] = 0, then

(2.72) s1 = [0 ⋆ h[k]]nb
= 0.

Variance of the noise: Since h[k] is the same as in Polar NRZ, then

(2.73) σ2 =
N0

2Ts

∑

i

h[k]2 =
N0

2Ts
nb.

Probability of error. Substituting into (2.43), and using z = 0, we have

Pr(error)

=
1

2
erfc

(

s0 − z√
2σ2

)

Pr(bj = 0) +
1

2
erfc

(

z − s1√
2σ2

)

Pr(bj = 1)(2.74)

=
1

4
erfc

(

√

Tsnb

N0

)

+
1

4
erfc (0)(2.75)

=
1

4

(

erfc

(

√

Tss0

N0

)

+ 1

)

.(2.76)

On the other hand, using z = nb/2, we have

(2.77) Pr(error) =
1

2
erfc

(

√

nbTs

4N0

)

.

The probability of error in (2.77) is generally smaller (and therefore better) than

(2.76), which we illustrate in Figure X.
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2.5. Probability of error and energy per bit

Probability of error is frequently expressed in terms of the average energy per

bit Eb, which allows the system designer to compare two systems on the basis of

the same energy expenditure.

In continuous time, the energy E0 and E1 contained in the continuous-time

modulation functions s0(t) and s1(t), respectively, are expressed by

(2.78) E0 =

∫ Tb

t=0

s0(t)
2dt

and

(2.79) E1 =

∫ Tb

t=0

s1(t)
2dt.

Average energy per bit is then given by

(2.80) Eb = E0Pr(bj = 0) + E1Pr(bj = 1).

In discrete time, calculation of the energy per bit is dependent on the digital-

to-analog hardware that is used to transform s0[k] and s1[k] into continuous-time

functions s0(t) and s1(t), respectively. In this book, we will use the following

method: each sample will be replaced with a rectangular function of width Ts and

amplitude equal to the sample value, where the rectangle corresponding to the kth

sample occupies time between t = (k − 1)Ts and t = kTs. This scheme is depicted

in Figure X.

More formally, let rTs
(t) be a rectangular function over the interval Ts, given

by

(2.81) rTs
(t) =







1, −Ts ≤ t < 0

0 otherwise

This is a more convenient form of the rect(·) function, defined in the appendix.

Furthermore, the rectangle is defined on the interval [−Ts, 0) because, from the

definition above, the rectangle “lags” the sample. Then s0(t) is given by

(2.82) s0(t) =

nb
∑

i=1

s0[i]rTs
(t − iTs).
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To calculate energy E0 for bit 0, we can now use (2.78):

E0 =

∫ Tb

t=0

(

nb
∑

i=1

s0[i]rTs
(t − iTs)

)2

dt(2.83)

=

nb
∑

i=1

s0[i]
2

∫ Tb

t=0

rTs
(t − iTs)dt(2.84)

= Ts

nb
∑

i=1

s0[i]
2,(2.85)

where (2.84) follows from (2.83) because the rectangles rTs
(t− iTs) do not overlap,

and have unit amplitude; and where (2.85) follows from (2.84) because the area

under rTs
(t − iTs) is always Ts. Similarly for E1, we have that

(2.86) E1 = Ts

nb
∑

i=1

s1[i]
2.

For the three error calculations we gave in this chapter, we can now restate the

probability of error as a function of energy per bit. For polar NRZ, we have that

E0 = Ts

nb
∑

i=1

s0[i]
2(2.87)

= Tsnb(2.88)

= Tb,(2.89)

and E1 = E0. Thus, Eb = Tb. Substituting back into (2.53), we have

(2.90) Pr(error) =
1

2
erfc

(

√

Eb

N0

)

,

which directly relates the probability of error to the average energy consumed in

transmitting a bit. Restating the equations for the other two modulation schemes

are left as exercises.

2.6. Problems

(1) Making the changes of variables described in Chapter 1, show that (2.40)

and (2.41) are correct.

(2) Restate the error calculation for binary phase shift keying (Example 2.4)

and on-off keying (Example 2.5) in terms of average energy per bit Eb.

How do these schemes compare with Polar NRZ in terms of energy effi-

ciency?
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2.7. Laboratory exercise



CHAPTER 3

Optimal System Design

In Chapter 2, we outlined the basic problems of modulation and detection,

without discussing how parameters such as z and h[k] should be selected. The

digital communication system design problem is to minimize the probability of

detection error, subject to constraints on the energy per bit Eb. In this chapter, we

present the optimal solution to this design problem.

3.1. Optimizing the decision threshold

In the on-off keying example from Chapter 2 (Example 2.5), we saw that the

choice of threshold had an impact on the probability of error. Given a pair of signals

s0[k] and s1[k], and a filter h[k], the threshold z should obviously be selected so as

to minimize Pr(error). How can we do this?

Recall the average error probability expression

(3.1) Pr(error) =
1

2
erfc

(

s0 − z√
2σ2

)

Pr(bj = 0) +
1

2
erfc

(

z − s1√
2σ2

)

Pr(bj = 1),

and differentiate with respect to z. Doing so, we get an expression closely related

to the Gaussian integral: let

(3.2) fT (t) =
2√
π

exp(−t2),

and let FT (t) represent the indefinite integral of fT (t) (which is not available in

closed form). Then

erfc(z) =

∫ ∞

z

fT (t)dt(3.3)

= FT (∞) − FT (z).(3.4)

However, by the fundamental theorem of calculus, it is true that

(3.5) fT (t) =
d

dt
FT (t),

25
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so taking the first derivative of erfc(z) with respect to z, we get

(3.6)
d

dz
erfc(z) = −fT (z).

Applying this to (3.1), and using the chain rule for derivatives, we get

d

dz
Pr(error)

=
1

2
Pr(bj = 0)

d

dz
erfc

(

s0 − z√
2σ2

)

+
1

2
Pr(bj = 1)

d

dz
erfc

(

z − s1√
2σ2

)

(3.7)

=
1

2
√

σ2
Pr(bj = 0)fT

(

s0 − z√
2σ2

)

− 1

2
√

σ2
Pr(bj = 1)fT

(

z − s1√
2σ2

)

.(3.8)

To find the minimum, we set the expression in (3.8) to zero. As a result, the

minimizing value of z is the value satisfying

(3.9) Pr(bj = 0)fT

(

s0 − z√
2σ2

)

= Pr(bj = 1)fT

(

z − s1√
2σ2

)

.

It is left as an exercise for the reader to show that this value is a minimum. Sub-

stituting into (3.9) with the expansion of fT (t), and collecting exponential terms,

we have

(3.10) exp

(

− 1

2σ2
(s0 − z)2 +

1

2σ2
(z − s1)

2

)

=
Pr(bj = 1)

Pr(bj = 0)
.

Taking the natural logarithm, log, of both sides results in

(3.11)
1

2σ2

(

(z − s1)
2 − (s0 − z)2

)

= log
Pr(bj = 1)

Pr(bj = 0)
,

and collecting terms on the left, we have

(3.12)
1

2σ2

(

2(s0 − s1)z − (s2
0 − s2

1)
)

= log
Pr(bj = 1)

Pr(bj = 0)
.

Finally, solving for z gives

(3.13) z =
σ2

s0 − s1
log

Pr(bj = 1)

Pr(bj = 0)
+

1

2
(s0 + s1).

Thus, in the polar NRZ example we presented above, z = 0 is indeed the optimal

threshold, since s1 = −s0 and Pr(bj = 0) = Pr(bj = 1) = 1/2.

We make two remarks on (3.13). First, if the two binary values 0 and 1 are

equiprobable (i.e., Pr(bj = 0) = Pr(bj = 1) = 1/2),then (3.13) reduces to

(3.14) z =
1

2
(s0 + s1),

which is exactly halfway between the two mean values s0 and s1. Thus, for any

received value y[k], the decision b̂[k] is made based on the closest point to y[k],
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either s0 or s1. Second, if 0 and 1 are not equiprobable, then the threshold is

biased towards the less likely bit, thereby expanding the region of y[k] that maps

to the more likely bit. This reduces error since, in case of uncertainty, it is safer to

select the more likely bit. This is illustrated in Figure X.

Example 3.1. Suppose s0 = 1, s1 = −1, and σ2 = 1. Let z = 1/2. For what

values of Pr(bj = 0) and Pr(bj = 1) is this setting of z optimal?

Substituting into (3.13), we have

z =
1

2
=

σ2

s0 − s1
log

Pr(bj = 1)

Pr(bj = 0)
+

1

2
(s0 + s1)(3.15)

=
1

2
log

Pr(bj = 1)

Pr(bj = 0)
+

1

2
(0).(3.16)

Simplifying, we have

(3.17) log
Pr(bj = 1)

Pr(bj = 0)
= 1.

Thus, Pr(bj = 1)/Pr(bj = 0) = e1 = e ≃ 2.718. However, remember that Pr(bj =

1) + Pr(bj = 0) = 1. Thus,

(3.18)
Pr(bj = 1)

1 − Pr(bj = 1)
= e,

the solution for which is Pr(bj = 1) = e/(1 + e) ≃ 0.731, so Pr(bj = 1) ≃ 0.269.

In general, the optimal way to distinguish between two signals in noise is to

employ the maximum a posteriori probability (MAP) criterion

3.2. Receiver filter design: The matched filter

We now consider how to design the optimal receiver filter h[k]. The following

assumptions are used to simplify the derivation:

• The input bits are equiprobable: Pr(bj = 0) = Pr(bj = 1) = 1/2; and

• Modulation waveform s1[k] is a scalar multiple of s0[k]; i.e., there exists

α such that

(3.19) s1[k] = αs0[k].

Note that (3.19) is true of all three modulation schemes we have studied thus far:

in Polar NRZ and BPSK, we had α = −1, while in on-off keying, we had α = 0.
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To simplify the notation, let

(3.20) ĥ[k] = h[nb − k].

Using ĥ[k], s0 becomes

s0 = [s0[k] ⋆ h[k]]nb
(3.21)

=

nb
∑

i=1

s0[i]h[nb − i](3.22)

=

nb
∑

i=1

s0[i]ĥ[i].(3.23)

Furthermore, using (3.19), s1 becomes

s1 =

nb
∑

i=1

s1[i]ĥ[i](3.24)

= α

nb
∑

i=1

s0[i]ĥ[i](3.25)

= αs0.(3.26)

Furthermore, since ĥ[k] rearranges the elements of h[k], but does not change their

values, it should be clear that the variance is now given by

(3.27) σ2 =
N0

2Ts

∑

i

ĥ[i]2.

By assumption, the bit values are equiprobable, so we use the optimal threshold

from (3.14). This leads to

(3.28) z =
1

2
(s0 + s1) =

1 + α

2
s0.

Substituting into (3.1), we have

Pr(error)

=
1

2
erfc

(

s0 − z√
2σ2

)

Pr(bj = 0) +
1

2
erfc

(

z − s1√
2σ2

)

Pr(bj = 1)(3.29)

=
1

4
erfc

(

s0 − (1 + α)s0/2√
2σ2

)

+
1

4
erfc

(

(1 + α)s0/2 − αs0√
2σ2

)

(3.30)

=
1

2
erfc

(

(1 − α)s0

2
√

2σ2

)

.(3.31)

The filter design problem can then be stated as follows: find ĥ[k] satisfying

(3.32) min
ĥ[k]

1

2
erfc

(

(1 − α)s0

2
√

2σ2

)

.
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However, note that erfc(x) is a decreasing function of x, so minimizing erfc is

equivalent to maximizing its argument. Thus, (3.32) is equivalent to finding ĥ[k]

satisfying

(3.33) max
ĥ[k]

(1 − α)s0

2
√

2σ2
.

The constants do not affect the value of ĥ[k] maximizing (3.33), and neither does

squaring the expression, so (3.33) becomes

(3.34) max
ĥ[k]

s2
0

σ2
.

Substituting s0 and σ2 with their expansions, given by (3.23) and (3.27) respec-

tively, the design problem becomes: find ĥ[k] satisfying

(3.35) max
ĥ[k]

(

∑nb

i=1 s0[i]ĥ[i]
)2

∑nb

i=1 ĥ[i]2
,

again eliminating the constants in the denominator. Remarkably, α is irrelevant to

the maximization, so the filter only depends on s0[k].

To solve this problem, we use the Cauchy-Schwartz inequality [3]. There are

many forms of this inequality, but the following form is most appropriate for this

problem. Let a[k] and b[k] be discrete-time functions that are supported on 1 ≤
k ≤ n. Then:

(3.36)

(

n
∑

i=1

a[i]b[i]

)2

≤
(

n
∑

i=1

a[i]2

)(

n
∑

i=1

b[i]2

)

,

with equality if and only if a[i] = b[i] for all i. This inequality is proved in Appendix

B.

Returning to the design problem, we can apply the Cauchy-Schwartz inequality

to s0[k] and ĥ[k]. Since s0[k] and ĥ[k] are supported over 1 ≤ k ≤ nb, by substituting

directly into (3.36), we can write

(3.37)

(

nb
∑

i=1

s0[i]ĥ[i]

)2

≤
(

nb
∑

i=1

s0[i]
2

)(

nb
∑

i=1

ĥ[i]2

)

.

However, s0[k] is given, so
∑nb

i=1 s0[i]
2 is a constant with respect to ĥ[i]. Rearranging

(3.37), we can write

(3.38)

(

∑nb

i=1 s0[i]ĥ[i]
)2

∑nb

i=1 ĥ[i]2
≤ K
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where K =
∑nb

i=1 s0[i]
2, emphasizing that this quantity is constant. The quantity

on the left of the inequality (3.38) is the same as the quantity to be maximized in

(3.35). Thus, from (3.38), we conclude that the maximum possible value of this

quantity is K, and by the equality condition for the Cauchy-Schwartz inequality,

this value is achieved if and only if

(3.39) ĥ[k] = s0[k]

for all k. Letting h⋆[k] represent the optimized filter, we have that

(3.40) h∗[k] = s0[nb − k].

The optimal filter h∗[k] is called the matched filter, since from (3.40) it is clearly

matched to s0[k].

Using h∗[k], we can find the optimized values of s0 and s1 (which we write s∗0

and s∗1, respectively), as follows:

s∗0 =

nb
∑

i=1

s0[i]
2(3.41)

=
E0

Ts
,(3.42)

recalling the definition of E0 as the energy required to send a zero. Similarly,

(3.43) s∗1 = α
E0

Ts
.

Notice that E1 = α2E0, so the average energy per bit, Eb, is given by

Eb =
1

2
(E0 + E1)(3.44)

=
1 + α2

2
E0.(3.45)

Furthermore, the optimized value of σ2, written σ2∗, is given by

σ2∗ =
N0

2Ts

nb
∑

i=1

s0[i]
2(3.46)

=
N0

2T 2
s

E0.(3.47)
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Substituting all of the above into (3.31), we have

Pr(error) =
1

2
erfc

(

(1 − α)s∗0

2
√

2σ2∗

)

(3.48)

=
1

2
erfc





√

(1 − α)2

4

E0

N0



(3.49)

=
1

2
erfc

(
√

(1 − α)2

2(1 + α2)

Eb

N0

)

.(3.50)

Thus, under our design assumptions, the probability of error for the optimal filter

can be expressed in terms of Eb/N0. It is interesting to note that the individual

values of Eb and N0 are irrelevant – only their ratio matters. Thus, Eb/N0 is often

used as a figure of merit for digital communication systems.

Example 3.2.

3.3. Optimized waveform design

The parameter α relates s0[k] to s1[k]. Since, from (3.50), the probability

of error is a function of α, we may consider the value of α that minimizes the

probability of error.

We need to find α satisfying

(3.51) min
α

1

2
erfc

(
√

(1 − α)2

2(1 + α2)

Eb

N0

)

.

Note that Eb/N0 is independent of α, so taking the same apporach as we took

leading up to (3.35): we need to find α maximizing

(3.52) max
α

(1 − α)2

1 + α2
.

Taking the first derivative, we get

(3.53)
d

dα

(1 − α)2

1 + α2
=

−2(1 − α)(1 + α)

(1 + α2)2
,

which has critical points at α = −1 and α = +1; it is straightforward to show

that these are a maximum and a minimum, respectively. Thus, using the optimal

signalling scheme s1[k] = −s0[k], optimal filter h[k], and optimal threshold z, the

best possible probability of error is given by

(3.54) Pr(error) =
1

2
erfc

(

√

Eb

N0

)

.
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Intuitively, it makes sense that α = +1 is a minimum, since in that case,

s0[k] = s1[k] – in other words, there is no difference between the signals used to

transmit 0 and 1, so there is no way to tell them apart. On the other hand, for

constant Eb, this result suggests that the best approach is to set s0[k] = −s1[k],

as we did in Polar NRZ and BPSK. Thus, on-off keying, in which α = 0, is not an

optimal signalling scheme. Furthermore, in (3.54), the details of s0[k] and s1[k] are

not relevant – they only affect Pr(error) through Eb. Thus, any optimal signalling

scheme with the same Eb should have the same error performance. (However, there

are other criteria, such as bandwidth, that make some signalling schemes more

useful than others; we will discuss these in later chapters.)

3.4. Summary

Optimal parameter selections derived in this chapter are given as follows:

• Optimal threshold. Given in (3.13). If 0 and 1 are equiprobable, the

optimal threshold is z = (s0 + s1)/2.

• Optimal filter. The matched filter is optimal, with h∗[k] = s0[nb − k].

• Signal selection. Given s0[k], set s1[k] = −s0[k]. Every such setting of

s0[k] and s1[k] with the same Eb has the same Pr(error).

Unless otherwise noted, these optimal settings will be used throughout the rest of

the book.

3.5. Problems

(1) Show that the value of z satisfying (3.9) is a minimum of Pr(error).

(2) For the three modulation schemes introduced in Chapter 2, demonstrate

that the optimal threshold and matched filter were correctly chosen in

each example.

3.6. Laboratory exercise



CHAPTER 4

Signal Space and Passband Data Transmission

In Chapters 2 and 3, we introduced the basic elements of the digital com-

muncations problem, including modulation, detection, and optimized receiver de-

sign. However, our analysis in those chapters was binary and one-dimensional: we

could only transmit one bit at a time. Furthermore, we restricted ourselves to the

case where s1[k] was a scalar multiple of s0[k], which is not necessarily optimal when

nonbinary signals are transmitted. In this chapter, we introduce signal space, which

provides a mathematical framework for nonbinary and multi-dimensional modula-

tion schemes. Furthermore, we introduce limitations on bandwidth, and discuss

their importance on signal design.

4.1. Introduction to Signal Space

4.1.1. Vector spaces. Chapter 2 established that the modulation functions

s0[k] and s1[k] are discrete functions supported on 1 ≤ k ≤ nb. These functions

can instead be represented as 1 × k row vectors s0 and s1, respectively, where

(4.1) s0 = [s0[1], s0[2], . . . , s0[nb]] ,

and

(4.2) s1 = [s1[1], s2[1], . . . , s2[nb]] .

In Chapter 3, we assumed that s1 was a scalar multiple of s0; let us now relax

that assumption. Recall the definition of vector dot product: if a = [a1, a2, . . . , an]

and b = [b1, b2, . . . , bn] are 1 × n vectors, then

(4.3) a · b =
n
∑

i=1

aibi.

Now suppose there exists a vector s̄0 and constants α and β such that

(4.4) s1 = αs0 + βs̄0,

33
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where s̄0 · s0 = 0. That is, s̄0 is orthogonal to s0.

The pair s0, s̄0 thus form a two-dimensional vector space containing both s0

and s1. Vector spaces consist of a set of basis vectors, where any vector in the space

can be composed of a linear combination of the basis vectors. Furthermore, vector

spaces are closed, in the sense that any linear combination of vectors in the vector

space is also in the vector space. This is illustrated in the following example, using

the well-known Cartesian space.

Example 4.1 (Cartesian vector space). Let x = [1, 0] and y = [0, 1] be 1 × 2

basis vectors. Firstly, note that x and y are orthogonal:

x · y = x1y1 + x2y2(4.5)

= 1 · 0 + 0 · 1(4.6)

= 0.(4.7)

Clearly, any two-dimensional vector can be expressed as

(4.8) [α, β] = αx + βy,

and therefore all such vectors are in the two-dimensional Cartesian vector space.

Furthermore, from (4.8), the summation of any pair of vectors in this space is also

in the space. To see this, we can write

[α1, β1] + [α2, β2] = α1x + β1y + α2x + β2y(4.9)

= (α1 + α2)x + (β1 + β2)y(4.10)

= [α1 + α2, β1 + β2].(4.11)

The same arguments apply to any vector space with orthogonal basis vectors.

The norm of a 1 × n vector a is given by

(4.12) |a| =
√

a · a =

√

√

√

√

n
∑

i=1

a2
i .

From the above example, the vectors x and y have the additional useful property

that |x| = |y| = 1. A basis for a vector space for which the basis vectors are

all orthogonal to each other, and all have unit norm, is called an orthonormal

basis. Given any m linearly independent vectors (i.e., none of the m vectors can
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be expressed as a linear combination of the others), it always possible to generate

an m-dimensional orthonormal basis using the Gram-Schmidt procedure. Here we

give this procedure for m = 2, which is the largest case that we will require in this

book. Let a and b represent the two (linearly independent) vectors, and suppose

they are both 1 × n:

(1) Normalize a: let

(4.13) â =
a

|a| .

Using (4.12), it is easy to show that |â| = 1, so â is the first basis vector.

(2) Remove the component of b in the direction of â: let

(4.14) b′ = b− â(b · â).

Using (4.3), it is easy to show that b′ is orthogonal to â, i.e., b′ · â = 0.

(3) Normalize b′: let

(4.15) b̂ =
b′

|b′| .

Again using (4.12), it is easy to show that |b̂| = 1, and b̂ is still orthogonal

to â, so b̂ is the second basis vector.

(4) The orthonormal basis is finally given by the pair of vectors â and b̂.

We now verify that a and b can be represented in terms of this basis: from (4.13),

a is given by

(4.16) a = |a|â,

(with a coefficient of zero in the b̂ direction), and from (4.14)-(4.15), b is given by

(4.17) b = (b · â)â + |b′|b̂.

Thus, a and b are in the vector space formed by â and b̂.

4.2. M-ary Digital Communications

4.3. Passband Data Transmission: Hardware Model

4.4. Modulation





CHAPTER 5

Multiple Access Communication Systems

5.1. Interference-free spectrum sharing

5.1.1. Frequency division multiple access.

5.1.2. Time division multiple access.

5.2. Spread-spectrum techniques
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CHAPTER 6

An Introduction to Information Theory

6.1. Error-control coding

6.1.1. Capacity.

6.1.2. Linear block codes.

6.1.3. Convolutional codes.

6.2. Data compression

6.2.1. Entropy.

6.2.2. Huffman codes.
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APPENDIX A

Fourier Transforms

A.1. Properties

A.2. Table of fourier transform pairs

A.2.1. Definitions.

(A.1) rect(t) =



















1, |t| < 1/2

1/2, |t| = 1/2

0, |t| > 1/2

(A.2) sinc(t) =
sin(πt)

πt

A.2.2. Table.

Fourier transform ↔ Time domain

rect(jω)
1

2π
sinc

(

t

2π

)

(A.3)
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APPENDIX B

The Cauchy-Schwartz Inequality

In this appendix, we prove the Cauchy-Schwartz inequality, which we used in

Chapter 3 to design the optimal detection filter.
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