Retrieval Strategies and Vector Space Model Implementation Details

Retrieval Strategies

- Manual Systems
- Boolean, Fuzzy Set, Inference Networks
- Automatic Systems
 - Vector Space Model
 - Latent Semantic Indexing

• Adaptive

Probabilistic, Genetic Algorithms , Neural Networks

Manual Systems

- Boolean Retrieval
- Extended Boolean Retrieval
- Fuzzy Set Retrieval
- Vector Space Model

Manual

- For many years, most commercial systems were only Boolean.
- Most old library systems and Lexis/Nexis have a long history of Boolean retrieval.
- Users who are experts at a complex query language can find what they are looking for.
- Ex: (t1 AND t2) OR (t3 AND t3) WITHIN 2 Sentences of (t4 AND t5) NOT (t9 OR t10).

Boolean Retrieval

- Expression :=
 - term
 - -(expr)
 - NOT expr
 - expr AND expr
 - $\, expr\, {\rm OR}\, expr$
- (cost OR price) AND paper AND NOT article

Extended (Weighted) Boolean Retrieval

- Ranking by term frequency (Sony Search Engine)
 x AND y: tf_x x tf_y
 x OR y: tf_x + tf_y
 - NOT x: 0 if $tf_x > 0$, 1 if $tf_x = 0$
- User may assign term weights cost and +paper

Summary of Boolean Retrieval

- Pro
 - Can use very restrictive search
 - Makes experienced users happy
- Con
 - Complex query language, confusing to end users

Retrieval Strategies

- Given a query of *t* terms, find a measure of relevance between the documents and the query. Rank documents based on this measure.
- Most commonly used strategy is the vector space model (proposed by Salton in 1975)

Vector Space Model

- Documents are mapped into term vector space.
- Each dimension represents tf-idf for one term.
- Queries are treated like documents.
- Documents are ranked by closeness to the query. Closeness is determined by a similarity score calculation.

VSM Example

• Consider a two term vocabulary, D and I Query: A I

Cosine Measure

• If X and Y are two *n*-dimensional vectors <x_{i>} and <y_i>, the angle **q** between them satisfies:

 $- \mathbf{X} \mathbf{Y} = |\mathbf{X}| |\mathbf{Y}| \cos \boldsymbol{q}$

 $- \cos \boldsymbol{q} = X Y / (|X||Y|)$

Similarity Measures

• Inner Product

 $-\operatorname{SC}(Q, D_i) = (D_i)(Q)$

- Cosine - SC(Q, D_i) = (D_i)(Q) / ($|D_i||Q|$)
- Dice

 SC(Q, D_i) = 2(D_i)(Q) / (D²) (Q²)

 Jaccard
- Jaccard - SC(Q, D_i) = (D_iQ) / ((D_i)² + Q² - |D_i||Q|)

VSM Similarity Measure

- Similarity is computed as the Euclidean distance from the query to each document:
- $SC(Q, D_2) = (Q D_2) / |Q| |D_2|$ Q = <1,1> $D_2 = <1,0>$ $Q D_i = (1)(1)+(1)(0) = 1$ $|Q| = (1^2 + 1^2)^{1/2} = 2^{1/2} = 1.414$ $|D_2| = (1^2 + 0^2)^{1/2} = 1$ $SC(Q, D_2) = (1.414)(1) / (1.414)(1) = 1.0$

Vector Example				
Q: "gold silver truck"				
D ₁ : "Shipment of gold delivered in a fire"				
D2: "Delivery of silver arrived in a silver truck"				
D3: "Shipment of gold arrived in a truck"				
Number of documents a term appears in is called the <i>document frequency</i> .				
 Document Frequency of the <i>i</i>th term (df.) 				
Inverse Document Frequency (<i>idf</i>) = $\log_{10}(n/df)$				
Id	Term	df	idf	
1	a	3	0	
2	arrived	2	0.176	
3	damaged	1	0.477	
4	delivery	1	0.477	
5	fire	1	0.477	
6	gold	1	0.176	
7	in	3	0	
8	of	3	0	
9	silver	1	0.477	
10	shipment	2	0.176	
11	truck	2	0.176	

Algorithm for Vector Space (dot product)

Assume: t.idf gives the idf of any term t q.ff gives the tf of any query term

Begin

Score[] ← 0
For each term t in Query Q
Obtain posting list l
For each entry p in l
Score[p.docid] = Score[p.docid] + (p.tf * t.idf)(q.tf * t.idf)

Final Stage

- Now we have a SCORE array that is unsorted.
- Sort the score array and display top *x* results.

Weights for Term Components

- Classic thing to do is use tf x idf
- Incorporate idf in the query and the document, one or the other or neither.
- Scale the *idf* with a log or even a double log.
- Augment the weight with some constant (e.g.; w = (w)(0.5))

Incorporating Document Length

- Inner Product
 - Longer documents will score very high because they have more chances to match query words
- Cosine
 - Longer documents are somewhat penalized because the weight of the document |D| may be very high.
- Singhal found that longer documents tend to be more relevant than shorter ones so he proposed an adjusted *document weight*.

Document Length Normalization

Summary: Vector Space Model

- Pros
 - Fairly cheap to compute
 - Yields decent effectiveness
 - Very popular -- SMART is most commonly used academic prototype
- Cons
 - No theoretical foundation
 - Weights in the vectors are very arbitrary
 - Assumes term independence