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Abstract 

Because of the wide variety of contemporary practices used in the automatic 
syntactic parsing of natural languages, it has become necessary to analyze and 
evaluate the strengths and weaknesses of different approaches. This research is all 
the more necessary because there are currently no genre- and domain-independent 
parsers that are able to analyze unrestricted text with 100% preciseness (I use this 
term to refer to the correctness of analyses assigned by a parser). All these factors 
create a need for methods and resources that can be used to evaluate and compare 
parsing systems. This research describes: (1) A theoretical analysis of current 
achievements in parsing and parser evaluation. (2) A framework (called FEPa) that 
can be used to carry out practical parser evaluations and comparisons. (3) A set of 
new evaluation resources: FiEval is a Finnish treebank under construction, and 
MGTS and RobSet are parser evaluation resources in English. (4) The results of 
experiments in which the developed evaluation framework and the two resources for 
English were used for evaluating a set of selected parsers. 
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1 Introduction 
 
This thesis reports research into the syntactic parsing of natural languages and 
evaluation of parsing systems. In this work, techniques and algorithms for parsing 
have been analyzed and compared on the theoretical level, and resources, methods 
and tools for the practical evaluation and comparison of syntactic parsers have 
been designed and implemented. A natural language is a language that has 
evolved through use in a social system, and is used by human beings for everyday 
communication. A grammar specifies the rules for how each sentence is 
constructed from parts. Parsing is the process of identifying the syntactic structure 
of a given sentence. A natural language parser is computer software that 
automatically performs parsing and outputs the structural description of a given 
character string in the context of a specific grammar. The output of a parser is 
called a parse and it describes the structure of a particular analyzed language 
fragment. 
 

1.1 Motivation 
 
Because of the ubiquity of the Internet among other factors, the amount of 
available textual information has grown explosively in past decades. This has 
resulted in an ever-increasing demand for software that can automatically process 
the information contained in natural languages. In the early days of natural 

language processing (NLP), the complexity of processing natural languages was 
drastically underestimated by most researchers involved in that field. Although 
their work was largely unsuccessful at the time, the first applications were 
developed in the 1950s for machine translation (MT) (see, for example, Locke & 
Booth (1955)). Later successful applications include systems for information 

extraction, document summarization, message classification, and question 
answering. 
 
Parsing is not usually a goal in itself, but a parser is used as a component of NLP 
and artificial intelligence (AI) systems. Education is a novel application field for 
parsers and other NLP techniques. Parsing systems are applied, for example, in 
computer-assisted and automatic assessment of free-text responses (i.e. essays) 
(Hearst 2000, Kakkonen & Sutinen 2004). The ability to process natural languages 
plays a key role in information retrieval (IR) (Baeza-Yates & Ribeiro-Neto 1999). 
The analysis of syntactic and semantic structures is necessary for advancing from 
data retrieval (exact searching based on numeric and structured data) towards 
more “fuzzy” retrieval of information from textual data. 
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One can get some idea of how great the current demand for NLP applications has 
become at the time of writing (August 2007) by looking at the European Union 
(EU) with its 27 member states and 23 official languages (Mariani 2005, European 
Union 2007). Multilingualism has become one of the main economic, political and 
cultural challenges in the EU because of the desire of member states to preserve 
their languages and cultures while taking for granted the possibility of inter-
lingual communication among the citizens of the EU. The cost of the translation of 
documents and having hundreds of interpreters on hand to translate between the 
506 language pairs call for investigating the use of NLP systems for automating at 
least part of the processes. 
 
Evaluation plays a crucial role in NLP and computational linguistics (CL). 
Evaluation methods and tools are needed to allow the developers and users to 
assess, enhance and choose appropriate systems (Gaizauskas 1998). It has become 
clear that standardized evaluations and system comparisons need to be undertaken. 
The contemporary interest in evaluation in the research community has inspired 
initiatives such as the Evaluation in Language and Speech Engineering (ELSE) 
project of the EU (Clark 2005), starting a biannual conference series entitled 
International Conference on Language Resources and Evaluation (LREC), first 
held in 1998, and launching a journal entitled Language Resources and Evaluation 
in 2005 (Springer 2005). 
 
My motivation for undertaking research into parser evaluation was stimulated by 
the fact that there are no genre- and domain-independent parsers that are able to 
analyze unrestricted text with 100% preciseness1. This deficiency brought home to 
me the need for linguistic resources, methods and tools for evaluating parsers and 
comparing the characteristics of parsing systems. A linguistic resource is a set of 
machine-readable language data and descriptions. There are several types of such 
resources such as spoken and written corpora, lexical databases, treebanks and 
terminologies. Treebanks, for example, are collections of syntactically annotated 
sentences that serve as the “gold standard” to which parsers’ outputs might be 
compared. There are as yet no linguistic resources suitable for parser evaluation in 

                                              
1 Instead of utilizing the commonly used term “accuracy”, I prefer to use the term “preciseness” to 
refer to the correctness of analyses assigned by a parser. I intentionally also avoid using the terms 
“accuracy” and “precision” because of their technical use in evaluation context. Test accuracy 
refers to the proportion of instances that have been correctly classified. It is therefore logical to 
use the term “accuracy” to refer to the percentage of constituents/dependencies or sentences 
correctly parsed. Precision is commonly used as a measure of preciseness evaluation. 
“Preciseness” is a more general term that includes the kind of evaluation that uses the accuracy or 
precision as an evaluation measure. See Sections 8.1, 9.1., 9.3, 10.2 and 10.6.3 for more details. 
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Finnish. While linguistic resources do exist for English, there is a need for 
resources that are built for the needs of parser evaluation. 
 
An evaluation method defines the way in which the performance2 of a parser may 
be quantified. An evaluation framework consisting of the resources and methods 
can be used by practitioners of NLP to compare the strengths and weaknesses of 
diverse parsers and by parser developers to guide their work by pinpointing 
problems and providing analytical information about a parser’s performance. 
There is, in addition, a lack of comprehensive evaluation tools that can facilitate 
practical evaluations. An evaluation tool is a software program that 
operationalizes an evaluation method or a set of evaluation methods. 
 

1.2 Syntax and Parsing 
 
Table 1-1 lists the seven levels of knowledge of natural languages distinguished by 
(Allen 1995). 
 
Table 1-1. Types of knowledge of language. The levels most relevant to this work 
are highlighted (Allen 1995). 

Type of knowledge  Function 
Phonetics and phonology How words are related to the sounds that realize them 
Morphology How words are constructed from basic units 
Syntax How words can be put together to form sentences 
Semantics Meaning of words and sentences 
Pragmatics How sentences are used in different situations 

Discourse 
How preceding sentences affect the interpretation of a 
succeeding sentence 

World knowledge General knowledge about the world that language users possess 
 

Morphology is the study of word formation. The morphological processes of a 
natural language create completely new words or word forms from a root form. 
Syntax is the linguistic study that describes how a language user combines words 
to form phrases and sentences. Semantics is the study of the meanings created by 
words and phrases. It is the purpose of natural language parsers to describe the 
syntax of the input sentences, usually without any reference to semantics (Sikkel 
1997). Some parsers can also perform a morphological analysis to capture the 
structure of individual words. 
 

                                              
2 In this work, the word performance refers to the quality of a parser relative to a specific criterion. 
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Syntactic parsing is a prerequisite for understanding speech or written text. A 
system for understanding a natural language usually includes the processing stages 
that are illustrated in Figure 1-1. 
 

Input: "Pele kicked the ball."

Syntactic parsing

Semantic interpretation

person: Pele

AGENT

object: ball

OBJECTkick

World knowledge interpretation

person: Pele

GOAL

object: ball

OBJECTkick

Expanded representation

object: the net

AGENT

fieldLOCATION

shoeINSTRUM.

Question answering, 
machine translation system

etc.

Parse tree

Internal representation

 

Figure 1-1. The stages of processing in a language understanding system (adapted 
from Luger & Stubblefield 1998). 
 
Figure 1-1 shows how the results of syntactic parsing are combined with 
information about the meaning of the words in a sentence to perform semantic 
interpretation for creating an internal representation of the meaning. An expanded 
meaning representation can be created by adding structures from a world 
knowledge base. Contemporary NLP systems neither have access to the amount of 
world knowledge possessed by human beings, nor are they capable of reasoning 
from available knowledge as well as humans. 
 

1.3 Perspectives on Evaluation 
 
Before an evaluation of a computer software tool can be carried out, a set of 
criteria needs to be defined. In parser evaluation, these could include, for example, 
correctness of the output, efficiency and usability. The correctness of a parser can 
be measured by checking the output produced by a system. Evaluating the output 
of a parser requires one to make judgments about the grammaticality or 
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“correctness” of the structural descriptions assigned by the system. The efficiency 
of a parser can be measured in terms of how a parser utilizes time and space. The 
usability of a system can be measured by, for example, asking users’ opinions 
about how easy or otherwise it is to use the system. 
 
Parsers can be evaluated from the point of view of developers, end-users and 
managers (TEMAA 1996). Developers need to be able to track the progress of the 
system with which they are working. End-users need to know how different 
parsers compare so that they can select a parser that is best suited to their needs 
and requirements. Managers need to have information on which to base decisions 
about resource allocation. Although parsers are used as components of NLP 
applications, the evaluation of parsing systems cannot solely be based on a 
comparison of their performance as parts of whole systems. 
 
An important distinction for this research is between intrinsic, extrinsic, and 
comparative evaluation (Srinivas et al. 1998, Hirschman & Thompson 1998). 
Intrinsic evaluation focuses on measuring the performance of a single parser and 
on detecting errors in its output. Intrinsic evaluation also provides the developers 
of parsers with a means to identify the changes and amendments that would 
improve parser performance. Extrinsic evaluation means the process of evaluating 
a parser when it is an embedded component of an NLP application. This kind of 
evaluation is based on the performance of the whole NLP application rather than 
on a direct observation of the parser and its execution time. This type of evaluation 
is especially useful for end-users and managers because it allows them to select an 
appropriate parser for the task at hand. Comparative evaluation means comparing 
different parsers and it is useful for both end-users and system developers alike. 
 
This research makes use of both intrinsic and comparative methods. Comparative 
evaluation is the more complicated of the two because, firstly, it is difficult to 
make direct comparisons because parsers often use different types of output 
formats, and, secondly, the comparison of differences in efficiency is not 
straightforward because parsers utilize different programming languages and 
different platforms (Unix, Windows, Linux). 
 

1.4 Research Tasks 
 
Four research tasks were identified: 

a) Theoretical analysis of current achievements in state-of-the-art parsing and 
parser evaluation; 
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b) Design and implementation of linguistic resources for evaluating parsers of 
Finnish and English; 

c) Derivation of a framework for parser evaluations; and 
d) Carrying out practical parser evaluations by using the created resources, 

methods and tools. 
 
Parser evaluation, like any research, is built on the foundations of the earlier 
research methods and findings. A researcher needs to be completely conversant 
with the theory, methods and algorithms of parsing before he or she can devise 
new evaluation practices or undertake parser evaluations (research task a). It is 
furthermore of utmost importance to appreciate and understand the evaluation 
resources, methods and tools at his or her disposal before undertaking any 
practical research into parser evaluation. 
 
Since no suitable linguistic resources are available for parser evaluation for 
Finnish, it is necessary first to construct such resources before evaluating parsers 
of Finnish (research task b). An annotation tool, for example, has to be designed 
and constructed before the treebank can be created. Such a tool facilitates a quick 
and error-free annotation process. In addition to designing the Finnish resource, 
two evaluation resources for English were constructed as a part of this research.  
 
Practical parser evaluations and comparisons cannot be undertaken without a 
comprehensive evaluation framework and evaluation tools for carrying out the 
experiments (research task c). While several evaluation methods have been 
devised and some practical evaluations undertaken, these evaluations have usually 
concentrated on a single item of parsers’ performance. In order therefore to 
undertake this research, I had to design an evaluation framework and implement a 
set of evaluation tools.  
 
In the final phase of the research, I carried out a program of practical evaluations 
of selected parsers by using the resources, methods and tools created for this 
purpose (research task d). I, moreover, compared the results of these experiments 
with the findings of the tasks a, b and c. 
 

1.5 Research Methods 
 
The syntactic parsing and evaluation of parsers is an interdisciplinary field 
because it combines CL, linguistics, computer science and mathematics. The 
interdisciplinary nature of the work is reflected in several ways, but especially 
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strongly in the conduct of state-of-the-art parsing. While a dissertation in computer 
science obviously has to be technically anchored, research in the field of parsing 
and CL requires a firm grounding in linguistics and a familiarity with disciplines 
usually associated with the humanities. Even though the adoption of multiple 
perspectives has increased the complexity of this dissertation, the incorporation 
and fusion of two usually distinct academic fields of knowledge has been one of 
the main challenges and most important contributions of this work.  
 
Task a comprises a critical literature review and an analysis of the methods used in 
natural language parsing. It also includes an analysis of the structure and content 
of linguistic resources for evaluation, and a derivation of a set of practices that 
should be employed in designing and annotating parser evaluation resources. Task 
b consists of an application of the practices thus developed to the design and 
construction of new evaluation resources. On the basis of the findings of tasks a, I 
also devised a set of evaluation criteria for parsers and defined evaluation metrics 
for each of the relevant criteria (task c). In addition, a set of software tools was 
designed and implemented for carrying out parser evaluations. Task d has two 
main aims: the testing of the developed evaluation framework and the evaluation 
and comparison of a set of selected parsers. Figure 1-2 below illustrates the 
connections between the four tasks.  
 
 
 
 
Figure 1-2. Connections between the research tasks. 
 
For the practical part of this research, namely the design and implementation of 
the evaluation resources, methods and tools, I utilized the taxonomy of research 
methods devised by Järvinen & Järvinen (2001). 
 
 
 
 
 
Figure 1-3. Those parts of Järvinen & Järvinen’s (2001) taxonomy of research 
methods (relating to the creation and evaluation of innovations) that are relevant to 
this research. 
 
The methods from the taxonomy of Järvinen & Järvinen (2001) that are relevant to 
purposes of this thesis are those that describe the utility of innovations, namely 

c 

a d 

b 

Innovation evaluating 

Researches stressing utility of innovations 

Innovation building 



 

8  

building and evaluating innovations (See Figure 1-3 above). While the evaluation 
of natural language parsers can be regarded as an evaluation of an innovation, the 
development of evaluation framework, tools, resources and methods can be 
regarded as the building of an innovation. In this thesis, I have applied an 
innovation building approach to building resources, methods and tools for 
evaluating innovations (research tasks b and c). I have, in addition, applied the 
built innovation in practice in my evaluation of natural language parsers (research 
task d). 
 
The evaluation of a natural language parser can be viewed as a controlled 
experiment in which as many factors as possible should be under the control of the 
researcher (Järvinen & Järvinen 2001). But Mason (1988) notes that tightness 
(rigidity) of control and the richness (complexity) of reality are two properties that 
need to be compromised and traded against one another in any controlled 
experimental design. As control over experimental conditions increases, the results 
of the experiment become less relevant to real life situations and thus less 
applicable or generalizable. This axiom is especially important in the design and 
construction of parser evaluation resources. While resources that consist of 
artificially constructed test sentences may indeed allow for highly controlled 
experiments, experiments that use such resources are less generally applicable and 
useful than evaluations that are based on naturally occurring running texts. 
 

1.6 Structure of the Thesis 
 
The dissertation is organized as follows: Part I, which consists of Chapters 2, 3, 4 
and 5, addresses parsing technologies. Chapters 2, 3, and 4 describe the current 
state-of-the-art in parsing technology. Each section ends with an analysis of the 
methods discussed and underlines their respective strengths and weaknesses. 
Chapter 5 contains a discussion of the issues and challenges in parsing. 
 
Part II is concerned with parser evaluation resources. Chapter 6 analyzes the 
existing linguistic resources that are applied for parser evaluation purposes. 
Chapter 7 begins with the description of the design for the parser evaluation 
treebank for Finnish, and continues by describing the English evaluation materials 
that were created for this research.  
Part III is concerned with parser evaluation methods and tools. Chapter 8 analyzes 
existing methods and tools for parser evaluation. The developed evaluation 
framework, FEPa, is described in Chapter 9. 
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Part IV of the thesis analyzes the results of the parser evaluation and concludes 
with the findings. Chapter 10 compares the parsers by applying the FEPa 
framework and the developed resources. In addition to the goal of evaluating the 
selected parsers, the aim of the research is to evaluate the FEPa framework. 
Chapter 11 summarizes the key findings of this work and states possible directions 
for future research.  
 
The following papers and articles are published versions of the themes and content 
concerned with the dissertation. In each of the papers, I was the main author. In 
those papers with two authors, the second author acted as supervisor. 
 
[1] Kakkonen, T.: Dependency Treebanks: Methods, Annotation Schemes and 
Tools. Proceedings of the 15th Nordic Conference of Computational Linguistics. 
Joensuu, Finland, 2005. 

The paper contains a survey of existing dependency treebanks and the 
methodologies and tools used for constructing them. The research reported 
in this paper provided the requirements specification and design basis for 
the DepAnn annotation tool and the FiEval treebank. 

[2] Kakkonen, T.: DepAnn - An Annotation Tool for Dependency Treebanks. 
Proceedings of the 11th ESSLLI Student Session at the 18th European Summer 
School in Logic, Language and Information. Malaga, Spain, 2006. 

The paper introduces the DepAnn annotation tool, explains its design and 
provides information about its implementation.  

[3] Kakkonen, T., Werner, S.: The Annotation Scheme for an Evaluation Treebank 
of Finnish. Proceedings of the Biannual Conference of the Society for 
Computational Linguistics and Language Technology. Tübingen, Germany, 2007. 

The paper introduces the design and content of the evaluation treebank of 
Finnish (FiEval) and discusses the reasons why various decisions were 
taken. 

[4] Kakkonen, T.: Developing Parser Evaluation Resources for English and 
Finnish. To appear in the Proceedings of the 3rd Baltic Conference on Human 
Language Technologies. Kaunas, Lithuania, 2007. 

This paper describes the linguistic resources that I developed as part of this 
research. Two of these resources consist of English texts and one of 
Finnish texts. I describe the status of the resources and justify the decisions 
that I made when designing them. 

[5] Kakkonen, T., Sutinen, E.: Towards A Framework for Evaluating Syntactic 
Parsers. Proceedings of the 5th International Conference on Natural Language 
Processing. Turku, Finland, 2006. 
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This paper offers a survey of parser evaluation methods and outlines a 
framework for experimental parser evaluation. The proposed framework 
focuses on intrinsic evaluation and provides useful information for parser 
developers. We also discuss ways of using the framework in comparative 
evaluations. 

[6] Kakkonen, T.: Robustness Evaluation of Two CCG, a PCFG and a Link 
Grammar Parsers. Proceedings of the 3rd Language & Technology Conference: 
Human Language Technologies as a Challenge for Computer Science and 
Linguistics. Poznan, Poland, 2007. 

Robustness refers to the ability of a device to cope with exceptional 
circumstances outside its normal range of operation: a parser is robust if it 
is able to deal with phenomena outside its normal range of inputs. I carried 
out a series of evaluations of state-of-the-art parsers in order to find out 
how they perform when faced with input that contains misspelled words. In 
this paper, I also propose two measures for evaluation based on a 
comparison of a parser’s output for grammatical input sentences and their 
noisy counterparts. I used these metrics to compare the performance of four 
parsers and analyzed the decline in each of the parser’s performance as 
error levels increased. 

[7] Kakkonen, T., Sutinen, E.: Coverage-based Evaluation of Generalizability of 
Six Parsers. To appear in the Proceedings of the Third International Joint 
Conference on Natural Language Processing. Hyderabad, India, 2008. 

We carried out a series of evaluations of different types of parsers using texts 
from several genres such as newspaper, religion, law and biomedicine. This 
paper reports the findings of these experiments. 

 
Papers [2], [5], [6] and [7] were accepted based on a full review and papers [1], [3] 
and [4] based on the abstract. 
 
Figure 1-4 illustrates the structure of the thesis and the publications related to each 
chapter. Table 1-2 summarizes the chapters of the thesis and relates each chapter 
to the research tasks and the papers published. 
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Figure 1-4. The structure of the dissertation and the publications based on the 
content of each chapter. 

 
Table 1-2. The structure of the dissertation. 

Part Chapter 
Research 

task Papers 

2 Preprocessing a - 
3 Syntactic analysis – Grammars a - 

4 Syntactic analysis – Parsing algorithms a - 
I Syntactic parsing of 

natural languages 

5 Parsing: problems and solutions a - 
6 Analysis of existing resources and schemes a, b 1 II Linguistic resources 

for evaluation 7 New evaluation resources b 1, 2, 3, 4 

8 Analysis of existing methods and tools a, c 5 III Evaluation methods 
and tools 

9 FEPa – A framework for evaluating parsers c 5 
IV Evaluations 10 FEPa in use c,d 6, 7 

11 Conclusion and future work - - 
 
Although this thesis is in the field of computer science, it assumes a familiarity 
with the fundamentals of linguistics. Readers who are unfamiliar with the concepts 
of morphology and syntax may care to refer to Appendix A that contains a 
glossary of grammatical terms and terminology. The textbooks of Tallerman 
(1998), Katamba (1993) and Haspelmath (2002) are among the best sources of 
further information. A reader who is already well acquainted with parsing 

5 Parsing: problems & solutions 

II Resources for evaluation 

6. Analysis of existing resources 
and schemes [1] 

7. New evaluation 
resources [1, 2, 3, 4] 

III Evaluation methods and 
tools 

8 Analysis of existing methods 
and tools [5] 

9 FEPa – A framework for 
evaluating parsers [5] 

11 Conclusion 

IV Evaluations 

10 FEPa in use [6, 7] 

I Syntactic parsing of natural 
languages 

2. Preprocessing 

Syntactic analysis 

4 Parsing algorithms 3 Grammars 

1. Introduction 
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technologies might prefer to concentrate on Parts II, III and IV, which cover the 
main contributions of this work. However, since Part I draws together a great deal 
of scattered information about different approaches to parsing, it offers new 
perspectives and insights into parsing research. One of the main challenges in the 
theoretical analysis of the contemporary practices in syntactic parsers was the 
heterogeneity of the concepts and notations used by the researchers in the field. 
This work analyzes different approaches by using a coherent set of concepts and 
uniform notations. 
 
As far as I know, this thesis represents the only published review of current best 
practices in parsing and parser evaluation on this scale. Apart from conference 
papers and journal articles that describe a single or only a few evaluation schemes 
or resources, this thesis is the first work on parser evaluation to deal 
comprehensively with this topic by covering theoretical and practical evaluation as 
well as evaluation tools and linguistic resources for evaluation. The example 
sentences in the thesis were either invented by the author or taken from literature 
and adapted to a single genre, football. 
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I SYNTACTIC PARSING OF NATURAL LANGUAGES 

2 Preprocessing 
 
Before the syntactic analysis can be performed, input sentences must be 
preprocessed: Firstly, the units (sentences and words) need to be identified by 
segmentation. Segmentation methods are introduced in Section 2.1. In the second 
place, it is necessary to perform part-of-speech (POS) tagging and disambiguation 
(the process of selecting the correct tag from a set of possible tags) (Section 2.2) 
and a morphological analysis (Section 2.3). In syntactic analysis (Chapters 3 and 
4), the syntactic structures of each input sentence are identified and marked. The 
labels assigned to words to denote their POS, morphological and syntactic roles 
are called tags. A tagset is the collection of tags used for a particular task. Figure 
2-1 illustrates the sub-processes of syntactic parsing. 

 

The attacker's responsibility is to score goals. The attacker generally restricts his play to the...

The attacker's responsibility is to score goals. The attacker generally restricts....

The attacker's responsibility is to

The attacker's responsibility is to score goals .

noun
genitive
singular

noun
nominative

singular

verb
present tense

3rd person singular

Dis-
ambiguation

Segmentation
Sentences

Words

Input

The
determiner

article

attacker's responsibility is to

adverb preposition ...
infinitive
marker

POS tagging
and morphological

analysis

Syntactic
analysis

noun
genitive
singular

noun
nominative

singular

verb
present tense

3rd person singular

determiner
article ...

infinitive
marker

 
Figure 2-1. Segmentation, POS tagging and disambiguation, morphological 
analysis, and syntactic analysis. These processes are often interwoven. POS 
tagging and morphological analysis, for example, are typically performed 
simultaneously. 
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2.1 Segmentation 
 
Segmentation, the process of identifying the text units, consists of sentence and 
word segmentation. Segmentation is an essential part of preprocessing; in order to 
assign structural descriptions to a sentence and the words in it, it is necessary first 
to identify these units.3 The methods used in sentence segmentation can often also 
be applied to word segmentation. 
 
Sentence segmentation is complicated because of the fact that end-of-the-sentence 
punctuation marks are ambiguous. In addition to the end of sentence, a period can 
denote, for instance, an abbreviation or a decimal point. An exclamation point and 
a question mark may occur within parentheses or quotation marks. Furthermore, 
the use of abbreviations, dates, and so on, depends on the text genre4. The number 
and type of ambiguous punctuation marks therefore vary tremendously between 
texts. 
 
Example 2-1. Two sentences that illustrate period-related word segmentation 
decisions (adapted from Palmer 1994): 

The game was rescheduled to Saturday 5 p.m. Sunday would be too late. 
The game was played at 5 p.m. Saturday to avoid the rain. 

 
In its simplest form, a word segmenter consists only of a set of rules that reduces 
any sequence of spaces, tabulation marks and new lines to a single space, and 
considers everything between two spaces to be a token. A token is a sequence of 
alphabetic characters or digits or a single non-alphanumeric character. 
 
One solution to the segmentation problem is to use regular expression grammars 

that set out to identify patterns of characters that signal the way in which sentences 
end (for example “period-space-capital letter”) (Palmer 1994). More advanced 

                                              
3 It is simpler to segment texts in languages that use Latin or Cyrillic alphabets that indicate word 
boundaries with spaces and punctuation marks than it is in languages that use Chinese-derived 
writing systems (Grefenstette & Tapanainen 1994). While most published work in word 
segmentation report on segmentation in Chinese, this research is limited to segmentation for the 
Latin alphabet. 
4 The classification of texts in terms of domain, genre, register and style is a rather controversial 
issue (see, for example, discussion by Lee (2001)). A detailed analysis of these issues falls outside 
of the scope of this thesis. The purpose of this research is not to investigate the classification of 
texts but rather to undertake a practical evaluation and assessment of the extent to which any 
typology of texts exerts an influence on parsing performance. I have therefore adopted a 
simplified approach by indicating differences between texts by using the word genre. One may 
think of genres (in this sense) as indicating fundamental categorical differences between texts that 
are revealed in sets of attributes such as domain (e.g. art, science, religion, government), medium 
(e.g. spoken, written), content (topic, theme) and type (narrative, argumentation, etc.). 
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systems also take into account the preceding and succeeding words, and make use 
of lists of abbreviations and proper names. When they have been properly 
configured, such systems achieve an accuracy rate of up to 99%. 
 
Karttunen (1996), for example, proposes a word segmentation approach based on 
finite-state transducers (FSTs)5. The word segmenter is based on FSTs 
accompanied by a list of multiword tokens. Yet another approach is to use 
extensive genre-specific word lists and name recognition routines as well as 
modules that analyze the structure of words. The SATZ system (Palmer 1994) is 
based on neural networks with descriptor arrays that represent the context that 
surrounds punctuation marks. Such contexts are modeled by the probability that 
POS tags will precede and also succeed words. In Palmer’s experiments the 
system achieved a 98.5 to 99.3% accuracy with English, German and French data 
after an automatic training with between one hundred and a few hundred training 
examples. 
 
Modifying a segmenter until it is able to cope with new text genres and languages 
can be difficult. For example, a segmenter based on a regular expression grammar 
cannot be easily adapted. These special-purpose grammars are limited to the text 
genre for which they were developed, and any attempt to adapt them to different 
genres or languages would be complicated. The greatest barrier to accurate word 
segmentation involves the recognition of words that do not occur in the word lists 
of the segmenter. 
 
It is therefore far more practical to devise a trainable algorithm that can 
compensate for such inadequacies rather than to attempt to construct a single 
exhaustive word list or a series of genre-specific lists. Without going into details 
about the inner workings of such systems, one may observe that accuracy rates of 
up to 80% can be achieved with English de-segmented texts (texts in which the 
spaces have been removed and word boundaries are not explicitly indicated) after 
training with only 4,500 sentences. Another example of a highly adaptable 
approach is Chanod and Tapanainen’s (1996) system, in which segmentation is 
interleaved with morphological analysis. 
 

                                              
5 A finite-state machine (FSM) is a model composed of a finite number of states, transitions 
between those states, and actions. In contrast to an FSM that has a single tape, an FST consists of 
two tapes. The tapes are typically viewed as an input tape and an output tape. The transducer 
translates the contents of its input tape to its output tape. 
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2.2 Part-of-Speech Tagging and Disambiguation 
 
In POS tagging, the appropriate word class tag is automatically assigned to each 
word.6 The process of selecting the correct tag from a set of possible tags is called 
POS disambiguation (see s Section 2.2.3). The size of tagsets varies considerably. 
For example, the widely used POS tagsets for English, namely the Brown Corpus 
(BC) (Francis & Kucera 1979) and the Penn Treebank (PTB) (Marcus et al. 1993) 
tagsets, consist of 87 and 45 tags respectively. Definitions of the task that a POS 
tagger performs are given in Definition 2-1. 
 

Definition 2-1. POS alignment and grammatically correct POS alignment. 

Let =δ (α1 α2…αn), be a sentence, where αi, i = 1,…,n are the words. Let T = (t1 

t2...tn) be a sequence of POS tags ti, i = 1,…,n. The pair (δ ,T) is a POS 
alignment of a sentence. A grammatically correct POS alignment is an 
alignment in which the POS tag for each word has been correctly assigned. For 
an ambiguous sentence, there exists a set of grammatically correct POS 
alignments. 

 
The task that a POS tagger performs is to find the grammatically correct POS 
alignment(s) for each sentence in the input.  
 
Example 2-2. POS tagging result for the sentence ”The attacker’s responsibility is 
to score goals.” W = (The attacker’s responsibility is to score goals), T = 
(Determiner Noun Noun Verb to Verb Noun). 
 

 
The two basic approaches to POS tagging are rule-based and probabilistic. The 
earliest POS taggers were composed of a set of hand-constructed rules and a small 
dictionary. In such cases tagging was based on word properties such as an initial 
capital letter, suffixes and contextual information based on the succeeding and 
preceding word. The third approach, transformation-based tagging, combines 
components from both the rule-based and probabilistic methods (Brill 1995).  
 

                                              
6 The classical set of POS classes includes the following: noun, verb, adjective, article (or 
determiner), preposition, adverb, conjunctive adverb, coordinate conjunction, and interjection. 
While such a set of classes is often used to teach grammar in schools, it is not adequate for a 
comprehensive syntactic description but serves only as a basic set that most linguists and POS 
tagging systems would use as a starting point. 

The<Determiner> attacker’s<Noun> responsibility<Noun> is<Verb> to<to>  score<Verb> goals<Noun>. 
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2.2.1 Probabilistic tagging – from extended rule-based methods to Hidden 
Markov Models 
 
In a probabilistic tagger the probabilities for POS tags for each word are 
automatically learned from a training corpus. The probabilistic model assigns the 
most probable tag for each word in the input. The first probabilistic tagger by 
Stolz et al. (1965) used a small dictionary and rules for tagging the most common 
words, and applied probabilities derived from a manually annotated text for words 
that could not be identified by either the rules or the dictionary. 
 
Since the development of the fundamental Hidden Markov Model (HMM) 
methods during the late 1980s, HMMs have been widely used for POS tagging 
(for example, Church (1988) and DeRose (1998)). In these HMM-based n-gram 
models, it is typical that a simplifying assumption is made in order to reduce the 
number of probabilities to be estimated (Weischedel et al. 1993). Rather than 
assume that the current word wi depends on all previous words and tags, one 
assumes the tag ti depends only on the previous n-1 tags, and not all the previous 
tags. For example, a 3-gram model assumes that the probability of each tag ti can 

be approximated by its local context consisting of the tags ti-2 and ti-1; ( )12 , −− iii tttP . 

 
The taggers by Weischedel et al. (1993) and Merialdo (1994) are fully HMM-
based. The probabilities can be estimated for an HMM tagging model by using 
either supervised or unsupervised learning (Weischedel et al. 1993, Merialdo 
1994). While training is undertaken with the use of manually annotated data in 
supervised learning, training data is not annotated in the case of unsupervised 

learning. 
 
Maximum entropy (ME) (log-linear) models such as MXPOS (Ratnaparkhi 1996) 
and the Stanford POS tagger (Toutanova & Manning 2000), have been successful 
in tagging. ME is a method for analyzing available information from a noisy set of 
data in order to determine the probability distribution. These models offer a way of 
combining diverse pieces of contextual evidence (e.g. the surrounding words) in 
order to estimate the probability of a certain POS tag occurring in a specific 
linguistic context (Ratnaparkhi 1997a). The procedure used by ME modeling is to 
choose the probability distribution p that has the highest entropy of all 
distributions that satisfy a certain set of constraints.  
 
For instance, in MXPOS the context is typically defined as the sequence of several 
words and tags preceding the current word wi (Ratnaparkhi 1996, 1997a). 
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Ratnaparkhi defines the probability model over Τ×Η , where Η  is the set of 
possible word and tag contexts (referred to as histories), and Τ  is the set of 
permitted tags. The probability of history hi together with tag ti, p(hi,ti), is defined 
as: 

( ) ( )
∏=
=

k

j

thf
jii

iijthp
1

,
, απµ       (2-1) 

In Equation 2-1 π  is a normalization constant, { }kααµ ,...,, 1  are the model 

parameters and { }kff ,...,1  features, where ( ) { }1,0, ∈iij thf . Features encode 

information that contribute to predicting the tag of wi. These include the tags 
preceding wi and the spelling of wi. A feature may activate (and is set to 1) on any 

word or tag in the history hi. Each parameter jα  corresponds to a feature fj. These 

are set in the training phase to maximize the likelihood of the training data. 
 

2.2.2 Transformation-based methods – combining rules and probabilities 
 
Transformation-based error-driven learning, a combination of probabilistic and 
rule-based approaches, has been applied to POS tagging (Brill 1995). The rewrite 

rules for assigning the correct tags are learned automatically by statistical 
inference. The rules are derived from transformation templates.7 Figure 2-2 
illustrates how the tagger works. 

 
 
 
 
 
 
 
 

Figure 2-2. Transformation-based tagging (Ramshaw & Marcus 1996). 
 
The transformation rules are learned in the following way (Figure 2-2). First, in 
the initial state, words are set with an initial tag by assigning the most likely tag or 
the noun tag to each word. Secondly, all the possible transformations are applied 
to the unannotated training text, and this creates annotated text. Thirdly, the 
tagging produced in the second phase is compared to the truth, a manually 

                                              
7 A transformation contains two components: a rewrite rule and a triggering environment. An 
example of this is: “Change the tag from IN (preposition or subordinating conjunction) to RB 
(adverb) if the word two positions to the right is ‘as’.” 

Unannotated text 

Truth Annotated text 
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Learner Rules 
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annotated text. Finally, the transformation rule that yields the highest reduction in 
tagging errors is chosen and applied to the learning corpus. The process continues 
until no transformations are found that reduce the error rate.  
 

2.2.3 POS disambiguation 
 

The complexity of the tagging problem is caused by the fact that an ambiguous 
word may have several possible tags. Words that have one possible POS tag are 
called unambiguous. In the BC, for example, about 11% of the words are 
ambiguous between two or more POS tags (Charniak 1993). Words have up to 
seven possible tags in the corpus. Since ambiguous words tend to be words that 
occur frequently, over 40% of the word instances are ambiguous. 
 
POS disambiguation, selecting the correct tag for each word, is made simpler by 
the fact that the various tags for a word are not equally likely. While some taggers 
try to guess a single POS tag for each word, others leave some ambiguities 
unresolved. One approach to POS disambiguation, namely Constraint Grammar 
(CG), is to use manually written constraints that allow for the discarding of 
contextually illegitimate ones from a list of all possible readings8 for a word 
(Voutilainen & Heikkilä 1993). A constraint could, for example, remove all finite 
verb readings of a word wi if the immediately preceding word wi-1 is “to”. 
 

2.2.4 Analysis 
 
This section analyses the POS tagging models on the basis of their accuracy in 
assigning correct tags, and considers the ways in which current best practice in 
tagging might be even further improved. 
 
The earliest, dictionary-consulting and rule-based POS tagging methods achieved 
an accuracy of somewhat over 90 per cent, measured as the percentage of the same 
tags assigned by the system and human taggers (Klein & Simmons 1993). The 
most obvious disadvantage of rule-based POS tagging methods is the unavoidable 
labor-intensiveness of rule writing. Training a probabilistic tagging model would 
reduce the need for such efforts. Table 2-1 compares the results obtained with the 
taggers discussed above. 
 

                                              
8 A reading represents the word paired with its POS and other morphosyntactic tags. Clearly, an 
ambiguous word has more than one reading. 
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Table 2-1. An overview of the results in POS tagging. The results are taken from 
the papers cited. The same data (Beal 1988) was used in all experiments.  

Tagger Approach Training set 
(words) 

Accuracy 

Weischedel et al. (1993) HMM 64,000/~1,000,000 96.3/96.7 
Merialdo (1994) HMM ~1,000,000 97.0 

MXPOS (Ratnaparkhi 1996) ME ~960,000 96.4 
Stanford tagger (Toutanova & Manning 

2000) 
ME ~1,000,000 96.9 

Brill (1995) 
Transformation
-based learning 

64,000/600,000 96.7/97.2 

 
State-of-the-art HMM taggers achieve an accuracy rate of around 97% when they 
have been trained with supervised learning. Unsupervised learning is useful when 
no manually annotated data is available. In the experiments of Merialdo (1994), 
the accuracy dropped by roughly 10 percentage points when unsupervised learning 
was applied. Using just 100 annotated sentences for training outperformed the 
accuracy achieved by the unsupervised method. It is possible to define and 
incorporate much more complex statistics in the ME framework if one does not 
restrict oneself to n-gram sequences9. But this, as is indicated by the results above, 
does not seem to boost practical performance.  
 
Samuelsson and Voutilainen (1997) reported a comparison with a rule-based CG 
tagger and Church/DeRose type trigram HMM-taggers10 on BC data. The results of 
the experiment are summarized in Table 2-2. 
 
Table 2-2. The accuracy of CG and HMM taggers reported on different ambiguity 
levels (Samuelsson & Voutilainen 1997). Parenthesized values are obtained by 
interpolation.  

% tags correct Ambiguity 
(tags/word) HMM CG 

1.000 95.3  
1.026 (96.3) 99.6 
1.051 96.9  
1.070 (97.2) 99.9 

 
The results in Table 2-2 give an insight both into the relative accuracy of the two 
approaches and the effects of unresolved ambiguity on accuracy. In addition to the 
fact that CG was superior to the HMM-based tagger in this experiment, the results 

                                              
9 The model by Toutanova and Manning, for example, includes features that check whether all the 
letters of a word are uppercase. It also checks the context until the preceding verb is activated 
when the word contains an uppercase character and is not at the beginning of a sentence, etc. 
10 The HMM-tagger was trained with 357,000 words from the BC and tested with 55,000 words. 
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show that the performance of the HMM tagger suffers considerably when it is 
trained and tested on different corpora as was the case in Samuelson & 
Voutilainen’s experiment. Words unseen in the training phase accounted for 
2.01% of the errors. 
 
Entwisle and Powers (1998) point out that one has to be circumspect about 
accepting the percentage accuracy scores for POS taggers reported in the 
literature. When CG, for example, which is one of the most accurate taggers 
available, was tested with a test set, it became apparent that 18.0% of the words 
were assigned more than one tag and that 94.8% of the words had a correct tag 
among the suggested tags. Thus, only 82.0% of the words had been assigned a 
single, correct tag.  
 
Although the accuracy rates given above are only indicative (because not all the 
experiments were performed with the same sets of POS tags and training data), 
they still offer an insight into the progress made in the POS tagging and current 
state-of-the-art practices in tagging. The accuracy figures for the two types of 
probabilistic POS taggers –HMM and ME-based – are very similar. While a rule-
based tagger, CG, has the highest reported accuracy rate in the literature, this is 
achieved partly by assigning, in some cases, more than one tag per word. This of 
course makes it easier to achieve a high level of accuracy. This feature, however, may 
be an advantage in those cases where a tagger is not able to decide the correct tag for 
a given word. Retuning one tag that is incorrect would cause the sentence analysis to 
fail in later stages. It is difficult on the basis of these results alone to state definitively 
that either of these two approaches is better than the other.  

 
Progress in achieving greater accuracy rates has almost ground to a halt in recent 
years. Ratnaparkhi (1996) notes that the accuracy of state-of-the-art taggers at 
around 96-97% represents the upper limits of what can be achieved, or is at least 
close to it. Because manually written rules and tagged training and testing corpora 
will always contain errors and inconsistencies, it is impossible in practice to reach 
a 100% accuracy rate. Errors in POS tagging lead to problems in later stages of 
parsing. Such errors may in fact be the single most important source of error in 
parsing (Dubey 2005). As I shall point out later in Section 5.1.1, precise POS 
tagging can greatly boost the overall performance of a parser. 
 
Near-100% POS disambiguation accuracy is achievable only by taking into 
account the syntactic contexts in which the words occur. This means that rather 
than as preprocessing, POS tagging should be performed parallel with syntactic 
analysis. 
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2.3 Morphological Analysis 
 

Morphological processing (Section 2.3.1) deals with the analysis and generation 
of word forms.11 In the context of syntactic parsing, one is concerned with the 
former – with analyzing the surface form of a word and producing the output that 
represents the morphological features of any given word. In morphological 
analysis, one recognizes the structure and morphological properties of words 
(Sproat 1992). A morphological analyzer (“word parser”) is needed for 
automatically computing the word information (Section 2.3.2). 
 

2.3.1 Morphology and morphological processing 
 
The morphological processes of a natural language either create word forms from 
the root form or new words. In inflectional morphology, word forms appropriate to 
a particular context are formed from the root of that word (Sproat 1992). In word 
formation, on the other hand, a word is transformed into a different word either by 
derivation or by compounding.12 The main difference between inflection and word-
formation is that the latter is never required by syntax, whereas the former is often 
necessitated by particular syntactic contexts. For a morphological analyzer used in 
a syntactic parser, the main concern is therefore the inflectional morphology. This 
is especially important in parsers of highly inflected languages such as Finnish or 
Turkish. Table 2-3 shows examples of some words and their morphological 
analysis. 
 
Table 2-3. Examples of morphological analyses. The first column gives the 
original word form while the second column shows the morphological features 
that are the result of the analysis. 

Word form Morphologically analyzed form 
players player<noun> <plural> 
kicked kick<verb><past tense> or kicked<adjective> 

run 
run<noun><singular> or  
run<verb> <present tense><non-3rd person singular> or run<verb><past perfect> 

ball ball<noun><singular> or ball<verb><present tense><non-3rd person singular> 
 

                                              
11 In linguistics, a unit called morpheme refers to what is the common sense notion of a word. A 
morpheme is the smallest meaningful constituent of a linguistic expression (Haspelmath 2002). 
For example, the word “unbeatable” consists of three morphemes: “un-“ (meaning not x), “-beat-“ 
and “-able”. “un-“ is also a prefix, “-able” is a suffix. 
12 In derivation, derivational suffixes or prefixes, such as “-ment”, “-ism”, “anti-“, and “dis-“ in 
English, are added to the input word to form a word with a different meaning that might belong to 
a different POS category. In compounding, two or more lexemes are combined into a compound 
word. 
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An approach to morphological processing that is based on looking up full-form 
dictionary entries is bound to fail because of the productive nature of 
morphological processes (Sproat 1992). On the one hand, the word lists would 
eventually become too large to store and process. On the other hand they would 
never be complete because new words are constantly being generated.13 
 
Because most of the forms are formed according to general and regular 
morphological processes, a morphological analyzer can store the base forms and 
compute the other forms according to the rules. The most common type of 
morphological analyzer used as a component of syntactic parser finds all the 
possible forms of a word and lets the parser decide which one of them is the most 
appropriate for that context. 
 

2.3.2 The two-level model 
 
The two-level model (TWOL model) (Koskenniemi 1984) offers a good 
introduction to morphological analyzers for two reasons. Firstly, the 
computational mechanisms used in TWOL are commonly applied in other 
morphological analyzers.14 Secondly, the KIMMO system, which is based on the 
model, is one of the most successful and most widely used morphological analyzer 
(Sproat 1992).  
 
A word is represented in the TWOL model as a direct letter-to-letter 
correspondence between its lexical form and its surface form (Koskenniemi & 
Church 1988). The surface representation is typically a phonemic description of 
the word-form, like “tackled”. The lexical representation, for example tackle+ed, 

tackle<verb> + <past tense>, is a description of the root and affixes of a word. If a language 
has phonological alternations, the two representations are not identical. The task of 
the TWOL rule component is to account for discrepancies between these 
representations.  
 

                                              
13 It would be impractical even to attempt to update such lists – especially for agglutinative 
languages such as Finnish and Turkish. While English may have a limited inflectional system, its 
derivational morphology is complex. One can, for example, derive the forms “computer”, 
“computerize”, “computerization”, “computational”, “recomputerize” etc. from the single root 
“compute”. 
14 The original Koskenniemi (1984) TWOL model was developed for concatenative morphology, 
in which words are formed by concatenating series of morphemes together. Concatenative 
morphology is especially interesting, since it is the most common model cross-linguistically 
(Sproat 1992). In agglutinative languages, inflectional morphology is based wholly on 
concatenation. 
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The KIMMO morphological analyzer has two main components: the rules and the 
lexicon (Karttunen 1983). The lexicon lists all the morphemes and specifies 
morphotactic constraints. The rules describe the phonological and orthographic 
alternations of word forms. Figure 2-3 illustrates the main components of 
KIMMO, and Figure 2-4 illustrates the structure of the lexicon in KIMMO. 
 
 
 
 
 
 
 

Figure 2-3. The main components and functions of the KIMMO morphological 
analyzer (adapted from (Antworth 1994)). The recognizer applies the rules and the 
lexicon to recognize surface form input and then outputs the lexical form of the 
word. The generator generates surface forms from the lexical forms given as the 
input.  

 
 
 
 
 
 
 
 
 
 
Figure 2-4. Lexicon in the TWOL model. Each lexical entry is marked with 
information of its POS and continuation patterns, indicating zero to n morpheme 
lexicons that can be applied to the word. For example, the continuation patterns of 
the nouns “defender” and “attacker” would indicate that the search can proceed to 
the continuation lexicon of noun suffixes. 
 
The TWOL rules and the lexicon are separated from the processing components. It 
is therefore a relatively straightforward matter to adapt the model to new 
languages because the program itself remains untouched (Sproat 1992). While the 
system was originally implemented for an analysis of Finnish, it was later adapted 
to several languages such as English (Antworth 1994), Turkish (Oflazer 1994), 
Turkmen (Tantuğ et al. 2006), Korean (Kim et al. 1994), and Japanese (Alam 
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1983), many of which have typological properties quite different from those of 
Finnish.  
 

2.3.3 Analysis 
 
As I have noted above, the most common interaction between the morphological 
and syntactic analyzers in a parser consists of the morphological analysis 
component providing a complete list of possible analyses for a word and the 
higher-level component selecting the most appropriate form. It would, however, 
be more desirable to have a bidirectional interaction between the morphological 
and syntactic analysis that would allow one to use the syntactic context to guide 
the analysis of complex word forms and compound words. 
 
A unique feature of the TWOL model compared to the other morphological 
analysis methods of that time was that it was applicable to a wide range of 
languages, even to ones with a nonconcatenative morphology, after some 
modifications. Furthermore, it is relatively straightforward to modify the model for 
new languages. Several augmentations and improvements have been introduced to 
the KIMMO analyzer. In the original system, the rules had to be coded manually. 
Rule compilation is an error-prone activity that calls for a detailed understanding 
of the TWOL model and its rules (Karttunen & Beesley 2001). Koskenniemi 
(1986) developed a rule compiler for automatically constructing the FSTs from the 
rules. 
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3 Syntactic Analysis - Grammars 
 
The most complex task that a natural language parser has to perform is syntactic 
analysis. The two main parts of the syntactic analysis component of a parser are 
the grammar and the parsing algorithm (Pereira 1998, Zaenen & Uszkoreit 
1998).15 The grammar encodes the linguistic rules and specifies how each sentence 
is constructed from its parts. The parsing algorithm applies the rules defined by the 
grammar to a given input. The output scheme defines the format of the parser’s 
output. Figure 3-1 summarizes the main components and the structure of natural 
language parsers. 

Natural language input

Output schemeGrammar

Structured outputParsing algorithm

 
Figure 3-1. The main components of a parser: the grammar, parsing algorithm and 
output scheme. 
 
Grammars can be characterized and compared in many different ways. In Chapters 
3 and 4 I use two different approaches. On the one hand, grammars are 
characterized in terms of their linguistic properties such as background, linguistic 
assumptions, the way in which they classify strings as grammatical or 
ungrammatical, and type of analyses they offer (Chapter 3). On the other hand, I 
also approach the classification of grammars from a processing perspective and 
include the computational complexity of the grammars and their suitability for 
computational purposes (Chapter 4).  
 
The purpose of this chapter is not to provide an exhaustive introduction to the 
types of grammars (i.e. grammar formalisms) that have been developed, but rather 
to identify and discuss the reasons why specific types of grammars can be 
successfully applied in practical parsing systems. Because of the number of 
grammar formalisms that exist, it would not be possible in a work of this nature to 
examine all the formalisms that are applied in parsing, let alone the variants that 

                                              
15 The predominant paradigm in the study of syntax is generative, originating from Noam 
Chomsky’s Syntactic Structures, first published in 1957. In this work Chomsky makes a 
distinction between performance (the process that actually determines what a speaker will say or 
how an utterance is understood in a context) and competence (an abstract characterization of a 
speaker’s knowledge of the language). The distinction between the grammar and the parsing 
algorithm may be referred to as the distinction between Chomsky’s notions of competence and 
performance. Competence refers to the set of abstract rules that express our knowledge of the 
language while performance is defined in terms of how well we actually use these rules. 
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exist in grammar formalisms. I will therefore confine myself to looking at the most 
well-known formalisms that have been successfully applied in existing parsers and 
to discussing their most interesting theoretical features. The conclusions I reach 
may be useful both to parser evaluators and to NLP system developers who are 
looking for a suitable parser for their application. 
 

3.1 Structural Representation 
 
Syntactic structures are often depicted as tree-shaped structures. They are often 
referred to as dependency (D) or phrase structure (PS) trees, depending on the 
kind of representation format they use. While D trees describe sentences with 
dependencies between words, PS trees illustrate phrases and the relationships 
between them. Figure 3-2 shows examples of both a D tree and a PS tree.  
 

the
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noun phrase

determiner
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noun phraseverb

SUBJ
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preposition noun phrase

noundeterminer

Dependency structure Phrase-structure

 
Figure 3-2. Dependency and phrase structure trees for the sentence “The ball is in 
the goal”. 
 

A D tree shows only the word nodes, and these are linked to one another with 
directed binary relations that are called D links. The D tree of a sentence forms a 
DAG that consists of a number of nodes that are equal to the number of words in 
that sentence. A PS tree by contrast shows the words of a sentence in the form of 
the terminals in the leaf nodes. The nonterminals between the root and terminal 
nodes indicate how the sentence is constructed from constituents. 
 
The amount of detail in parsers’ outputs varies from one parser to another. 
Shallow parsers, in comparison to deep parsers, produce a flatter analysis that 
represents only a part of the sentence structure (Abney 1997). Figure 3-3 shows an 
example of the differences between a shallow parse and a deep parse. 
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Figure 3-3. Examples of deep parse (on the left) and shallow parse (on the right) 
for the sentence “The team played.” While the shallow parser has performed POS 
tagging and chunking of NPs and VPs, the deep parser has produced a complete 
parse tree and has, in addition, offered information about the grammatical roles of 
individual words (such as whether they are predicates, subjects, objects, and so 
on). 
 
In the following, I analyze the differences between D and PS representations and 
the consequences of different levels of detail in parsers’ outputs. I also focus on 
the suitability of the two representation formats for describing different kinds of 
languages and analyze how suitable they may be for specific NLP tasks. 
 
The status of the two representation types, PS and D, is a matter of some 
controversy (Nivre 2002). While PS has been favored by the transformational 
syntax community since the time of Chomsky’s early works, there are many 
researchers who regard the D structure as the most fundamental one. But there are 
other theories that describe both representations as primitive. A PS-tree represents 
the structure of a sentence in a linear form as a chain of words, and illustrates it as 
a part-whole construction (Tarvainen 1977). The dependencies between the 
constituents are not distinctly shown. In contrast to this, a D tree marks the phrase 
categories only implicitly. It also does not show the word order.  
 
D trees are better suited to representing the structures of languages that have a 
relatively free word order. 16 Because such languages possess a rich morphology, 
their word order is freer to express syntactic functions. Another advantage of D 
trees is that they offer a straightforward interface between syntactic and semantic 
representation (Covington 2001). D trees can capture much of the predicate-

argument structure (PAS) which is often needed in practical NLP applications. 
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The PS representation is especially useful for expressing languages with very 
limited variations in word order (Covington 1990). Freer variations often produce 
discontinuous constituents that are split up and that are therefore linked by 
overlapping edges. Structures of this kind can cause problems in PS trees.17 Figure 
3-4 illustrates just such a case. 
 
 
 
 
 
 
 
 
Figure 3-4. An example of word order-related problems in a PS tree (Covington 
1990). 
 
The current debate about the relative merits of the D and PS trees emphasizes 
integration and cooperation (Dahl 1980, Schneider 1998). While some elements of 
PS representation are better for handling certain phenomena (such as 
coordination), D relations permit free word order. One should also consider that a 
D tree that specifies word order can be converted, under certain conditions, into an 
equivalent PS tree and vice versa (Covington 1990, Xia & Palmer 2001, Nivre 
2002). 
 
The reason for selecting either shallow or deep processing must be based on the 
NLP application to which the parser will be put (Butt & King 2002). Whereas 
dialogue and MT systems, for example, need in-depth syntactic analysis, a more 
shallow analysis may be quite adequate for IR, message understanding and 
information extraction systems (Oepen et al. 2000). One of the advantages of 
shallow parsing, in comparison to deep syntactic parsing, is that it can be 
performed more quickly (Grishman 1995). It is also often easier to modify a 
shallow parser than it is to modify a deep syntactic parser. But deep parsing can 

                                                                                                                                  
16 Languages such as Russian, Latin and Korean permit extensive variations in word order. On the 
other end of the scale there are languages such as English, Chinese and French. Finnish, German 
and Japanese, among others, fall somewhere between these two extremes. 
17 Many proposals, including scrambling rules (e.g. Ross (1967)) and ID/LP formalism (Gazdar et 
al. 1985) and its modification by Uszkoreit (1987), have been made in order to accommodate 
discontinuous constituents and other word order related phenomena into the PS framework. None 
of them has been completely successful. 
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provide better generalizations across semantic relations18 and capture paraphrasing 
relations between syntactic structures.19 Because of the richness of the information 
that they produce, deep parsing models can also offer estimates about how reliable 
their analyses might be (Oepen et al. 2000). This information can be used for 
avoiding erroneous output and for ranking analyses. 
 

3.2 Basic Concepts and Formal Properties of Grammars 
 

3.2.1 Basic concepts 
 
Any language consists of strings that are represented as segments of symbols of a 
given alphabet. We can define this formally in the following way: 
 

Definition 3-1. Symbol, terminal and alphabet. 
A symbol is a distinguishable character, such as “a”, “b” or “c”. Any 
permissible sequence of symbols is called a terminal (also referred to as a 
word). A finite, nonempty set ∑ of terminals is called an alphabet. 

 
Definition 3-2. String and sets of strings. 

Let ∑ be an alphabet. A finite sequence of symbols S=(x1 x2…xn), 0≥n , 

xi ∑∈  is called a string in alphabet ∑. The length |S| of string S is n. The 

empty string is the sequence of length 0; written ε . ∑* is the set of all 

strings in ∑. In addition, ∑+= ∑*- { ε }. 
 
Definition 3-3. Language and sentence. 

Let ∑ be an alphabet. Any subset L of ∑* is called a language over 

alphabet ∑. Sequence =δ (α1 α2…αn), where niiLi ≤≤∀∈ 1,α , ∈n   is called 

a sentence in language L. 
 
A language follows the rules of a given grammar and is represented by using a 
particular grammar formalism.  
 

Definition 3-4. Grammar, lexicon, rules. 
A grammar G is a description of a language L. A grammar G consists of a 
lexicon and rules. A lexicon is a structure defines the terminals in a 
language. Rules describe how the terminals combine into larger entities.  

                                              
18 For example, the structure of a main clause is the same whether the verb is “to succeed” or “to 
fire”. 
19 For instance, “X tackles Y”, “Y was tackled by X”, “Y, who tackled X”. 
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Definition 3-5. Language generated by a grammar, derivation, grammatical and 
ungrammatical strings. 

Let L(G) denote that grammar G generates language L. The process of 
grammar rule applications is referred to as derivation. L(G) is the set of 
sentences that can be derived by the grammar G. The sentences that 
grammar G generates are referred to as grammatical. The sentences that are 
not generated by G are referred to as ungrammatical. 

 
Definition 3-6. Grammar formalism and grammatical theory. 

A grammar formalism is a language used for expressing grammars. A 
grammatical theory is the set of statements expressed in a grammar 
formalism. 

 
The recognition problem is connected to the question if a given string is in a given 
language. The parsing problem is concerned with the kinds of structures that are 
assigned to a given string. 
 

Definition 3-7. Recognition problem and parsing problem (Ristad 2003, Nivre 
2005). 

The recognition problem (RP) is characterized by the question “Is a given 
string in a given language or not?”. The parsing problem answers the 
question: “What structural descriptions are assigned by a given grammar to 
a given string?” The parsing problem is tied to the corresponding 
recognition problem; only strings in L(G) are assigned an analysis in the 
parsing process. Most parsing algorithms in fact solve the recognition and 
parsing problem simultaneously. 

 
Definition 3-8. Fixed language and universal recognition problem (Ristad 
1986).  

A language may be characterized in terms of all the grammars that generate 
it. This is referred to as the fixed language RP. It can be stated as follows: 
“Is the string S in a language L?” Another way to characterize a language is 
by a particular grammar that generates it. This is referred to as the 
universal RP (URP), and can be stated as “Is the string S in a given 
grammar G?” The URP is connected to a specified grammar, and thus, is 
more closely connected to the parsing problem. 

 
Example 3-1. Let a grammar formalism consist of a set of terminals, a set of 
nonterminals and a set of rules. The nonterminals are the “building blocks” that 
allow rules to combine terminals and nonterminals into larger entities. Let ∑ be a 
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terminal alphabet, N a nonterminal alphabet and R a set of rules. Then G=(∑, N, 
R) is a grammar expressed in the grammar formalism: 

∑ = {x, y} 
N = {S} 





→
→

=
εS

xSyS
R  

There are two terminals, x and y, in the grammar. The nonterminal alphabet 
consists of the start symbol S. The rules R state that S can be rewritten as xSy, or as 

an empty string. Grammar G generates the language { }nnyxGL =)( , ∈n  . To 

generate a string with this grammar, we begin with the symbol S, successively 
rewriting it according to one of the rules R until we cannot rewrite any longer. One 
string can be derived from another by choosing a rewrite rule whose left-hand side 
(denoted with α) matches a sequence in that string and by replacing that sequence 
with the right-hand side of the rule (denoted with β). For example, the string 

“xxyy” can be derived by the grammar G by applying the rule S→xSy as 

S→xSy→xxSyy and finally the rule S→ε as xxSyy→xxyy. Thus, the string is 

grammatical. The string “yyyx” cannot be derived by G and is ungrammatical. 
 

3.2.2 Context-free phrase structure grammars and transformational grammars 
 
The grammar formalisms of context-free phrase structure grammars (CFPSG) and 
transformational grammars (TGs) form the theoretical basis of several formalisms 
used in modern parsing systems. Phrase structure grammars (PSGs), originating 
from the works of Bloomfield (1933) and Chomsky (1959, 1965), are designed to 
study the structure of phrases. A CFPSG is a specific type of PS grammar.  
 

Definition 3-9. Context-free phrase structure grammar. 

A context-free phrase structure grammar is a 4-tuple G = (N, ∑, P, S) 

where 
1. N is a finite set of nonterminal symbols. 

2.  ∑ is a finite set of terminal symbols; ∑ ∅=∩ N . 

3. ( ){ }*, NNP ∪∑∈∈→= βαβα  is a finite set of production rules. 

4. NS∈  is a distinguished symbol called the sentence symbol. 
 
For example, the rule S → NP VP states that a sentence is a type of phrase that can 
be composed of a noun phrase (NP) and a verb phrase (VP). The rules of a 
CFPSG state how to replace a nonterminal without any reference to the context in 
which a nonterminal is located (Charniak & McDermott 1985). A phrase structure 
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rule (PS rule) specifies two relations: immediate dominance (ID) between a 
mother (α dominates β) and linear precedence (LP) relation among the daughters 
(the order of the symbols on β) (Gazdar et al. 1985). 20 
 
In contrast to surface-oriented grammatical formalisms such as CFPSG, TGs 
assume at least two separate but related levels of syntactic representation. Just like 
CFPSGs, a TG specifies the permissible sentences of a language by using PS rules 
(Chomsky 1965, Charniak & McDermott 1985). PS rules build a deep structure, 
which is then modified by transformational rules to produce a surface structure. 
Deep structures are able to capture underlying similarities and differences between 
surface structures. TG is a multistratal formalism. A multistratal grammar 
formalism employs representations in which the structure of a sentence consists of 
two or more representations, particularly representations which are described in a 
uniform way.  
 

3.3 Grammar Formalisms for Parsing 
 
This section introduces the types of techniques (probabilistic, lexicalized and 
transition networks) used by grammar formalisms (Section 3.3.1) and a set of 
grammar formalisms applied in modern parsing systems (Sections 3.3.2 to 3.3.6). 
 

3.3.1 Probabilistic, lexicalized and transition network models 
 
In probabilistic grammar formalisms a probability is associated with each rule. 
For example, probabilistic context-free grammars (PCFGs) can be characterized 
as CFPSGs that assign to each production the probability of its use. A PCFG 

(Booth & Thompson 1973) is a 4-tuple G = (N, ∑∑∑∑, P, S) like a CFPSG (Definition 

3-9), except that each rule in P is associated with a probability in which α will be 
expanded to β. 
 

                                              
20 PS rules are of the α→β kind. The symbols listed on β are obligatory unless they are in 
parentheses and must occur in the order listed. 



 

35  

Definition 3-10. Productions in probabilistic context-free phrase structure 
grammar. 

1. ( ){ }*, NNP ∪∑∈∈→= βαβα . 

2. There is a probability function p: P→[0,1] such that for each 

( ) 1, =∑ →∈ αβαα pN . 

 
Example 3-2. PCFG rules and their probabilities. 

r ∈P p(r) 
S→NP VP 0.7 
S→VP 0.3 
NP→N 0.6 
NP→N PP 0.4 
VP→V 0.5 
VP→V NP 0.5 
PP→P NP 1.0 

 
Lexical information has a fundamental role in determining the properties of a 
syntactic structure. Lexicalized grammars contain a small set of grammar rules and 
a large lexicon (Miya et al. 2003, Joshi & Schabes 1997). Let us consider the 
effects of lexicalization by looking at the phrase “the green banana” (Charniak 
1993). Since “banana” is not a noun that occurs very often, a probabilistic 
grammar without lexical sensitivity would add a low probability to the word 
“banana” by using the rule n→banana. But the rule itself has no knowledge of the 
actual context in which the substitution of an n to the word “banana” is taking 
place. Because of this, more frequently occurring nouns, such as “year” or “day”, 
would be assigned higher probabilities despite the fact that, in the given context, 
“banana” is clearly the more likely choice. 
 
Each rule in a lexicalized grammar is associated with an anchor word. For 

example, a lexicalized CFPSG is a 4-tuple G = (N, ∑∑∑∑, P, S) just like a CFPSG in 
Definition 3-9, except that each production in P is associated with an anchor a: 
 

Definition 3-11. Production rules in a lexicalized context-free phrase structure 
grammar. 

( ) ( ){ }* *, NaNNP ∪∑∪∑∈∈→= βαβα , where a is a distinguished word 

in the lexicon, that is referred to as the anchor. 
 
A straightforward way of constructing a lexicalized grammar is to take a CFPSG 
and make many copies of each rule – one for every possible anchor word in each 
phrase (Schabes et al. 1988, Nederhof & Satta 1994). 
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Example 3-3. A lexicalized context-free phrase structure grammar. 
 
 
 
 
 
Most grammar formalisms introduced in what follows are of a lexicalized type. 
DGs (which are discussed in Section 3.3.4) are an extreme case of lexicalization 
since they are based purely on lexical dependencies. 
 
A transition network grammar does not consist of rules, but rather of a set of 
FSMs, each of which comprises a collection of states and arcs connecting the 
states (Bolc 1983). Each network corresponds to a single nonterminal in the 
grammar. The labels in the arcs indicate the terminal symbol that allows a 
transition to the next state. A sentence is accepted by a transition network 
grammar if there is a path connecting the start state with a final state. A recursive 

transition network is a nondeterministic finite-state automaton. Augmented 

transition networks (ATNs), first introduced by Woods (1970), are extensions to 
the recursive model and have been used for describing grammars and parsing, 
especially in the AI community (Charniak & McDermott 1985). Figure 3-5 shows 
an example of a simple ATN grammar. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-5. A simple ATN grammar with rules for Ss, NPs and VPs (Bolc 1983). 
A VP can, for example, consist of a verb followed by an empty string ε or an NP. 
 
A major advantage of the transition network model over the usual CFPSG model 
is its ability to merge the common parts of CF rules (Woods 1970). Because this 
allows for the removal of redundancy, it makes for greater efficiency. ATN 

NP→ball   VP→kick 

NP→ball PP  VP→ kick NP 

NP→defender  VP→ run 

NP→defender PP  VP→ run NP 

PP→ from NP 

S 

NP VP <conjuction> S ”.”, ”?”, ”!”  

ε 

NP 

<noun> ”who” VP 
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ε 
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ε 
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grammars are, however, hard to debug, maintain and extend because of their 
graph-like structure (Carroll 1993). Magerman (1994) points out that the use of 
ATNs encourages ad hoc system designs and that this leads to application-specific 
models. It is for these reasons that ATN grammars are not used in modern parsing 
systems. 
 

3.3.2 Unification grammars 
 
Unification grammars (UGs), which are also known as constraint-based 
grammars, were specifically developed to overcome the problems that CFPSGs 
encounter when representing fine-grained grammatical information such as 
agreement and subcategorization (Carpenter 1989). This section introduces three 
of the best-known UGs, namely, Generalized Phrase Structure Grammar (GPSG) 
(Gazdar et al. 1985), Head-driven Phrase Structure Grammar (HPSG) (Pollard & 
Sag 1987, 1994) and Lexical Functional Grammar (LFG) (Kaplan & Bresnan 
1982). UGs are able to model more complex linguistic phenomena than CFGs. 
These formalisms describe linguistic objects by using feature structures consisting 
of features and associated values that encode several levels of linguistic 
information (e.g. morphological, syntactic, semantic) in a uniform way. 
 
Example 3-4. A feature structure represented as an attribute-value matrix (AVM) 
for the word “his”. 



















OBJcase

RDperson

SINGnumber

NPmajor

3
 

 
As the name suggests, the process of unification, matching and combining feature 
structures, plays a central role in UGs.21 In spite of this, unification can only be 
regarded as a solution, as an operation used in algorithms to resolve the 
constraints set by the grammar (Pollard 1996). Unification is consequently not in 
itself a grammatical theory; instead, it is a mechanism for instantiating diverse 

                                              
21 In unification, two pieces of partial information are put together to form a larger piece of 
information. For example, let A={<major, NP>, <number, SING>}, B={<major, NP>, <person, 
3RD>} and C={<major, NP>, <number, PLU>}. Then the unification of A and B (denoted with 

BA∧ ) is {<major, NP>, <number, SING>,<person, 3RD>} and the unifications CA ∧  and 
CB ∧  are undefined because of the clash with regard to the value for the feature number. Another 

important operation used in UGs is the disjunction, denoted with ∨ . For example, BA∨  means 
that some linguistic object x is described by either A or B, but whether it is either A or B, remains 
indiscernible (Pollard & Sag 1987). 
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grammatical theories (Joshi 1987). Figure 3-6 shows how unifications are used in 
deriving a sentence structure. 
 

 
 
 
 
 
 

 
 
 
 

[ ]







SING::

NP:

numagr

cat
 

 
 

Figure 3-6. Derivation in unification grammars. The rules are given on the left-
hand side and the lexicon on the right. In the derivation at the bottom, the arrows 
indicate the way in which the words and phrases unify into larger entities. 
 

3.3.2.1 GPSG and HPSG 
 
Before the advent of GPSG during the first half of the 1980s (Gazdar et al. 1985), 
theories of syntax and semantics were developed separately with little interaction. 
The work that was done on GPSG was undertaken with the intention of producing 
an integrated theory of the two levels. That represented one of the first attempts to 
compensate for the inadequacies of CFPSGs without applying transformations 
(Warner 1996). Instead of transformations, GPSG uses PS rules which can 
themselves be generated by metarules.22  
 
Because the development of HPSG has been so comprehensively influenced by 
GPSG, it may rightly be regarded as its successor. In HPSG there are no 
derivations that transform one grammatical structure into another; instead, parallel 
representations are mutually constrained by the grammar. HPSGs have been 

                                              
22 Metarules take as an input grammar rules that match the input pattern, and they then output a 
new rule according to their output patterns. Intuitively, metarules have the same role in GPSG as 
transformations have in TGs.  
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applied to a wide range of languages such as English (Copestake & Flickinger 
2000), Japanese (Siegel 2000), and German (Müller & Kasper 2000).  
 
An HPSG consists of grammar principles, grammar rules and lexical entries, and 
all these are represented as feature structures (Pollard & Sag 1987, Cooper 1996). 
Collections of information about phonological, syntactic and semantic constraints 
are called signs, and signs represent either a word (a lexical sign) or a phrase (a 
phrasal sign).23 An HPSG can be defined as follows: 
 

Definition 3-12. Head-driven Phrase Structure Grammar (Pollard & Sag 1987). 
A Head-driven Phrase Structure Grammar is defined as 

( )qpmn RRLLPP ∨∨∨∨∨∧∧∧ + ......... 111  

where P1…Pn are universal principles common to all languages, Pn+1…Pn+m are 
language-specific principles, L1…Lp are the lexical signs of a language, and 
R1…Rq are its grammar rules.  

 
Definition 3-12 implies that a linguistic object belongs to the language generated 
by the grammar if it satisfies all the universal and language-specific principles of 
that language, and that this either instantiates one of the lexical signs of the 
language or one of its grammar rules. 
 
The lexicon in HPSG is rich and organized on the basis of the notion of types of 
word (Kim 2000, Cooper 1996).24 The rules are expressed as well-formedness 

constraints on the feature structure descriptions and are represented as partially 
specified phrasal signs. Along with the rules, there are principles that define and 
therefore limit the signs that may be construed as belonging to a language. The 
well-formedness of a sign is verified by comparing the feature structure of a 
specific rule or principle to the feature structure expressing the sign. Checking is 
performed through unification. 
 

3.3.2.2 LFG 
 
LFG combines various features from TGs and ATN processing, and has been 
applied to a variety of languages including English, French, German, Japanese, 
Chinese, Norwegian, Spanish, and Urdu (Butt et al. 2002, Oepen et al. 2004, 

                                              
23 The information about a sign is stored in a feature structure, and is encoded as an AVM (Pollard 
& Sag 1987). Phrasal signs join lexical signs into sentences. 
24 Multiple inheritance hierarchies are used to reduce redundancy and to allow generalizations 
across classes of words. 
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O'Donovan et al. 2005, Burke et al. 2004b, Dipper 2003). Figure 3-7 gives an 
example of a LFG parse. 
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Figure 3-7. This example shows the correspondence of elements between a C and 
F-structure for the sentence “Liverpool is playing”. 
 
Figure 3-7 illustrates how LFG assigns two types of structure to input sentences. 
These are the constituent structure (C-structure), which is derived by CFPSG rules 
and it is represented as a PS tree, and the functional F-structure, which is produced 
by ATN operations and consists of grammatical relations (GRs) represented as an 
AVM (Bresnan 2001).25 An distinguishing feature in LFG is structural 

correspondence. While one describes sentences with different descriptive 
languages and representations, it is essential to be able to correlate such structures. 
 

3.3.3 Tree-adjoining grammars 
 
Tree-adjoining Grammar (TAG), which was first introduced by Joshi et al. 
(1975), manipulates trees as elementary objects. Different versions of TAGs have 
been implemented in English (XTAG Research Group 1998), Chinese (Bikel & 
Chiang 2000), French (Abeillé 1988), German (Neumann 2003), Arabic (Habash 
& Rambow 2004), Korean (Han et al. 2000) and Hindi (CDAG 2006). 
 

 

                                              
25 The two representations manifest the fact that different types of dependencies exist among the 
parts of a sentence, and that these dependencies can be best expressed using different formal 
structures (Kaplan 1989). 
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Definition 3-13. Tree-adjoining Grammar. 
A Tree-adjoining Grammar is a 5-tuple TAG = (N, ∑, I, A, S) where 

1. N is a finite set of nonterminal symbols; ∅=Σ∩N ; 
2. ∑ is a finite set of terminal symbols; 
3. I is a finite set of finite initial trees; 
4. A is a finite set of finite auxiliary trees, and 

5. NS∈  is a distinguished symbol called the sentence symbol. 
 
The set of initial trees I and the set of auxiliary trees A are referred to as the 
elementary trees (Joshi & Schabes 1997, Han et al. 2000). The initial trees are 
minimal linguistic structures that contain the structure of simple phrases (e.g. NPs) 
and that do not have recursive structures. Auxiliary trees may contain recursion 
and represent constituents that are adjuncts to basic structures (such as adverbials). 
Sentences are derived by building derived trees from initial and auxiliary trees by 
the composition operations adjoining and substitution. Figure 3-8 illustrates an 
adjoining operation. 

 
 
 
 
 
 
 
 

Figure 3-8. Adjoining operation. Trees A and B are adjoined to form tree C. The 
dotted arrow indicates the location to which tree B is adjoined.  
 
The basic model has been extended in many ways by, for example, lexicalization 
(Lexicalized TAG (LTAG) (Schabes et al. 1988)), unification-based processing 
(Feature-based LTAG (Vijay-Shanker & Joshi 1991)), and probabilities 
(Probabilistic LTAG (PLTAG) (Resnik 1992, Schabes 1992)). 
 

3.3.4 Dependency grammars 
 
Dependency grammars (DGs) identify the relations that connect words to each 
other. A fundamental notion in DGs is the relation between a head and a 
dependent.  
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Definition 3-14. Dependency relation (adapted from Robison 1970). 
Let E be a finite set of sentence elements. DR is a binary dependency 

relation that ranges over the elements E; D EER ×⊆ . Let ∈xee ,, 21 E. Let 

<e1, e2>∈DR denote that e1 is dependent on e2. e2 is referred to as the head. 

If DR holds for <e1, x>…<ek, x>, all ei E∈ , }...1{ ki ∈  are dependent on x. 

 
A head may have any number of dependents, which may be either modifiers or 
complements. The grammar rules specify the dependents that each head can take 
(e.g. adjectives depend on nouns and not on verbs). I refer to the DG formalisms, 
as defined by Hays (1964) and Gaifman (1965), as classical DGs (CDGs). The 
properties of CDGs can be formally defined as follows: 

 
Definition 3-15. Classical dependency grammar (adapted from Hayes (1964) 
and Gaifman (1965)). 

A dependency grammar is a 4-tuple DG = (C, ∑, R, F) where 
1. C is a finite set of lexical categories. 

2. ∑ is a finite set of terminal symbols. 

3. F is an assignment function CF →∑: .  

4. R is a finite set of rules over the lexical categories C that define 
dependency relations DR. The rules are of the form: 

1. ( )kccx ,,...,*,...1  denotes that c1…ck C∈  are dependent on x C∈ . I.e. 

* indicates the position of head x C∈  in the sequence c1…ck C∈ , 

2. x(* ) denotes that x C∈  is a leaf node, and 

3. *(x) denotes that x C∈  is the sentence root node. 
 
In CDGs the D relations form trees that are acyclic and have a single root 
(Robinson 1970). Moreover, only one head per dependent is allowed. 
 
Example 3-5. A simple dependency grammar. 
 
 
 
 
 
 
Figure 3-9 illustrates an analysis using the grammar shown in Example 3-5. 

DG = (C, ∑, R, F) 

 
C={V, N, DET}      F(“kicks”)=V 

∑={“kicks”, “ball”, “attacker”, “the”}   F(“ball”)=N  

R={*(V), V(N, *, N), N(DET, *), N(*), DET(*)} F(“at tacker”)=N 
F(“the”)=DET 
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Figure 3-9. DG analysis for the sentence “The attacker kicks the ball”. 
 
Several modifications and extensions to CDGs have been introduced. These 
include, for example, Constraint Grammar (CG), Functional Dependency 

Grammar (FDG) and Extensible Dependency Grammar (XDG). Standard PS trees 
and the analyses produced by CDGs are projective; this means that branches do 
not cross when the terminal nodes are projected onto the input string (Neuhaus & 
Bröker 1997). It has, however, been acknowledged among DG syntacticians that 
certain natural language phenomena require non-projective analyses (Rambow 
1994). Such structures are frequently encountered in languages that allow a 
relatively free word order. In languages with strict word order, moreover, non-
projective trees occur, for example, in right-node raising structures. 
 

3.3.4.1 CG and FDG 
 
CG is a DG formalism that was originally proposed by Karlsson (1990). 
Implementations of CG exist in, for example, English, Danish, French, German, 
Swedish, Finnish, Estonian, and Portuguese (Afonso et al. 2002, Bick 2003, Bick 
et al. 2005, Lingsoft 2006). Instead of having rules that define correct sentence 
structure, CG applies constraints for eliminating word readings that are 
inconsistent with the context. These manually formulated constraints act as partial 
LP rules. They may contain both rule-like facts and probabilistic tendencies.  
 
CG was designed not as grammatical theory but as a language-independent 
parsing framework. It is a descriptive, computationally-oriented model. CG makes 
no claims about being able to explain linguistic phenomena. The most important 
aim of CG is to provide reliable and shallow rather than highly informative but 
faulty parsing. 
 
Many of the ideas in FDG are derived from CG (Tapanainen & Järvinen 1997, 
Tapanainen 1999). FDGs have been implemented in English, Finnish, French, 
Spanish, German, and Swedish (Tapanainen 1999, Voutilainen 2001, Connexor 
2006). In FDG, D links between syntactic labels form partial trees – usually 

attacker kicks The 

N 

V 

N 

DET DET 

the ball 
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around a verb to which the other words are linked. Table 3-1 illustrates an 
example of a FDG parse.  
 
Table 3-1. An FDG analysis for the sentence “Liverpool is playing.” The analysis 
gives the location of the word, the original word form, base form and syntactic and 
morphological tags.  

Index Word Lemma Syntactic* Morphological 
1 Liverpool Liverpool subj:>2 @SUBJ %NH N NOM SG 

2 Is be v-ch:>3 @+FAUXV %AUX V PRES SG3 

3 playing play main:>0 @+FMAINV %VA ING 

4 . .   

*The dependencies are represented as the pair D label-head, separated by “:>”. For example, 
according to the analysis, the word “Liverpool” is connected to the word “is” with a D link of the 
type subject (subj). KEY: v-ch = verb chain (auxiliaries + main verb), main = main verb. The 
functional tags are denoted by @. KEY: +FAUXV = finite auxiliary predicator. +FMAINV = 
finite main predicator. Surface syntactic tags are denoted by %. KEY: NH = nominal head, AUX 
= auxiliary verb or particle, VA = main verb in an active verb chain. 

 

3.3.4.2 XDG 
 
XDG is a new DG formalism that defines two orthogonal but mutually 
constraining structures that explain the ID and LP constraints of the words 
respectively (Debusmann et al. 2004b). The analyses in XDG are multigraphs that 
consist of an arbitrary number of D graphs called dimensions. Each dimension 
represents a different aspect of language (syntactic function, PAS, etc.) 
(Debusmann & Smolka 2006). XDGs have been implemented in English and 
German, and have been applied to a smaller extent to Arabic, Czech and Dutch 
(Debusmann et al. (2004a, 2004b), Bojar 2005). An XDG consists of dimensions, 
principles, and a lexicon. XDG may be formally defined as follows: 
 

Definition 3-16. Extensible Dependency Grammar (adapted from Debusmann 
et al. 2004b) 
An Extensible Dependency Grammar is a 3-tuple XDG = (D, Pri, Lex), where 

1. D is a finite set of dimensions di, i=1,…,n of the form di=(Lab, Fea, 
Val, Prid), where 
a. Lab is a set of edge labels,  
b. Fea is a set of features, 
c. Val is a set of feature values, and  
d. Prid is a set of one-dimensional principles. 

2.  Pri is a set of multi-dimensional principles. 
3. Lex is the lexicon consisting of a set of lexical entries. 
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The well-formedness conditions of an analysis are checked by the interaction of 
the principles and the lexicon. As a DG formalism, XDG is lexicalized, and most 
of the information is specified in the lexical entries. XDG moreover provides a 
lexical abstraction mechanism for the purpose of reducing redundancy in the 
lexicon. Principles specify how words interact and how graphs on different 
dimensions relate to one another (Debusmann et al. 2004b). The lexicalized 
valency principle, for example, states that all nodes on the dimension i must 
satisfy their specifications for incoming and outgoing edges. Figure 3-10 
illustrates an XDG parse. 
 
 
 

 
Figure 3-10. An example XDG analysis for the sentence “Every player should 
like him” (adapted form Debusmann et al. 2004a). The analysis has two 
dimensions: the graph on the left-hand side represents the syntactic structure and 
the graph on the right-hand side the semantic structure of the sentence. 
 

3.3.5 Link Grammar 
 
Link Grammar (LG) is closely related to DG. So far, it has been applied only to 
English and German (Sleator & Temperley 1993, Kübler 1998). The lexicon in LG 
consists of entries that state the linking requirements of one or more words, and 
these are expressed in terms of connectors. A parse in LG is referred to as linkage, 
and it consists of a set of undirected links that connect the words in a sentence. A 
sentence may have several linkages. Figure 3-11 gives an example LG lexicon and 
linkage.  

 

every     player        should  like      him  every     player      should         like         him 
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Figure 3-11. A Link Grammar lexicon (top) and linkage (bottom) (adapted from 
(Sleator & Temperley 1993)). The words “player” and “referee”, for example, 
require an o or d Dconnector to their left, or an s Sconnector to their right.  
 
Instead of requiring two connectors to be identical before they can be connected, 
LG allows one to enunciate matching rules (Sleator & Temperley 1993). In 
addition, one can use a multi-connector to connect to more than one link. This 
mechanism allows any number of adjectives, for example, to attach to a single 
noun.  
 

3.3.6 Combinatory Categorial Grammar 
 
In Categorial Grammars (CatG), which originate from the work of Bar-Hillel 
(1953), the lexicon carries the main responsibility for defining syntactic 
knowledge (Steedman 2000). CatGs define a finite set of primitive categories 
(such as N, NP, VP, S) that combine by means of function application rules to 
create more complex structures. Unlike other grammar formalisms, CatGs do not 
define a set of rules for combining words. It is rather the definitions in the lexicon 
that determine how words can combine with each other.  
 
Because CatC in its pure form is not adequate for describing natural languages, 
several extensions have been added to the basic framework. Combinatory 

Categorial Grammar (CCG), an extension well suited to parsing, originates in the 
work of Steedman (1985a). CCG is in essence a theory of syntactic and semantic 
types (Steedman 1999). While wide-coverage parsing CCGs exist only for English 
(see for example, Hockenmaier 2003, Villavicencio 1997), CCG has also been 
successfully applied to Dutch, Japanese, Korean and Turkish to a lesser extent 
(Steedman 1985b, Komagata 1999, Cha et al. 2002, Bozsahin 2002, Çakici 2005).  
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A CCG consists of the lexicon and the combinatory rules (Steedman 2000, Clark 
2002, Clark et al. 2002a, Hockenmaier & Steedman 2007). The lexicon, which 
pairs words with lexical categories, defines most language-specific aspects of a 
CCG. Each item in the lexicon is associated with one or more categories that 
define their syntactic behavior by describing the constituents with which it can 
combine and the result of the possible combination. CCG categories are defined in 
Definition 3-17. 
 

Definition 3-17. Categories in Combinatory Categorial Grammar (adapted from 
Vijay-Shanker & Weir 1994). 

Let N be the set of nonterminals (also referred to as atomic categories in 
the context of CCG). The set of categories C(N) over the alphabet N is the 
smallest set for which the following conditions hold: 

1. )(NCN ⊆  

2. If c1,c2 )(NC∈  then (c1/c2), (c1\c2) )(NC∈ . 

 
S, N, NP, and PP are examples of atomic categories composed of a single 
nonterminal. The complex categories are of the form X/Y or Y\X, where X is the 
result category and Y is the argument category. For example, X/Y states that the 
category needs to combine with a category Y on the right to form X. A CCG is 
defined in Definition 3-18 below. 
 

Definition 3-18. Combinatory Categorial Grammar (adapted from Vijay-
Shanker & Weir 1994). 

A Combinatory Categorial Grammar is a 5-tuple G = (N, ∑, f, R, S) where 
1 N is a finite set of nonterminal symbols  

2 ∑ is a finite set of terminal symbols. 

3 f: ∑→C(N) is a function that maps each element of ∑ to finite subsets 
of C(N).  

4 R is a finite set of combinatory rules. 

5 NS∈  is a distinguished symbol called the sentence symbol. 
 

The lexicon consists of ∑ and f. The most basic combinatory rules are the forward 

and backward application (see Definition 3-19 below). A derivation in a CCG 
involves the use of the backward and forward application and other combinatory 
rules such as functional application and composition.26 

                                              
26 Other combinatory rules, such as forward and backward composition (>B and <B) forward 
type-raising (>T) and backward crossed substitution (<S) exist for dealing with coordination and 
extraction. 
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Definition 3-19. Forward and backward application in Combinatory Categorial 
Grammar (Hockenmaier & Steedman 2007). 

Let f and a be terminals and X/Y and X\Y complex categories. 
1. A forward application is of the form:  X/Y:f Y:a → X:fa. 
2. A backward application is of the form:  Y:a  X\Y:f → X:fa. 

 
Example 3-6. CCG forward and backward applications. A category is accordingly 
connected to its neighbors using forward (>) and backward (<) applications. The 
categories, for example, of the word “likes” indicate that it can combine with an 
NP to form a structure of the category S\NP. 
 
 
 
 
 
 
 
 

3.4 Analysis 
 
Very little research or rational analysis has been focused on the relative 
weaknesses and advantages of grammar formalisms – let alone on the question 
about which theoretical approaches may be best suited to computational 
applications. As Carnie (2002) points out: “If you ask this question at any major 
syntax conference you are likely to get lynched.” Most linguists have a strong 
prejudicial bias in favor of the particular framework that they themselves utilize 
while, at the same time, are actively borrowing ideas and techniques from one 
another.  
 
While I shall now analyze grammar formalisms for parsing, I shall make no 
attempt to rank the theories concerned. Any such classification would be difficult, 
if not impossible, to make, for two reasons. Firstly, while some theories provide a 
good account of some syntactic phenomena, other theories do equally well for 
other syntactic phenomena. What criteria would one use to decide that some 
linguistic phenomena might be more important than others? Secondly, some 
theoretical approaches are more highly developed than others. Besides, the only 
purely objective grounds for evaluating a grammatical theory would be on the 
basis of how well it models the workings of language in the human mind and 

Forward application 
(S\NP)/NP NP  → S\NP 
likes  football → likes football 

 

Backward application 
NP  S\NP  → S 

He  likes football → He likes football 
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brain. But there is no known method by which one could reliably test such 
modeling capabilities. 
 
Instead of attempting to rank them, I will compare the formalisms by describing the 
similarities and differences between them, the ways in which each formalism is able 
to model natural language phenomena, and how well each formalism is suited to 

parsing. Firstly, I will identify the most important characteristics of each of the 
formalisms (Section 3.4.1). Secondly, I will compare the formalisms by using 
several dimensions: the number of representation strata (Section 3.4.2), generative 
capacity (Section 3.4.3), and the treatment of long-distance dependencies (LDDs) 
(Section 3.4.4). Section 3.4.5 introduces the grammar development methods that 
are available for the grammar formalisms under consideration.  
 

3.4.1 Outstanding characteristics of the formalisms 
 
This section underlines the outstanding features of the grammar formalisms under 
consideration and compares the most closely connected formalisms to each other. 
 

3.4.1.1 CFPSG and TGs 
 
As I have already noted above, CFPSGs are insufficiently powerful for describing 
natural languages because they are not lexicalized and they do not use 
probabilistic modeling. It is for this reason that they are not used in state-of-the-art 
parsing. “Chomskyan” grammars, such as TG and its descendants, such as 
Minimalist Program (Chomsky 1995), have been a predominant influence in 
linguistics for a long time. Chomsky’s theories in fact form the foundations on 
which many other theories of grammar have been built. However, transformations 
are not used in computationally-oriented grammar formalisms because of their 
computational complexity. The main problem with grammars of this type is their 
tendency to force a parser to destroy existing linguistic structures. Pollard’s (1996) 
principle of nondestructiveness states: 

“Grammars should not make reference to operations […] that destroy 
existing linguistic structure.” 

 

3.4.1.2 PCFG 
 
PCFG is the most widely used probabilistic grammar formalism. While PCFG 
models lack the power of models that are sensitive to a wider range of 
dependencies, they nevertheless have the advantage of being simple (Resnik 1992, 
Charniak 1993, Charniak 1996). Even so, the information conveyed in PCFGs is 
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not sufficiently rich fully to describe natural languages. In the first place, PCFGs 
model probabilities in a CF way.27 In the second place, the original PCFG model is 
not lexicalized. This renders it incapable of capturing certain kinds of hierarchical 
information. Lexicalized PCFGs, like most existing probabilistic grammars, do 
make use of lexical information.  
 

3.4.1.3 UGs 
 
Pollard (1996) makes the following comments about the “Chomskyan” approach 
to grammar: 

“There used to be an influential point of view which held that the 
formalism within which grammatical theory was formulated had to be 
highly constrained. This in turn was supposed to constrain the set of 
possible grammars….” 

 
What is evident in Pollard’s arguments against this point of view is that instead of 
the formalism itself setting constraints on the possible grammars, it is rather the 
grammars themselves that should impose the constraints. Because of their 
algebraic characterization, UGs offer, among other benefits, an opportunity to 
provide well-defined semantic representations. UGs have become the most widely 
used formalisms for computational grammars. According to Oepen et al. (2000), 
HPSG and LFG are the predominant UG formalisms for parsing. 
 
Unlike many other UGs, GPSG emphasizes the PS rule component rather than a 
rich lexicon (Carnie 2002). One of the distinctive features of HPSG is its head-
driven nature: words are structured and rich in information, and certain key words, 
lexical heads, have an important role to play in the processing of the structures that 
contain them (Raaijmakers 1993). The syntactic categories in HPSG are similar to 
those in GPSG in the sense that they are complex feature structures. Despite their 
close relations, there are several differences between HPSG and GPSG. Firstly, the 
categories in HPSG are more complex (Borsley 1996). Secondly, HPSG makes 
more specific claims about language universals than does GPSG (Carnie 2002). 
Because of its precise mathematical modeling, HPSG has been found to be highly 
useful in computational applications. 
 
Like HPSG, LFG differs from GPSG by making more specific claims about 
language universals and variation. Both LFG and HPSG incorporate the principle 

                                              
27 A PCFG, for example, will consider the probability of expanding an NP to be independent of 
where in the parse tree the NP is located. This assumption is false. 
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of strong lexicalism, which implies that most of the information employed in 
constructing sentence representations is associated with individual words; 
relatively simple rules and principles govern how the information in lexical entries 
combines when the words are united into phrases (Sag & Wasow, forthcoming 
article). In contrast to what happens in LFG and CFPSG, where the rules 
determine the relative order of elements, the PS rules in GPSG and HPSG set only 
the ID relations. The order is defined by language-specific LP constraints. 
 

3.4.1.4 TAGs 
 
In contrast to what happens in most grammar formalisms, a derived tree in TAG 
does not include any information about how it was constructed (Joshi & Schabes 
1997). Hence, an additional representation, called the derivation tree, is used for 
representing the information on the trees and the operations used in a derivation. 
 
TAG enables one to state dependencies between nodes of trees (Joshi & Schabes 
1997). This is in contrast to most other grammar formalisms in which the 
dependencies are defined between the elements of a rule. This allows for an 
extended domain of locality in which to state linguistic dependencies. 
 
An interesting feature of TAG is the way in which it is able to capture the 
recursiveness of language structures (Kroch & Joshi 1987). In TAGs, local co-
occurrence restrictions are stated in the elementary trees. The more complex 
structures are composed by means of adjunction and substitution operations that 
are constrained by local constraints, which, among other things, set 
subcategorization constraints for the trees to be joined. The idea is that the 
expression of local co-occurrence relations should be factored apart from the 
expressions of recursion and unbounded syntactic dependencies. 
 

3.4.1.5 DGs 
 
In addition to being suitable for the analysis of languages with relatively free word 
orders, DGs are attractive because they offer one the possibility of mapping D 
trees onto semantic representations (i.e. PAS) (Lombardo & Lesmo 2000).  
 
The syntactic representation of CG is based on an underspecified and relatively 
shallow28 D description (Tapanainen & Järvinen 1997). In addition to this, CG 

                                              
28 Due to the shallowness of representation, for example the objects of infinitives and participle 
are indicated with the same tag. 
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always attaches an analysis to a sentence, even if it is ill-formed. A CG cannot 
therefore be used for accepting or rejecting sentences. But it is this very simplistic 
approach that permits CG to be an efficient parsing framework. 
 
Let us consider NPs as an example of underspecification in CG. While the heads 
of NPs are marked with functional labels in CG, the parent (NP) is not indicated: 
 
Example 3-7. The fragment “fat player’s wife” would get the following analysis:  

The function tag @AN> in the word “fat” indicates that the head of the word is a 
nominal in the right-hand context. The head, however, is not specified. Thus there 
is no need to tackle the syntactically undecidable ambiguity between the analyses 
that the one who is fat is either the player or the player’s wife. 
 
The main differences between the two otherwise similar formalisms may be 
summarized as follows (Tapanainen & Järvinen 1997, Järvinen & Tapanainen 
1998): Firstly, the FDG analyses contain more detailed information than CG 
structures. The additional power of the framework stems from the mechanism that 
allows it to specify links between word readings. Secondly, whereas the CG rules 
typically represent the head and dependent implicitly and ambiguously, FDG 
makes the relation explicit by declaring the head and the dependents. Thirdly, the 
FDG framework has a mechanism for handling coordination. Fourthly, an 
advantage of FDG over CG is the way in which it deals with ambiguity.29 
 
The most interesting feature in XDG is that it combines multi-layered linguistic 
description with a DG formalism (Debusmann et al. 2004b). While XDG has 
many desirable characteristics, it is a relatively new grammar formalism and needs 
to be developed further. Debusmann and Smolka (2006) point out two main 
weaknesses in the framework: Firstly, there is as yet no practical parsing algorithm 
for XDG. Secondly, work still needs to be done in the precise formalization of the 
framework, particularly on the syntax-semantics interface.  
 

                                              
29 In the experiments by Tapanainen and Järvinen (1997), FDG left only 3.2 to 3.3 per cent of 
words with more than one morphosyntactic label, while the number for the CG parser was 11.3 to 
13.7 per cent. 

”<fat>” 
 ”fat” A ABS @AN> 
”<player’s>” 
 ”player” N GEN SG @GN> 
”<wife>” 
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3.4.1.6 LG 
 
While LGs are in many ways similar to DGs, there are several differences that can 
be identified. The main differences are as follows: (1) Links in LG are undirected. 
(2) Links may form cycles. (3) It contains no notion of the root word. In addition 
to this, LG analyses are projective and CF. 
 
There are some inherent problems in the LG framework. Certain constructions, 
such as non-referential use of “it” and “there”, and certain types of questions and 
comparatives are problematic for LG (Sleator & Temperley 1993). Sleator and 
Temperley (1993) reach the following conclusion: “Certain constructs in 
grammatical English are simply unnatural in our framework.” While Lafferty et al. 
(1992) have described a probabilistic version of LG, Collins (1999) claims that the 
probabilistic model is flawed. 
 

3.4.1.7 CCG 
 
The main advantage of CCG over other formalisms is its treatment of coordination 
and extraction (Lombardo & Lesmo 1998b). Following Montague’s (1974) 
principle of compositionality, every syntactic derivation in a CatG corresponds to 
a semantic interpretation, and the two representations are constructed together. 
Because it is a CatG, CCG follows this principle. The consequence of this is that 
CCG has a transparent syntax-semantics interface. A problem in CCG is that there 
may be several derivations, all of which lead into the same derived structure 
(Clark & Curran 2004a). This property is referred to as spurious ambiguity.  
 

3.4.2 The number of strata 
 
A distinction can be made between multi- and monostratal formalisms. In contrast 
to TG and other multistratal grammar formalisms, a monostratal formalism uses a 
single level of representation for the syntactic structure, and recognizes no more 
abstract level (Trask 1993). Most of the formalisms described in this work, GPSG, 
HPSG, TAGs, CG and FDG, for example, are clearly monostratal; they use one 
type of structure to describe syntax. 
 
One of the features of the monostratal approach is that it makes processing 
efficient because single linguistic representations are not manipulated on several 
steps (strata). But it is true that monostratal approaches, such as HPSG, often give 
precedence to the syntactic structure, and this relegates the other levels of 
description to a secondary role (Debusmann et al. 2004b). This makes it 
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potentially more difficult to modularize the grammar: when the syntactic part of 
the grammar is changed, the semantics component has to be changed as well. 
 
While C- and F-structures in LFG are two distinct representations, LFG is 
monostratal in the sense that there are no multiple representations of a single 
structure (Cahill 2004); LFG has two syntactic representation levels, C- and 
F-structure, each of which is monostratal; an analysis of a single clause cannot 
consist of multiple strata of C-structure or F-structure. A major advantage of the 
C/F-structure distinction in LFG is that it enables one to take into consideration 
the fact that while languages may differ with respect to surface representations 
(such as word order), they may encode the same or similar PAS (Cahill 2004).30 
 
XDG may be positioned between the monostratal (e.g. HPSG) and multistratal 
(e.g. TG) extremes. While linguistic analyses are divided into multistratal 
representations, the principles interact between strata to constrain all dimensions 
simultaneously. Debusmann et al. (2004b) claim that, in comparison to LFG, 
XDG places a lighter burden on the interfaces between the strata. 31 Because of the 
freer interaction between the dimensions, filtering can be done earlier in XDG. 
Furthermore, the constraints in XDG are not restricted to operating on adjacent 
strata, but are allowed to access all dimensions and all directions. 
 

3.4.3 Formal power and equivalencies 
 
The ability of a grammar to generate languages, as described in Definition 3-5, is 
called its weak generative capacity (WGC) (Miller 1999, Joshi 2003b). In contrast 
to this, the strong generative capacity (SGC) defines the set of structural 
descriptions generated by a grammar. WGC is often used for locating a grammar 
in a hierarchy of formal grammars. Chomsky’s (1959) theory of grammars offers a 
tool for studying differences in their formal powers. The hierarchy consists of four 
levels, numbered from 0 to 3 and called regular, context-free (CF), context-

sensitive and unrestricted. The level of restriction grows gradually from level 0 to 
level 3.32 Figure 3-12 depicts the hierarchy. 

                                              
30 While the same proposition expressed in different languages may have substantially dissimilar 
C-structures, it may be associated with similar F-structure representations. This property is useful 
in, for example, MT systems. 
31 The mapping between C- and F-structures is specific and has to be adapted to new structures in 
order to handle different word order, for example. Similar modifications in XDG could ideally be 
achieved simply by modifying the grammar (Debusmann et al. 2004b). 
32 Each level is moreover a subset of the less strict levels. The restrictions are cumulative – the 
rules of a type 3 grammar also obey the restrictions for types 0, 1 and 2. A regular grammar, for 
example, is a special kind of CFG. 
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Figure 3-12. Chomsky’s hierarchy of grammars with four levels: regular, context-
free, context-sensitive and unrestricted. 
 
Context-sensitive grammars (CSGs) and context-free grammars (CFGs) are the 
two most relevant classes of grammars for parsing (Geman & Johnson 2002, 
Winograd 1983). As shown in Table 3-2, in a CSG, the right-hand side of a rule 
defines the context in which a nonterminal can be replaced with the right-hand 
side. In contrast, CFGs do not take into consideration the context in which the 
nonterminal on the right-hand side occurs.  
 
Table 3-2. The levels of Chomsky’s hierarchy of grammars most relevant to 
natural language parsing (Chomsky 1959, Winograd 1983). α and β refer to the 
left- and right-hand side of the rules. 

Grammar Rules 

Le-
vel 

Class Form 
Restric-

tions 

Language 

1 
Context-
sensitive 

β consist of α with 
a single symbol 

expanded 

βα ≤  

Any language whose sentences can be 
recognized by a deterministic computational 

machine using an amount of storage 
proportional to the length of the input. 

2 
Context-

free 

α consists of a 
single nonterminal 

symbol. 

1=α  
Includes languages that involve embedding 

such as anbkcn but not anbncn or WW, where W is 
an arbitrary string of terminal symbols. 

 
It is difficult to define a grammar that generates a given natural language. On the 
one hand, a grammar has to have enough generative power to handle all possible 
sentence constructions in the language. On the other hand, the generative capacity 
has to be constrained in order to make predictions about the structure of a 
language (Feinstein & Winter 2006). Because of their many favorable 
characteristics, CFGs are often used by parsing systems. There are, however, 
constructions in natural languages that cannot be described by CFGs (Shieber 
1985a). Languages of the type anbncn cannot be described by CFGs because there 

  

0 Unrestricted 

1 Context-sensitive 

  

2 Context-free 

3 Regular 
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is no way in which to formulate the fact that there is a specific number of c’s at the 
end of the string. Such constructions exist, for example, in Swiss German and 
Dutch. An example of a English sentence with dependencies that are beyond 
capabilities of CFGs is “Jamie, Steven and Harry are a defender, a midfielder, and 
an attacker, respectively”. Such distinctions call for rules that are sensitive to the 
context. However, CSGs are actually more powerful than is needed for describing 
natural languages.  
 
While mildly context-sensitive grammars (MCSGs) are slightly more powerful 
than CFGs, they are less powerful than CSGs (Joshi 2003a, Joshi & Schabes 
1997). MCGSs are powerful enough to model natural languages while remaining 
efficiently parsable. For example, a commonly applied class of MCGSs, level-2 
MCSGs, are able to capture up to 4 counting dependencies (includes L4 = 
{ anbncndn|n ≥  1}, but not L5 = {anbncndnen|n ≥  1} (Castaño 2003). 
 
Formal equivalences between grammar formalisms can be described with the 
notions of weak and strong equivalence: 
 

Definition 3-20. Weak and strong equivalence (Miller & Chomsky 1963, 
Miller 1999) 

1. Two grammars, G1 and G2, are weakly equivalent if and only if they 
generate the same set of strings, i.e. iff L(G1) = L(G2). 

2. Two grammars, G1 and G2, are strongly equivalent if and only if they 
are weakly equivalent and if they assign the same set of structural 

descriptions for each sentence δ  in L(G1) and L(G2). 
 
GPSG, CatG, LG and projective DGs33 are weakly equivalent to CFGs (Joshi 
2003a, 2003b, Gaifman 1965). While they can generate the same set of languages, 
they do not assign the same description to the sentences of these languages. Since 
they have CF power, these formalisms are not powerful enough for fully modeling 
natural languages. Infante-Lopez and de Rijke (2006) have shown that PCFGs can 
define a set of trees that cannot be derived from rules of any CFG. From the 
perspective of formal language theory, probabilities thus are fundamental, and 
they add power to PCFGs.  
 

                                              
33 If a CFG is restricted so that one word in each phrase is designated its head and the phrase has 
no name or designation apart from the designation of its head, a DG and the CFG are strongly 
equivalent (Covington 2001). 
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TAG, CCG, Linear Indexed Grammar (LIG) (Gazdar 1988), and Head Grammars 
(Pollard 1984), are all level-2 MCSGs and are thus weakly equivalent (Vijay-
Shanker & Weir 1994). Kuhlmann and Nivre (2006) describe the class of mildly 

non-projective D structures, which, they claim, are rich enough to account for 
naturally occurring syntactic constructions as well as sufficiently restricted to 
enable efficient parsing. In a similar vein, Yli-Jyrä and Nykänen (2004) have 
proposed a family of DGs that belong to the class of MCSGs. 
 
When Joshi (1985) compared the generative capacities of GPSG, TAG and LFG, 
he came to the conclusion firstly that TAG is more powerful than GPSG and, 
secondly, that LFGs are context-sensitive and thus much more powerful than the 
two other formalisms. In HPSG the formalism itself does not set constraints on the 
power of a grammar (Rambow 1994). But the full power of the formalism is not 
necessarily used. I am not aware of any research in which the weak generative 
capacity of a specific HPSG has been investigated. 
 
CG possesses a formal power that is less than that of regular languages 
(Tapanainen 1999). It is well known that projective DGs are not a powerful 
enough formalism for fully describing natural languages. This means that there is 
a need for non-projective DGs. But there is very little research about the formal 
power of non-projective DGs. While Tapanainen (1999), for example, shows that 
FDG is more powerful than CFGs, he does not formulate the exact generative 
capacity of the formalism. XDG is similar to HPSG in a sense that the formalism 
itself does not constrain the generative capacity of a grammar (Debusmann 2003). 
Debusmann (2006) notes that XDGs are at least as powerful as MCSGs. Table 3-3 
summarizes the above discussion. 
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Table 3-3. The grammar formalism discussed in this work predicated on the basis 
of their formal powers. 

Level of grammar Formalisms 
Less than regular CG 

CFPSG 

GPSG 

CDG 

LG 

Context-free  

Probabilistic LG 

PCFG More than context-free, but less than mildly 

context-sensitive FDG?* 

Mildly context-sensitive TAG, LTAG, PLTAG, CCG 

Context-sensitive LFG 

TG 

HPSG Unrestricted 

XDG 

*While Tapanainen (1999) shows that FDG is more powerful than CFGs, he does not formulate 
the exact generative capacity of the formalism. 

 

3.4.4 Long-distance dependencies 
 
Long-distance dependencies (LDDs) are problematic for any theory of grammar 
because one needs to use non-local information when one analyzes the structures 
that contain them – linguistic structures cannot always be interpreted locally in the 
places where they are encountered. Table 3-4 illustrates how LDDs can arise out 
of phenomena such as extraction and coordination. 
 
Table 3-4. Examples of long-distance dependencies. 

Cause Type Example 
Wh-relative clause This is the player [who1 the coach despises […]1] Extraction  
Tough-movement The coach1 is hard to please […]1 

Sentential gapping Harry played1 football and Robbie […]1 tennis. 
Coordination 

Right-node raising Harry passed […]1 and Robbie headed the ball1. 

 
It was the existence of LDDs that motivated researchers to develop TGs. LDDs are 
handled in TGs by the transformations. LDDs are dependencies on the level of 
PAS (Vijay-Shanker 1989). The consequence of this is that CFPSG and the basic 
PCFG model, for example, are unable to handle LDDs because it is difficult, if not 
impossible, to state dependencies of that kind in a formalism that uses only PS-
style syntactic representation. However, PCFGs and other probabilistic grammars 
can be augmented with LDD handling mechanisms. Collins (1997), for example, 
adds a probabilistic model for wh-movements to the basic PCFG parsing model.  



 

59  

GPSG and HPSG treat LDDs in a similar way – by means of feature-passing. In 
HPSG signs are divided into two parts: one defines local information and the other 
is used for handling LDDs (Pollard & Sag 1994). While local features are unified 
locally, non-local features pass their specification to larger phrases (Bouma et al. 
2001). 
 
In LFG, LDDs are treated by means of the functional uncertainty mechanism that 
allows one to state the constraints on LDDs in F-structures (Kaplan & Maxwell 
1988). Joshi and Vijay-Shanker (1989) demonstrated a direct correspondence 
between the functional uncertainty in LFG and elementary trees in TAGs. The 
elementary trees in TAG provide an extended domain of locality that allows them 
to localize the predicate-argument dependencies. The handling of LDDs is 
therefore accomplished by the formalism itself. Joshi and Vijay-Shanker also 
enunciated a corollary to this finding by demonstrating that the handling of LDDs 
can be accomplished by means of MCSGs. 
 
Coordination is regarded as a particularly difficult phenomenon to handle in DG 
formalisms (Lombardo & Lesmo 1998b). Hudson (1990), for example, suggests 
that a PS-style model is needed to describe coordination in DGs. Lomardo and 
Lesmo (1998b), among others, have proposed frameworks for dealing with LDDs 
within a DG framework. FDG handles coordination by chaining the coordinated 
elements (Järvinen & Tapanainen 1998). In contrast to other D links in an FDG 
analysis, links that mark coordination do not imply a D relation but rather a 
functional equivalence. It is this treatment of coordination that gives FDGs the 
ability to cope with gapping – another phenomenon that is regarded as a serious 
problem for DGs. The treatment of LDDs in XDG is a consequence of the 
modularity of the formalisms. The control and raising constructions, questions, 
topicalization, and relative clauses, for example, are dependent on the way in 
which the dimensions are connected, and they do not need to be specified 
explicitly. XDG, however, is able not to handle coordination structures with 
ellipses (Debusmann 2006). 
 
Because LG is CF and produces projective analyses, it is not well suited to LDDs. 
The handling of coordination is achieved by a special type of connector called fat 

connectors that represent an ordered sequence of ordinary connectors and that 
allow “and” lists to be correctly handled (Sleator & Temperley 1993). This 
approach has only been applied to “and” coordination. Pyysalo et al. (2006) 
however argue that LG’s approach to coordination compares favorably to FDG’s 
chaining method. They claim that the LG approach is more expressive. While LG 
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coordination structures can be transformed into chaining structures, the opposite is 
not possible. 
 
While spurious ambiguity and the extra derivations that are caused by it increases 
the complexity of CCG parsing, it enables elegant analyses of coordination and 
extraction (Steedman 2000). Hockenmaier (2003) proposed a model that captures 
LDDs by expressing word-word dependencies of the PAS. The model allows 
multiple dependencies between a word and its context, as well as dependencies 
that arise through control, right node raising and other LDD constructions. 
 

3.4.5 Grammar development 
 
The labor-intensiveness of grammar building is dependent both on the formalism 
and on the availability of grammar development tools. Since most of the current 
grammar formalisms used in parsing are lexicalized, this sets some specific 
requirements for grammar development. Is usual for lexicalization to give rise to a 
loss of generality in the grammar (Pedersen 2001).34 LFG, for example, resolves 
this complication by lexical rules that allow for the application of a single rule to 
similar lexical items. 
 

3.4.5.1 Manual grammar development 
 
The manual construction of a wide-coverage grammar presupposes many years of 
skilled human labor on the part of someone who possesses a great deal of expert 
knowledge and experience in this field of the discipline.35 This kind of work also 
requires intensive collaboration between theoretical linguists and grammar writers 
(Oepen et al. 2000). Over and above these requirements, it is necessary to utilize 

                                              
34 In an LTAG, for example, the variations on a basic sentential form (for instance wh-movement), 
have to be implemented as additional elementary trees. 
35 Since manual grammar development is such an ambitious undertaking, it should rely on the 
techniques and design principles that are already used in software engineering (Dipper 2003). 
Such principles include modularity (this means that a grammar code should be divided into 
modules for easier development and maintenance). The modules in a grammar assemble pieces of 
code that are functionally related. For instance, the two representation levels of LFG (C- and F-
structure) are separated into modules. Like software projects, a grammar development project 
needs to be carefully documented. Large parts of this documentation typically consist of highly 
detailed code-level documentation. Another typical feature is the large number of links between 
the parts of documentation. Because the content of the dependent modules is required for 
understating the functionality of the parent module, it is necessary to make the documentation of 
the dependent modules easily accessible. 
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engineering skills to resolve technical problems.36 One of the major problems in 
manual grammar writing is to ensure consistency (Miyao et al. 2004). 
 
Because grammar building is such an expensive process, only a few hand-crafted 
deep grammars have achieved sufficient coverage to parse large collections of free 
text (Burke et al. 2004a). It is the stated aim of projects such as ParGram (Butt et 

al. 2002) to lower the intrinsic development costs involved in this process by using 
common tools and methods on several research sites where such grammars are 
being developed for multiple languages.  
 
Grammar development environments are software systems that offer grammar 
writers several tools that have the capacity to simplify their work (Carroll 1993). 
Such tools support incremental input, grammar editing, browsing and searching 
the grammar. They also offer analytical tools for monitoring interactions between 
different parts of the grammar and for debugging by rule-tracing. LKB for HPSG 
(Copestake & Flickinger 2000), Grammar Writer’s Workbench (Kaplan & 
Maxwell 1993) and XLE (Butt et al. 2002) for LFG, and XDG Grammar 

Development Kit (Debusmann et al. 2004a), are all examples of such 
environments. 
 

3.4.5.2 Grammar induction 
 
Automatic grammar induction is based on a treebank. The linguistic intuition is 
externalized into the annotations of the treebank and a grammar explaining the 
annotations is then learned automatically from the treebank (Miyao et al. 2004). 
Figure 3-13 illustrates the idea of grammar induction. 
 
 
 
 
 
 
 

Figure 3-13. Learning an unlexicalized grammar from a treebank. The rules on the 
right-hand side of the figure can be deduced from the tree on the left-hand side. 

                                              
36 The scaling of a rich UG beyond small text fragments to unrestricted text is, for example, both 
time-consuming and expensive (Cahill 2004). One may note, for example, that the LinGO HPSG 
for English contains 100,000 lines of source code, 27 lexical and 37 PS rules, and around 6,000 
lexical entries (Oepen & Callmeier 2000). 

S    → NP VP 
NP → pron 
VP → v NP 
NP → det n 
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While it is relatively easy to compose the rules for lexicalized grammars, the sheer 
number of lexical entries presupposes that such a task will be extremely labor-
intensive (Miya et al. 2003). There have been a few attempts in recent years to 
develop methods that will allow for the automatic generation of lexical entries. It 
is also possible to extract both the rules and the lexicon of a lexicalized grammar 
from a treebank.37 At its best, automatic grammar induction is fast and cheap and it 
produces grammars with a wide coverage (Cahill 2004). Burke et al. (2004b), for 
example, estimate that it took them less than three person months to automatically 
induce a Chinese LFG. 
 
The analyses provided by such grammars are often more shallow than those 
provided by their hand-crafted counterparts. The automatic induction of deep 
grammars, however, is currently being actively researched. Efforts in this field 
have yielded promising results, and have produced grammars that perform equally 
well or better than hand-crafted grammars. Grammar induction has been recently 
applied to HPSG (Miyao et al. (2003, 2004), to LFG (Burke et al. 2004a, 2004b, 
Donovan et al. 2005), and to CCG (Hockenmaier & Steedman 2002). All three 
methods have been applied to English and several other languages. They all work 
by first converting a set of syntactically analyzed sentences into HPSG, LFG or 
CCG formats respectively. Grammar induction methods are then applied to these 
converted structures. The method devised by Miyao et al. differs from the other 
two methods in that the rules are written manually and only the lexical entries are 
learned automatically. Table 3-5 outlines a comparison of these methods. 
 

                                              
37 Neumann (2003), for example, shows that LTAGs can be successfully learned from treebanks. 
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Table 3-5. Comparing HPSG, LFG and CCG acquisition methods (based on a 
lecture by Van Genabith (2006)). The same treebank was used in all these 
experiments. While the treebank structures are converted in a conversion-based 
approach without the addition of any new information, new information is added 
in an annotation-based approach. Tree binarization refers to the process of 
transforming the syntactic trees so that they will contain only constituents with 
two daughters. The size of the grammar and translation coverage refer to the 
English grammars obtained from the PTB. Translation coverage is the percentage 
of the PTB structures that were successfully converted into the target formalism. 

 LFG CCG HPSG 

Annotation/conversion -based Annotation Conversion* 
Conversion (with 
some annotation) 

Preprocessing by tree 
binarization 

No Yes Yes 

Preprocessing by cleaning up 
the treebank and correcting 

errors 
No     Yes** Yes 

Manual editing of the 

acquired rules/lexicon 
None 

Some editing of 
extracted 
categories 

Some editing of 
lexical entries & 

rules 

Grammar size 50,000 rules 
3,262 rules; 1,286 
lexical categories; 
44,210 word types 

12 schemas; 
1,942 lexical 

categories 

Translation coverage (%) 99.8 99.4 95.1 

Languages 
English, German, 
Spanish, Chinese 

English, German, 
Turkish 

English, Japanese 

*For example, inserting a noun level into NPs and analyzing multiword expressions. **POS 
tagging & bracketing errors. 

 

3.5 Summary of Findings 
 
Figure 3-14 and Tables 3-6 and 3-7 summarize the main characteristics of the 
grammar formalisms surveyed in this chapter and the relations between them. 
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Table 3-6. A summary of the grammar formalism analyzed above. KEY: Fin = 
Finnish; Rus = Russian; Swe = Swedish; Tur = Turkish; Nor = Norwegian. 
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Others 
LDDs Notes 

C
F PCFG 1 x x x x x x x x x 

Czech, Rus, 
Latin + several 

others 

No treatment of 
LDDs in the basic 

model 

Rather simple 
models. Especially 

suitable for grammar 
induction 

GPSG 1 x x x       - SLASH-features 
Replaced by HPSG 

in parsing 

HPSG 1 x x x x x x x x  
Nor, Korean, 

Greek + several 
others 

SLASH-features, 
non-local features 

in signs 

Descendant of 
GPSG, 

nonderivational 

U
G

 

LFG 1 x x x x   x x x 
Nor, Urdu, Tur 
+ several others 

Functional 
uncertainty 

Assigns two types of 
representations 

T
A

G
 

TAGs 1 x x x     x x Korean, Hindi 
Extended domain of 

locality 

Derivation trees. UG, 
lexicalized and 

probabilistic versions 
exist 

CG 1 x x x x x     
Fin, Swe, Nor, 

Danish + 
several others 

Not powerful 
enough for treating 

LDDs 

Underspecified and 
shallow analyses 

FDG 1 x x x x      Fin, Swe 
Coordination and 
gapping as chains 

of words 

Descendant of CG, 
non-projective 

analyses 

D
G

 

XDG M x x    x   x Czech 
No treatment of 

coordination with 
ellipsis 

Some details of the 
formalism are not 

completed 
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In many ways similar 

to DGs 

C
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CCG 1 x     x x   
Tur, Korean, 
Irish Gaelic, 

Tzotzil  

Follows from the 
spurious ambiguity 

Strong on 
coordination and 

extraction 
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Lex. 
PCFG

CFPSG

PCFG

TG

ATN

LFG GPSG

HPSG

TAG

Feature-based
LTAG

CDG

CG

FDG

LTAG

1950

1960

1970

1980

1990

2000

Unification

PL-
LTAG

LG

XDG

Prob.
LG

CatC

CCG

 
Figure 3-14. An overview to the grammar formalisms discussed in this chapter. 
The grammars shaded with gray boxes are lexicalized. An arrow between two 
formalisms indicates that the formalism at the beginning of the arrow has 
influenced the development of the formalism at the end of the arrow. 
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Table 3-7. A summary of the grammar formalisms. The row “development 
environment” indicates whether there are publicly available grammar development 
environments for the formalism. Two plusses indicate that there are several tools 
(more than two) available. The row “grammar induction” indicates whether a 
grammar induction method supporting the formalism has been reported in the 
literature. KEY: U = unrestricted; CS= context-sensitive; M = mildly context-
sensitive; R = regular. “>“ and “<“ indicate whether the formalisms have a formal 
power that is greater than or less than the power of the given grammar class.  

*Eisner (1996a, 1996b), for example, has proposed probabilistic DG models. **While 

Samuelsson et al. (1996) represented a method for automatically inducing CGs, the performance 
of the resultant induced grammars was found to be far inferior to that of manually constructed 
ones. ***Tapanainen (1999) shows that FDG can describe CF languages and structures of the type 
anbncn that are not describable by CFGs. He does not, however, formulate the exact generative 
capacity. **** Fong and Wu (1995) experimented with probabilistic LG induction. 
 

3.6 Conclusion 
 
In conclusion, I make general observations (some of which have been discussed 
by Backofen et al. (1996)) about overall trends in the development of parsing 
grammar formalisms on the basis of the analysis. 
 
While DGs and CatGs, for example, have always been lexicalized theories, the 
trend towards lexicalization is also strong in other formalisms such as the 
“Chomskyan” grammars, TAG and PCFG. Lexicalization creates a rich lexicon 
and diminishes the amount of the rules; more syntactic and semantic information 
is coded in the lexicon and there are fewer rules that contain less information. This 
increased complexity of the lexicon necessitates additional mechanisms with 
which to organize the lexicon and keep it free from redundancy. Hierarchical 
structuring and inheritance are therefore being more frequently used to organize 
the grammar and the lexicon. This approach is used, for example, in HPSG. 
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Inheritance allows for the building of more complex and specialized categories 
from more basic ones. Feature structure representation has also become 
increasingly popular in formalisms other than UGs, such as DGs and TAG. 
 
In contrast to the earlier models, many of the current grammar formalisms, such as 
XDG, HPSG and LFG, tend to integrate several levels of linguistic knowledge into 
one formalism. The developers focus accordingly on integrating the analyses of 
various phenomena into one coherent theory, and many formalisms have moved 
from construction-specific rules towards general and language-specific principles. 
This trend is visible, for example, in HPSG. Many modern grammar formalisms 
permit discontinuous constituents and a free word order. Non-projective DGs are 
an extreme example of this trend. 
 
PCFG parsers have arguably been applied to more languages than parsers based on 
any other grammar formalism. This is probably because they are relatively simple 
and easy to implement: only a treebank is needed from which to learn the 
grammar. The most intensively developed grammar formalisms for parsing at the 
moment appear to be based on LFG, HPSG and CCG. LFGs and HPSGs have 
been implemented for a wide variety of languages. There also are grammar 
development environments available for these formalisms. There are specifically 
multiple options available for LFG and HPSG developers. An important trend in 
grammar development is the rise of automatic induction methods, and research has 
been active in this field in recent years– especially among the LFG, HPSG and 
CCG research communities. 
In addition to CCG and the two UG formalisms (HPSG and LFG), a considerable 
amount of work has been done in the DG framework, especially on XDG, CG and 
FDG. While XDG may be rated the best for having grammar development and 
induction tools available, some aspects (such as the treatment of coordination 
(Debusmann 2006)) of this new formalism still need to be further developed.  
 
A grammar formalism is merely a language in which linguistic theories can be 
expressed. The use of a specific formalism does not therefore guarantee good 
parsing results. It is the quality of the grammar itself that is the key factor. It seems 
to be the case that the selection of a grammar formalism for a parser depends 
mostly on the following factors: the personal preferences of the user, the 
availability or otherwise of resources, the quality of the tools available for the 
formalism, and the needs set by the NLP system in which the parser is to be 
applied. 
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4 Syntactic Analysis – Parsing Algorithms 
 
The parsing algorithm is the component of a parser that applies the grammar to the 
input sentences to construct parse trees. Parsing algorithms are usually not 
designed for individual grammars, but for classes of grammars. This chapter 
provides an overview on fundamental search strategies (Section 4.1), parsing 
algorithms (Section 4.2) and approaches to parsing (viz. probabilistic, lexicalized 
and finite-state approaches) (Section 4.3). It also analyzes how these are applied in 
parsing specific grammar formalisms (Section 4.4). Section 4.5 considers the 
computational properties of the formalisms introduced in Chapter 3. Section 4.6 
concludes the discussion on grammar formalisms (Chapter 3) and their 
computational properties (Chapter 4).  
 

4.1 Introduction 
 
One may consider the problem of how to define search algorithms from several 
different points of view (Hellwig 2002, Pulman 1993). One may therefore describe 
parsing algorithms in terms of the direction in which the structure is built (whether 
top-down (Yngve 1959) or bottom-up (Glennie 1960)), or the way in which the 
search is executed (either breadth-first or depth-first), or in terms of the direction 
in which the input words are processed (from left-to-right or right-to-left).  
 
Top-down algorithms38 begin at the root of the parse tree and proceed from top to 
the bottom by trying to add nodes in accordance with the rules of the grammar 
(Pulman 1993, Hellwig 2002). The bottom-up approach starts from the words 
themselves and builds up the parse tree until the root of the tree is reached.39 But 
neither of these two strategies alone adequately exploits the constraints set by the 
grammar and the input. Bottom-up parsing with top-down filtering combines the 
two methods by operating from bottom to top, but by applying top-down 
constraints to guide the search. 
 
Depth-first searching always proceeds from the direction of the left-most symbol 
until a terminal is reached, thereby pursuing a single derivation at a time (Carroll 
1993). In the breadth-first strategy, symbols are processed in the order in which 
they were created. This means that all the derivations are pursued simultaneously. 

                                              
38 This approach is sometimes aptly called expectation driven because it makes use of the 
derivation rules from left to right, thereby “predicting” which units will occur in the input string. 
39 In D parsing, a top-down approach proceeds from the head to the dependent. But in a bottom-up 
algorithm, the order is the opposite. 
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The depth-first method is usually a preferable one because memory usage is a 
problem in the case of a breadth-first search. 
 
When a non-deterministic parsing algorithm finds itself in a situation in which 
several grammar rules are simultaneously applicable to an analysis point, it needs 
to choose one rule and then apply it. If the path that it selects later turns out to be 
false, the algorithm backtracks to the starting point and tries another rule (Dutoit 
1997). This kind of procedure can generate a great deal of inefficient parsing. 
Since a deterministic algorithm never backtracks, it is able to produce the parse in 
linear time; the upper bound for the time required is proportional to the size n of 
the input, denoted by O(n). 
 
In left-to-right parsing, the rules of a grammar are always processed from the left-
most daughter of the rule toward the right (Pulman 1993, Carroll 2005). A right-
to-left strategy is much rarer in parsers. Island parsing is a bidirectional approach 
in which analysis begins from a certain position in the sentence called the island, 
before it proceeds in both directions. In head-driven parsing, the head of each rule 
is taken as the starting point (Kay 1989, Nederhof & Satta 1994). The essence of 
this approach is that there is a distinguished member, the head, in each rule which 
is first recognized. The motivation is to start from the elements within the input 
string that carry the most syntactic content. 
 
The number of possible parses for a sentence may grow exponentially as the 
length of a sentence grows. Two representation techniques, charts and chart 
packing, can be applied to avoid the exponential growth of the size of the parse 
forest. This will result in an increase in parsing efficiency. Charts are the basis of 
many parsing algorithms (Sikkel & Nijholt 1997, Carroll 2005). The chart is used 
for storing completed items that need no further processing. In a chart parser, 
complete sub-parses are saved. This obviates the duplicate searching of sub-parses 
that have already been found (Pulman 1993). The use of a chart also enables one 
to return a fragmented analysis based on the sub-parses recorded in the chart if the 
algorithm fails to produce a complete parse. It is moreover sometimes possible to 
combine a complete parse from fragments in the chart.40 While a passive chart 
records only complete constituents, an active chart records information about the 
stages in the application of the rules (Carroll 2005). 
 

                                              
40 Mellish (1989), for example, applies a strategy in which a bottom-up parser is run over the 
input. If it fails to produce a complete parse, a top-down parser is run over the chart created by the 
bottom-up parsing in order to hypothesize possible complete parses. 
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Although chart parsing makes processing more efficient, it nevertheless requires 
exponential time and space to assign parses to a sentence with an exponential 
number of possible parses (Pulman 1993). A solution to this problem is the 
application of chart packing. Instead of representing all analyses in the chart and 
thus undertaking redundant work, sub-parses that represent local ambiguity can be 
merged and treated as one node (Tomita 1987).41 Figure 4-1 provides an example 
of chart packing. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-1. An example of chart packing. The unpacked structure is on the left-
hand side and the packed one is on the right (adapted from (Tomita 1987)). The 
example on the left illustrates a basic chart parser with a set of parses with sub-
parse sharing. The parse tree on the right contains packed nodes represented as 
boxes.  
 

4.2 Parsing Algorithms 
 
This chapter introduces the most fundamental parsing algorithms that were 
originally developed for parsing CFPSGs (Section 4.2.1) and two commonly used 
techniques for increasing speed, namely supertagging and CF filtering (Section 
4.2.2). 
 

4.2.1 Fundamental algorithms 
 
A common strategy for developing a parsing algorithm for classes of grammars 
that are more powerful than CFGs is to generalize a CFG algorithm to the more 
powerful class (Van Noord 1994). Even though a number of CFPSG parsing 

                                              
41 Tomita uses the term parse forest for structures containing a set of trees represented by using 
packed nodes. 
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algorithms were developed already in the 1960s and 1970s, most of them are still 
in use, although modified to cope with newer grammar formalisms. 
 
The Cocke-Younger-Kasami (CYK) (Kasami, 1965, Younger 1967) algorithm is a 
bottom-up method that uses a passive chart. The algorithm requires a CFG in the 
Chomsky-normal form, in which every rule must rewrite a nonterminal either as a 
single terminal or as two nonterminals.42 The Earley algorithm (Earley 1970) is a 
parallel, top-down, left-to-right procedure that uses a passive chart. One of the 
most significant contributions of the Earley algorithm is that it is more generally 
applicable than, for example CYK, in the sense that although it can process CFGs 
at least as efficiently as earlier algorithms, it does not require the grammar to 
belong to a specific class. 
 
LR(k) parsing43 is a bottom-up parsing technique that is based on shift-reduce 
processing.44 While an Earley parser constructs sets of possible productions on the 
run by following all the possible partial derivations, an LR parser has access to a 
pre-computed list of possible derivations (Stolcke 1995). Because much of the 
work takes place in the preprocessing phase, the result is a relatively simple run-
time parsing. Several modifications of the LR(k) algorithm have been devised. 
These include Tomita’s (1987) Generalized LR, which is a non-deterministic LR 
algorithm that uses local ambiguity packing and breadth-first search. Look-ahead 

LR (LALR) is a refinement of the technique for constructing the LR parse tables. 
Head-inward parsing combines a head-driven approach with LR processing 
(Bouma & Van Noord 1993, Nederhof & Satta 1994). 

 
A left-corner (LC) algorithm will consider a grammar rule only if the current input 
word can serve as the LC of some derivation from that rule (Matsumoto et al. 
1983, Moore 2004). The LC relation is usually precompiled by the parsing 
algorithm and indexed so that any pair of symbols can be checked in constant 
time.  

                                              
42 Although CFGs can usually be automatically converted into Chomsky-normal form, the size of 
the grammar may grow exponentially in the conversion, making parsing inefficient. 
43 The algorithm’s name derives from the fact that it reads the input from Left to right and 
produces a Rightmost derivation. The k refers to the number of look ahead symbols that are used 
in making parsing decisions. Typically k is 1, and hence LR refers to a LR(1) parser. An LR(0) 
parser makes decisions based on stack contents. An LR(1) uses, in addition, the next token on the 
input. 
44 In a shift-reduce parser either of the two actions is performed: a shift action consumes a word 
from the input string and pushes it onto the stack. A reduce action applies a grammar rule. Shift-
reduction results in efficiency because it can delay decisions. For example, a word that has 
ambiguous POS tags can be shifted onto the parse stack and the final categorization will be 
delayed until a reduction involving the word is made. 
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Example 4-1. Left-corner of a parse tree. The word “saw” with the label V form 
the left-corners of the tree. 
 
 
 
 
 
Head-corner (HC) parsing can be considered as a generalization of LC parsing 
(Sikkel & Op den Akker 1993, Bouma & Van Noord 1993). It is also closely 
connected to head-driven parsing. While an LC parser processes a parse tree from 
left to right, HC parsing begins from the heads. HC allows for parsing with more 
powerful grammars than LC parsing. 
 

4.2.2 Supertagging and CF filtering 
 
The basic parsing algorithms discussed above have been adapted in several ways 
so that they can contribute to more efficient and accurate parsing systems. This 
section introduces two such adaptations: supertagging and CF filtering. 
Supertagging45 is a technique for reducing the cost of parsing lexicalized grammars 
(Srinivas & Joshi 1994, 1999). It was first introduced for LTAG and has later been 
applied to several other formalisms. Instead of assigning POS tags, supertagging 
assigns more informative supertags to each word in an input sentence. In LTAG, 
each supertag corresponds to an elementary tree. After supertagging, the 
remaining step of determining the actual syntactic structure of an input sentence is 
rather trivial. It is also possible to return a fragmented analysis consisting of 
supertags in a case where a full parse cannot be produced. Supertagging also 
decreases the number of elementary trees that are assigned to each word, thereby 
increasing efficiency. 
 
CF filtering is a technique for increasing the speed of UG parsing (Torisawa et al. 
2000, Matsuzaki 2007). CF filtering first parses an input sentence by means of a 
CFG that approximates the UG, and only subsequently with the original grammar. 
For example, in the parser created by Torisawa et al. (2000), a CFG is extracted 
from an HPSG and is used in the first stage of parsing. The CFG typically 
generates a large set of possible parse trees. These trees are eliminated in the 
second stage by the HPSG. The use of CF filtering makes the algorithm more 

                                              
45 Srinivas and Joshi (1999) claim that supertagging is “almost parsing”. The syntactic information 
provided by supertags is so rich that there is only some structural ambiguity left and the parse is 
almost entirely determined by the supertags. 
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efficient if one compares it to the use of an HPSG alone because it avoids 
unnecessary unification by eliminating impossible parse trees. 
 

4.3 Probabilistic, Lexicalized and Finite-state Parsing 
 
While non-probabilistic algorithms (such as those described in Section 4.2.1) 
regard parsing as the recursive application of predetermined rewrite rules, 
probabilistic parsing (Section 4.3.1) approaches the problem by means of 
automatically discovering the disambiguation criteria for the decisions made 
during the parsing process. Because many of the grammar formalisms applied in 
parsing are lexicalized, lexicalized parsing (Section 4.3.2) has become 
increasingly important. Probabilistic and lexicalized parsing are often combined. 
Finite-state machines have been used for many NLP tasks such as segmentation 
and morphological analysis. Section 4.3.2 introduces a discussion on how FSMs 
can be applied in parsing. 
 

4.3.1 Probabilistic parsing 
 
In addition to defining the probabilities for parses and thus finding out the most 
probable analyses, probabilistic information can be used for speeding up the 
parsing process by ordering the search space (Magerman 1994, Collins 2003). The 
goal here is to identify the best parse more quickly while simultaneously not 
undermining the quality of the produced results. Figure 4-2 shows the idea of 
probabilistic parsing. 
 
 
 
 
Figure 4-2. The components of a probabilistic parser. The sample consists of 
sentences in language L. It usually consists of annotated sentences obtained from a 
treebank. The probabilistic model defines possible analyses for sentences in 
language L. The parsing algorithm defines the analyses for the sentences of a 
given text in L, relative to the parsing model. 
 
There are three phases in the development of a probabilistic parsing model. In the 
parametrization phase, the method for defining the probabilities of analyses has to 
be decided (Hockenmaier 2003). In the training phase, the probability 
distributions have to be instantiated with a sample. Finally, a method for 
measuring the quality of a particular model has to be chosen. The model 
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evaluation is typically carried out in the following way. The sample is split into 
three sets: a training set, a development set, and final test set. The parameters of 
the model are estimated on the training set, tuned on the development set and 
tested on the final test set which contains unseen data. 
 
A probabilistic parsing algorithm assigns probabilities p(π|s) to each parse π of the 
sentence s and returns the most probable parse, i.e. the one that maximizes p(π|s) 
(Charniak 1996): 

( ) ( )
( ) ( )sp
sp

sp
sP ,maxarg

,
maxarg ππ

ππ
==     (4-1) 

 
The probability models that estimate p(π|s) directly are referred as conditional 

(Hockenmaier 2003). In such models the probability has to be defined for every 
sentence in the language. This makes them difficult to apply in practice. By 
contrast, the assumption in generative models is that a parse tree is generated by a 
probabilistic process and that the probability of the parse can be expressed in 
terms of the individual steps of the process.  
 
In addition to defining the probabilities for parses, it is possible to use probabilistic 
information for speeding up the parsing process by ordering and pruning the 
search space. The purpose of this is to enable the algorithm to find the best parse 
more quickly while at the same time not compromising the quality of the results 
that are produced. It is possible to select the most probable derivation of a 
sentence, for example, by Viterbi optimization (Viterbi 1967). The idea here is to 
eliminate the sub-derivations with low probabilities bottom up. One can also use a 
beam search strategy, in which only the best n partial parses are being tracked, for 
pruning the chart edges. Best-first parsing methods consider the most likely 
constituents first (Caraballo & Charniak 1998). A best-first probabilistic chart 
parser attempts to find the most likely parses by adding constituents to the chart in 
the order in which they are most likely to appear in a correct parse.  
 
There are several ways to boost the performance of a probabilistic parser. In voting 

methods, such as those devised by Henderson and Brill (1999), predictions from 
several parsers are combined. Henderson and Brill, for example, compared two 
models: parse hybridization, which considers each constituent in isolation, and 
parser switching, in which one parse is selected for the whole sentence. 

 
Data-oriented parsing (DOP) is an extreme type of probabilistic parsing that 
applies a treebank directly as a probabilistic grammar (Bod 1998, Bod et al. 2003). 
DOP operates by deconstructing the representations that are given for training into 
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fragments and then reconstructing those pieces for analyzing new sentences. An 
input sentence is parsed by combining treebank subtrees by means of a node 

substitution operation, which closely resembles that of TAGs. 
 
The probabilistic parsing approaches that were introduced above have much in 
common. They all begin with a relatively small knowledge of the language and 
gather statistics from the training corpus. Probabilistic parsing models can be 
compared for example on the basis of the scope of the statistical dependencies that 
they use. While most state-of-the-art probabilistic parsers are based on models of 
word-word dependencies, DOP takes into account all observable fragments in the 
training data.  
 

4.3.2 Lexicalized parsing 
 
Most state-of-the-art parsers use lexicalized grammar formalisms. Lexicalized 
parsing approaches have therefore been a topic of wide interest during the 
previous decade. The most obvious implication of a lexicalized approach is the use 
of bottom-up parsing. It makes sense to start the search process from the words 
themselves to obtain lexical information in the first stage of the parsing.  
 
A major processing advantage of lexicalized grammars over non-lexicalized ones 
is that there is no need to search the grammar as a whole: it only needs to search 
the grammatical information indexed by each of the words. A consequence of this 
is that increasing the size of a grammar does not necessarily slow down the 
processing – provided that the increase in size is caused by the addition of new 
words rather than increased lexical ambiguity.  
 
Probabilistic and lexicalized approaches are often combined. To a non-lexicalized 
probabilistic parser, an input sentence is really just a list of POS tags and 
nonterminal nodes. The main advantage of non-lexicalized parsers is that the small 
terminal alphabet makes model training easier and less prone to data sparseness 
(Dubey 2005). The consequence of this is that neither computational efficiency 
nor smoothing are critical issues in non-lexicalized probabilistic parsing. It has 
however been evident from the time of the earliest probabilistic parsers such as 
those of Magerman (1994), that lexicalizing the probabilistic model typically helps 
one to obtain more precise models.  
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4.3.3 Finite-state parsing 
 
Syntactic structures in FS parsing are modeled with graph representations (Oflazer 
2003). FSM parsing techniques are based on the building of a larger system from 
smaller FSMs by combining and transforming those by using intersection, 
composition, determinization, and minimization algorithms (Ginter et al. 2006). 
 
The following several approaches have been devised. Pure FS parsing combines a 
set of FSMs to a single FSM (Yli-Jyrä 2004b). In contrast to this, extended FS 
approaches use FS devices as basic components and combines them in such a way 
that the FS nature of the whole system is not necessarily preserved (Oflazer 2003, 
Roche 1997). Another commonly used approach is to create an FS approximation 

of the original grammar. CFGs, for example, can be approximated with FS 
grammars, which are then processed by methods that are efficient for such 
grammars.  
 
The applicability of FS parsing to natural languages has been questioned for 
example by Chomsky (1957). He argued that because natural languages are non-
regular, they cannot be modeled by FS machinery. One of his arguments was that 
unbounded self-embedding structures require unbounded memory. But recent 
studies have suggested that there is an absolute limit on center-embedding and 
self-embedding. An FS approach would consequently indeed be applicable to 
natural languages (Yli-Jyrä 2004a, Karlsson 2006). Yli-Jyrä (2005) claims that 
while non-FS frameworks are useful for modeling tree locality and co-occurrence 
constraints, FS grammars are at their best when they are used to approximate 
computationally expensive formalisms. FS methods have also been found to be 
especially useful for shallow parsing. 
 

4.4 Examples of Grammar Formalism-specific Algorithms 
 
This section introduces techniques that are applied in parsing specific grammar 
formalisms, and it offers examples of parsers for these formalisms. 
 

4.4.1 Parsing PCFGs 
 
Head-driven statistical parsing (Collins 1996) extends the basic PCFG model by 
lexicalization. Collins has extended this original framework by introducing what 
are generally known as the Collins Models 1, 2 and 3 (Collins (1997, 2003)). 
Model 1 is the baseline generative model based on (Collins 1996). Model 2 makes 
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a distinction between complements and adjuncts and has parameters that 
correspond directly to the probability distributions over subcategorization frames 
for head-words. Model 3 adds a probabilistic treatment of a type of LDD, wh-
movement.  
 
Another well-known example of the use of a lexicalized PCFG is the parser by 
Charniak (1996, 1997, 2000). Like Collins, Charniak uses the Markov process for 
rule generation. This approach is based on an ME model. Charniak’s model uses a 
richer set of features than Collins’s models. 
 

4.4.2 Parsing UGs 
 
Two basic UG parsing approaches can be distinguished. In pure unification 

parsing, such as that of Shieber’s (1985b) chart parsing algorithm, there is no CF 
backbone. The parsing is based purely on feature unifications. In the case of a UG 

with a CF backbone, the parsing is driven by the backbone, and the appropriate 
unifications are carried out (for example, Carroll (1993)). 
 
Any parsing strategy that is valid for CFGs is also valid for UGs. Bottom-up 
parsing is a more attractive approach for UGs than a top-down one because of its 
lexical element-driven nature (Bouma & Van Noord 1993, Oepen & Carroll 
2000). Most of the recent work on UG parsing has therefore concentrated on 
purely bottom-up techniques. The efficiency of a unification-based parser depends 
to a great extent on the efficiency of the unification operation.46 There are two 
crucial decisions that need to be made: the way the unification operation is 
implemented and the way in which the unifications are timed (Placeway 2002).  
 

4.4.3 Parsing TAGs 
 
Constructing a derivation in TAG and LTAG requires the following two steps. 
Firstly, each word in the input sentence is assigned a set of trees. Secondly, the 
trees are combined to produce a derivation from which a parse tree can be 
constructed (Sarkar 2002). Some parsers, such as those of Joshi and Schabes 
(1997), use TAGs directly. Other parsers, such as those of Vijay-Shanker and 
Weir (1993) and Schabes and Shieber (1994), transform a TAG into an equivalent 
linear indexed grammar and use that for parsing.  
 

                                              
46 Roughly 90 per cent of the CPU time in parsing, when using a large-scale UG, is spent on 
feature structure unifications (Malouf et al. 2000). 
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Supertagging (Section 4.2.2) was originally introduced for TAGs, and it has 
proved to be a successful approach. LTAG parsing by supertagging involves the 
following two steps. Firstly, an appropriate set of supertags is selected for each 
word in the input (Srinivas et al. 1996). Secondly, the parser uses simple heuristic 
rules to link the supertags in an appropriate way to produce complete parses.  
 

4.4.4 Parsing DGs  
 
D trees contain one node per word, and the task of a D parser is to connect these 
nodes. A wide variety of techniques have been applied to D parsing. Some parsers, 
such as the ones of Lombardo & Lesmo (1998a) and Eisner (1996a), use dynamic 
programming algorithms similar to those applied for CFGs. Others regard parsing 
as a constraint satisfaction problem.  
 
In contrast to most other formalisms which are parsed in a constructive way by 
building structural descriptions out of elementary blocks according to a rule 
system, CG and FDG follow an elimination approach (Voutilainen & Heikkilä 
1993, Voutilainen 1994). The analysis is based on disambiguation by constraints.47 
Non-projective DGs have been successfully parsed using probabilistic data-driven 
methods, for example, by McDonald et al. (2005) and Nivre et al. (2004). 
 
XDGs have been parsed by axiomatizing valid D graphs by finite set constraints. 
In this approach parsing is reduced to finite set constraint programming 
(Debusmann et al. 2004a, Duchier 1999). In contrast to the generative approach in 
which parses are build up by combining smaller ones, constraint programming sets 
global well-formedness conditions for the sentence structures.  
 

4.4.5 Parsing LG 
 
Sleator and Temperley (1993) use a dynamic programming algorithm for building 
up LG linkages. A major efficiency increase is obtained by post-processing that 
deletes connectors that cannot form linkages. Grinberg et al. (1995) proposed a 
modification that allows for parsing spoken language transcripts. The algorithm 
uses null links to allow connections between any pair of adjacent words, regardless 
of their definitions in the lexicon. In a recent work, Ginter et al. (2006) applied FS 
parsing to LGs. They concluded that while LGs can be parsed by FSMs, this 

                                              
47 CG parsing proceeds as follows. Firstly, all possible POS and morphological tags (i.e. readings) 
are provided for each word in the sentence (Voutilainen & Heikkilä 1993). Secondly, the 
constraints eliminate tags that are inconsistent with the context. 
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approach is inefficient in practice because of the computation of the intermediate 
results. 
 

4.4.6 Parsing CCG 
 
Because CCG derivations are binary trees, standard chart parsing techniques can 
be applied. The main challenge in CCG parsing is how to control spurious 
ambiguity. Spurious ambiguity is caused by the properties of CCGs, which allows 
the generation of an exponential number of derivations for a constituent. 
 
In her search for a suitable probabilistic parsing framework for CCGs, 
Hockenmaier (2003) considered Charniak’s (1999), Collins’ (1997), Goodman’s 
(1997) PCFG models, and the DOP models of Bod (1998). She found that those of 
Collins (1997) and Goodman (1997) were best suited to the purpose. She also 
proposed a model that captures LDDs by expressing word-word dependencies of 
the PAS. This model allows multiple dependencies between a word and its 
context, including dependencies that arise through control, right node raising and 
other LDD constructions. Another probabilistic approach to CCG parsing is 
introduced in Clark et al. (2002) and in Clark and Curran (2004a). The main 
difference between these and Hockenmaier’s parser is that instead of being a 
generative model, Clark and Curran (2004a) apply a conditional probability model 
similar to that of Collins (1996). Clark and Curran also use a ME-based 
supertagger prior to parsing.  
 

4.5 Computational Complexity of Parsing 
 
The structure of the search space of a parsing algorithm is defined by the 
grammar. The properties of the grammar and the parsing algorithm together define 
the computational complexity of a parser. The computational complexity of an 
algorithm describes the rate at which it consumes time and space (Ristad 2003). It 
is characterized as the order of the growth of a function in the size of the input, 
typically by means of the upper bound of the resource requirements.  
 

4.5.1 Efficiently parsable formalisms 
 
Let n be the number of words in a sentence. The complexity of parsing CFGs with 
dynamic programming approaches, such as those of Earley and CYK, remains in 
O(n3) in the general case, but are more efficient with specific types of grammars. 
The Earley algorithm, for example, has the time complexity n2 for certain types of 
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grammars. Table 4-1 sets out worst-case time and space complexity figures for 
certain parsing algorithm - grammar formalism pairs for which a polynomial time 
algorithm is known. 
 
Table 4-1. The worst-case time and space complexities for algorithms parsing a 
specific grammar formalisms reported in literature. The data is compiled from 
Carroll (1993), Covington (1990), Díaz et al. (2002), Eisner (1996a), Grinberg et 

al. (1995), Joshi (1998), Kipps (1989), Lomardo and Lesmo (1998a), Perrault 
(1984), Satta (1994), Schabes and Joshi (1988), Stolcke (1995), Sikkel and Op den 
Akker (1993), Tapanainen (1999), Yoshinaga et al. (2003), Van Noord (1994), 
and Vijay-Shanker and Weir (1993). 

 
There are, apart from the length of an input sentence, other factors that affect 
computational complexity. Sarkar et al. (2000), for example, point out that, for 
fully lexicalized grammars48 such as LTAG, the sentence length is not the only, or 
even the dominant, factor affecting parsing complexity. They describe how 
syntactic lexical ambiguity and clausal complexity also indicate complexity. A 
word typically selects more than one syntactic structure. This syntactic lexical 

ambiguity is a better indicator of parsing complexity in LTAG than the sentence 
length. The clausal complexity of a sentence indicates the number of clauses it 
contains. As it increases, the number of decisions about how to link the clauses 
with one another increases accordingly.  
 

                                              
48 A grammar in which each lexical item is associated at least one syntactic structure. 

Algorithm Formalism Time Space 
CFG n3 n2 

PCFG n3 n2 
TAG n6 n6 

Earley 

CDG n3 - 
CFG n3 - 

PCFG n3 - 
Level-2 MCSGs n6 n4 

CYK 

CDG n3 - 
LR CFG n3 n3 
LC TAG n6 - 

CFG n3 n2 
HC 

TAG n6 - 
Elimination (Tapanainen 1999) CG n3 - 

Sleator & Temperley (1993) LG n3 - 
Grinberg et al. (1995) Probabilistic LG n3 - 
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4.5.2 Intractable problems 
 
The problems in the classes NP-complete, NP-hard and EXPPOLY are intractable 
Ristad (1985, 1986). It is widely believed – although it has not been proved – that 
no fast methods of solution can ever be found for these problems. The recognition 
problems of some of the grammar formalisms analyzed in this work belong to the 
intractable classes (Table 4-2). 
 
Table 4-2. The complexities of recognition problems of the grammar formalisms 
in intractable classes. 

*Depending on the version used. **Trautwein (1995) showed that when certain restrictions are set 
on a HPSG, the complexity of URP is NP-complete. 

 
While the theoretical upper bounds of the CF filtering approaches to LTAG and 
HPSG (Torisawa et al. 2000, Oouchida et al. 2004) remain in the same class as 
their non-filtering counterparts, experiments show that the practical parsing 
efficiency often is much better.  
 

4.5.3 Analysis 
 
There are some important points to note about the time complexity figures. Firstly, 
the worst-case complexities are not directly useful for evaluating the practical time 
complexities of parsing algorithms (Joshi 1998). As Covington (1990) points out, 
the worst-case parsing complexities rarely materialize. Covington (2001) claims 
that human language does not use unconstrained grammar, and that human beings 
do not use sentences that would put any reasonable parsing algorithm into a worst-
case situation. 
 
There are, however, no theoretical average case results available for most 
algorithms and formalisms; all we have are ones that are based on empirical 
experiments. Tapanainen (1999), for example, approximated the average 
complexity of CG parsing as O(n log n). Average-case complexities can in some 
cases be improved. The average-case complexity of a DG parser, for example, can 

Type Formalism URP Source 

GPSG EXPPOLY-hard/NP-complete* Ristad (1985, 1986) 

HPSG Undecidable/NP-complete** Kepser and Mönnich (2003) & 
Trautwein (1995) 

UG 

LFG NP-complete Barton et al. (1987) 

Non-projective DG NP-complete Neuhaus and Bröker (1997) 
DG 

XDG NP-hard Debusmann & Smolka (2006) 
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be reduced by placing an arbitrary limit on the maximum distance between the 
current word and the potential head and dependent (Covingtion 1990). Although 
the limit will reduce the complexity significantly, Covington claims that it will not 
affect the correctness of the parser because massive word order inversions and the 
wide separation of constituents are very rare or forbidden in natural languages. 
 
Secondly, parsing algorithms are often claimed to be grammar formalisms-
independent. This may often be true in the sense that they can be used for parsing 
many different types of grammars. The grammar formalism, however, typically 
exerts an enormous influence on the efficiency of the parsing algorithm. An 
algorithm that works best for one grammar formalism may be the most inefficient 
for some other formalism. Sarkar et al. (2000), for example, assert that the 
theoretical upper bound did not exert any significant affect on performance in 
LTAG parsing, but that the dominant factor was the lexical ambiguity.49  
 
Thirdly, complexity results are only partly relevant for probabilistic parsers since 
such parsers are usually not based on a grammar but rather on statistical inference 
from treebank annotations (Nivre 2006). While the recognition problem of non-
projective DGs is NP-complete, for example, the probabilistic non-projective D 
parser by McDonald et al. (2005) has the time complexity O(n2).  
 
Moore (2000) and Van Noord (1997) have reported practical efficiency 
evaluations using different pairs of grammars and algorithms. One cannot directly 
compare the conclusions that they draw because they ran the tests on different 
machines and grammars. Not only that but Moore (2000) used English test data 
and Van Noord used (1997) Dutch test data. One may nevertheless draw some 
conclusions from these experiments. In both experiments, LR performed worst on 
average while LC was more efficient than the Earley algorithm in most cases. The 
experiments also emphasize the fact that while parsing algorithms are most 
commonly designed to be general, their performance varies considerably in 
accordance with the grammar. The grammar also affects the relative space usages 
of the algorithms.  
 
In order to arrive at a practical point of view of the space complexity of parsing, 
let us consider an example. A feature structure build by a parser using the LinGO 
HPSG grammar contains on average 300 internal nodes (Oepen et al. 2000), and 
each node is approximately 80 bytes in size. The parser executes over 4,000 

                                              
49 The number of possible lexical entries for the same word in a sentence. 
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unifications per sentence on average. The total memory processing therefore 
corresponds to almost 100 MBs. 
 
The complexity figures given above do not include morphological analysis, which 
is also a complex task. Barton et al. (1987) demonstrated that the TWOL 
morphological analysis (both recognition and generation) is NP-hard. This is 
caused by backtracking in processing both the lexicon and the TWOL rules. 
Fortunately, as Koskenniemi and Church (1988) point out, the worst-case behavior 
rarely, if ever, materializes with natural languages. Koskenniemi and Church 
argue along similar lines to those argued by Covington (above) when they note 
that the exponential behavior does not occur in practical applications since natural 
languages avoid using constructions that could trigger any worst-case behavior. 
 
It may therefore be concluded that it is difficult to state anything on the practical 
efficiency of a parser on the basis of only the theoretical computational 
complexities of the grammar and the algorithm. One also needs to bear in mind 
that there is no analytical technique that allows one adequately to characterize 
grammar complexity in a particular setting and to predict the most efficient 
parsing strategy on the basis of a given grammar.  
 
Moreover, one may state that research on efficiency in parsing has two main goals. 
The first is to identify linguistically significant subclasses of grammars with low 
theoretical complexity, and the second is to find parsing approaches and 
algorithms that are efficient in practice. On the basis of the findings above priority 
should be given to the latter goal. These findings emphasize the need for finding 
an empirical means of comparing different approaches and identifying the best 
ones for a given parsing problem. 
 

4.6 Conclusion 
 
This section analyzes the algorithms and techniques that are applied in parsing the 
grammar formalisms surveyed in Chapter 3. Table 4-3 provides an overview of the 
techniques used in parsing the grammar formalisms represented in Section 3. 
While this table is not exhaustive, it nevertheless offers a comprehensive view of 
approaches that are applied in the parsing of each of the formalisms. Since many 
of the algorithms shown in the table are lexicalized, lexicalized parsing is not 
represented in a separate section in order to avoid duplicating items. 
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Table 4-3. Summary of parsing approaches and algorithms applied to the grammar 
formalisms analyzed in Chapter 3.  

 PCFG UGs TAGs DGs LGs CCG 
Fundamental algorithms 

Earley 
Stolcke 
(1995) 

Shieber 
(1985b) 

Schabes & 
Joshi (1988), 

Nederhof 
(1999) 

Lombardo & 
Lesmo (1996) 

- - 

CYK Ney (1991) 
Haas (1987), 
Tsuruoka et 
al. (2004) 

Vijay-
Shanker & 

Weir (1993), 
Chiang (2000) 

Eisner 
(1996a), Lee 

& Choi 
(1997) 

- 
Hockenmaier 

(2003) 

Shift-
reduce /LR 

Carroll 
(1993) 

Briscoe & 
Carroll 
(1993) 

Schabes & 
Vijay-

Shanker 
(1990) 

Yamada & 
Matsumoto 

(2003), Nivre 
et al. (2004) 

- 
Villavicencio 

(1997) 

LC 
Manning & 
Carpenter 

(1997) 
Haas (1989) 

Díaz et al. 
(2002) 

- - - 

HC - 
Van Noord 

(1997) 

Van Noord 
(1994), Sarkar 

(2000) 
- - - 

CF filtering and supertagging 

CF filtering - 

Torisawa et 
al. (2000), 

Matsuzaki et 
al. (2007) 

Poller & 
Becker 
(1998), 

Oouchida et 
al. (2004) 

- - - 

Super-
tagging 

- 

Ninomiya et 
al. (2006), 

Matsuzaki et 
al. (2007) 

Srinivas & 
Joshi (1999) 

Foth et al. 
(2006) 

- 
Clark (2002), 

Clark & Curran 
(2004b) 

Parsing approaches 

Pure - - - 
Koskenniemi 

(1990) 
- - 

Extend. - - 
Roche (1997, 

1999) 
Oflazer 
(2003) 

- - 
F

in
ite

-state
 Approx. 

Mohri & 
Nederhof 
(2001) 

Johnson 
(1998) 

- 
Yli-Jyrä 

(2004b, 2005) 
Ginter et al. 

(2006) 
- 

Genera-
tive 

Charniak 
(1996, 2000), 

Collins 
(1997, 2003) 

Cahill 
(2004) 

Chiang (2000) 

Eisner 
(1996a), 

Dienes et al. 
(2003) 

Lafferty et 
al. (1992) 

Hockenmaier 
(2003) 

Condi-
tional 

Johnson 
(2001) 

- - - - 

Clark et al. 
(2002), Clark 

& Curran 
(2004a) 

ME 
Charniak 
(2000) 

Ninomiya et 
al. (2006) 

- 
Cheng et al. 

(2005) 
- 

Clark & Curran 
(2004a) 

Inside-
outside 

Goodman 
(1996) 

Briscoe & 
Carroll 
(1993) 

- 
Lee & Choi 

(1997) 
Lafferty et 
al. (1992) 

- 

P
ro

b
a

b
ilistic 

DOP 
Goodman 

(1996) 

Bod et al. 
(2003), 

Neumann 
(2002) 

Neumann 
(1998) 

- - - 
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I have used two criteria, expressiveness and computational efficiency, to compare 
grammar formalisms for parsing. While the grammar formalism of a parser needs 
to be sufficiently expressive for describing the language that is being parsed, the 
formalism needs to be simultaneously parsable within a reasonable timeframe. I 
have represented the results of the analysis in Table 4-4.  
 
Table 4-4. A summary of the analysis in this chapter. 

*While there is no proof of the time complexity of FDG recognition, Neuhaus and Bröker (1997) 
have showed that the recognition of non-projective DG is NP-complete. Thus the time complexity 
of FDG recognition is at least NP-complete. 

 
If one takes into consideration the tradeoff between expressiveness and efficiency, 
then one may judge MCSGs to be the most attractive class of grammars. While 
they are powerful enough for describing natural languages, they remain parsable in 
polynomial time even in the worst case. But, as I have already noted above, the 
theoretical upper bounds for parsing and the recognition of a certain grammar 
formalism may have a little effect on parsing efficiency in practice. Practical 
evaluations are needed for determining the efficiency of an algorithm/formalism 
pair. Such evaluations are provided in Chapter 10. 
 

Efficiency, O() 
 

Formal
ism 

Expressiveness 
Parsing Recognition 

CFG CF n3 P 
CF 

PCFG >CF n3 P 

GPSG CF - NP-complete, EXPPOLY 

HPSG Unrestricted - Undecidable/ NP-complete UG 

LFG Context-sensitive - NP-complete 

TAG MCSG n6 n6 

PLTAG MCSG n6 - TAG 

LTAG MCSG n6 - 

CG <Regular - - 

FDG >CF - NP-complete* DG 

XDG Unrestricted - NP-hard 

LG CF n3 - 
LG 

Prob LG CF n3 - 

CatC CCG MCSG n6 - 
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5 Parsing: Problems and Solutions 
 
This chapter introduces the problems that syntactic parsers have to face and 
describes solutions to these problems (Section 5.1). I will close the chapter in 
Section 5.2 by comparing the two main parsing approaches – rule-based and 
probabilistic. 
 

5.1 Problems in Parsing and Their Solutions 
 
At the time of writing (2007), no domain- and genre-independent natural language 
parser capable of producing error-free parses for running text has ever been 
devised. The following factors make it difficult to parse unrestricted text (Leech et 

al. 1996, Briscoe 1998): 
1. Ambiguity is an inherent property of all natural languages, and it affects 

parsers on the level of lexicon and grammar. Linguistic expressions taken 
out of context are ambiguous and incomplete. Parsing a sentence often thus 
results in more than one analysis for the input sentence. 

2. Sentences in free text are often long and contain several clauses and 
phrases. This causes the number of possible analyses to grow 
exponentially. 

3. Because parsers have no world knowledge, they have to rely solely on 
whatever information they can derive from linguistic rules.  

4.  It is necessary for a grammar with a broad coverage50 to be extensive. This 
makes it difficult to achieve consistency in the rules and lexicon. 

 
Apart from ambiguity (Section 5.1.1), both undergeneration and overgeneration 
(Section 5.1.2) cause problems for parsers. Undergeneration refers to a situation in 
which no analysis is generated for a grammatical sentence. Overgeneration means 
that a parser will produce parses for ungrammatical sentences. Other parsing 
issues covered in this chapter include the problem of dealing with ill-formed input 
(Section 5.1.3), the role of semantic information in syntactic parsing (Section 
5.1.4), the problem of defining the relation between the grammar, and the 
processing component (Section 5.1.5).  
 

                                              
50 A grammar has broad coverage if it’s able to produce a parse for a high proportion of input 
sentences representing several different text genres. 
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5.1.1 Ambiguity 
 
While human beings have the ability to resolve most cases of ambiguity, the 
disambiguation of even a simple case of ambiguity can be problematic for a 
parser. This is made even more problematic by the fact that types of ambiguity 
combine in complex ways. Parsers tend to run into problems when they analyze 
long sentences because the probability that they will encounter more than one case 
of ambiguity increases in proportion to the length of the sentence being parsed.  
 
POS ambiguity is a particular problem in lexicalized grammars because a parser 
using such a grammar selects multiple structures for each POS analysis assigned to 
a word (Srinivas et al. 1995). Dalrymple (2006), in one of the very few pieces of 
research undertaken in this area, reported on the effect of POS tagging and POS 
ambiguity on a parser’s performance. Dalrymple’s test set contained a total of 
2,105 sentences. The sentences were assigned 429 parses on average. 29.5% of the 
2,105 sentences had parses whose POS tag sequences were identical. These 
sentences had 7.2 parses on average. Dalrymple concluded from these results that 
accurate POS tagging would not help to disambiguate these 29.5% of the 
sentences– but that it would help with the remaining 70.5%. Dalrymple estimated 
the degree of overall ambiguity reduction that could be obtained if the tagging 
were to be performed by a “perfect tagger” producing the correct tag sequence for 
each sentence. The results indicated that 45–50% of the potential parses for a 
sentence could be ruled out by choosing the correct tag sequence. 
 
Structural ambiguity originates from a grammar assigning more than one analysis 
to a sentence. Two distinct types of structural ambiguity can be identified. A 
globally ambiguous sentence can be interpreted, as a whole, in more than one way. 
A local ambiguity affects only a part of a sentence (Gazdar & Mellish 1989). A 
particular type of ambiguity occurs in so called garden path sentences. While such 
sentences may be correct from a grammatical point of view, they can easily be 
misunderstood. Even a human language processor may misresolve and fail to 
analyze grammatical garden path sentences. This phenomenon is typically caused 
by local ambiguities (Crain & Steedman 1985). 
 



 

89  

Example 5-1. Globally ambiguous sentence A can be interpreted semantically in 
at least four different ways. The most probable reading is that a female avoids 
balls flying overhead by ducking. The other interpretations involve odd scenarios 
featuring a bird being constructed and a woman flying. Although the locally 
ambiguous sentence B is not ambiguous as a whole, if the three last words are 
examined in isolation, one can come up with the interpretation that Liverpool sold 
Everton – even though the sentence as a whole does not make such proposition. 
Sentence C is a garden path sentence. 
 
 
 
 
Structural ambiguity has multiple causes (Jurafsky & Martin 2000). Coordination 

ambiguity is caused by a situation in which different sets of phrases can be 
conjoined. The phrase “accurate shots and crosses”, for example, can be 
interpreted so that “accurate” modifies either “shots” or “shots and crosses” . In 
attachment ambiguity, a constituent can be attached to more than one place in a 
sentence. Resolving attachment ambiguities correctly requires the use of several 
sources of information. In the sentence “The coach saw the player with the 
telescope”, we have an example of a common type of attachment ambiguity, 
namely prepositional phrase (PP) attachment ambiguity (Collins 1999).51 This 
sentence may be analyzed in at least two possible ways – the PP “with the 
telescope” modifies either “coach” or “saw”, and this leads to the analyses shown 
in Figure 5-1.  

Figure 5-1. Two parse trees for the ambiguous sentence “The coach saw the 
player with the telescope.” 
 
Disambiguation is the process of resolving ambiguities (Earley 1970, Winograd 
1983, Srinivas et al. 1995, Nivre 2006). A parser has to choose the correct one 

                                              
51 The number of possible analyses for a sentence with PPs follows the Catalan number (Church & 
Patil 1982). A sentence with three embedded PPs, for example, produces a total of five possible 
parses, while a sentence with seven PPs produces a total of 469 possible parses. 

A) Flying balls made her duck. 

B) The company that bought Liverpool sold Everton. 

C) The referee who whistles tunes the whistle. 
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from a set of possible parses for a sentence. There are several different ways of 
dealing with ambiguity in syntactic parsing. The first and most straightforward 
approach is to let the parser look for all the possible parses that are derivable from 
the grammar and then choose the correct one. The second approach is simply to 
return the first parse that is found. In such an approach the search ought to be 
guided towards identifying the most plausible parses first. The third approach 
involves designing a grammar so that it returns one analysis for any grammatical 
sentence. The ambiguity of a grammar can be reduced, for example, by tailoring it 
to a specific text genre. 
 
The fourth approach involves performing POS disambiguation prior to syntactic 
analysis so that the number of potential parses is substantially reduced. This 
approach is especially important with lexicalized grammars. The fifth approach 
involves tree filtering. This reduces the set of possible parse trees by eliminating 
parses that cannot lead into a valid analysis on the basis of their structural 
properties. Such filtering may be based either on rules or probabilities. The sixth 
approach is an elimination approach such as CG and FDG (which was discussed in 
Chapters 3 and 4). It integrates parsing and disambiguation. Finally, semantic 
information can be integrated into the process of syntactic disambiguation (see 
Section 5.1.4). 
 

5.1.2 Under- and overgeneration 
 
In addition to genuine cases of ambiguity such as those discussed above (in which 
the grammar should assign several plausible analyses to a sentence), a grammar 
may assign analyses that are never encountered in the language being parsed 
(Nivre 2006). This problem is referred to as overgeneration (or grammar leakage). 
In undergeneration, which is the opposite phenomenon to overgeneration, a parser 
is not able to analyze a sentence which belongs to the language. This is usually 
caused by a gap in the coverage of the grammar. Figure 5-2 illustrates the two 
concepts. 
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Figure 5-2. Under- and overgeneration (adapted from Dörnenburg 1997). L is the 
language being parsed, and L(G) is the language generated by the grammar G. If a 
parser P fails, for example, to analyze the sentence “Liverpool is playing well”, it 
is undergenerating. If P produces an analysis for the sentence “is well Liverpool 
playing”, it is overgenerating. 
 
The concepts of under- and overgeneration are tightly connected to the dilemma of 
coverage and the fuzziness of grammaticality. A grammar that is rich enough to 
cover a natural language, including rare sentence constructions, often fails to 
distinguish natural from unnatural interpretations. On the other hand, a grammar 
that is restricted enough to exclude all ungrammatical sentences typically fails to 
accommodate all the grammatical ones. 
 

5.1.3 Ill-formed input 
 
Parsers are often presented with texts that contain errors. While processing user 
inputs a parser may therefore encounter misspelled words, incorrect cases, missing 
or extra words, or dialect variations (Foster 2004). Transcriptions of spoken 
language texts are especially likely to contain such errors and complications. A 
parser’s ability to produce an error-free or only a slightly altered output from input 
sentences containing errors, is referred to as robustness. A robust parser is able to 
provide as complete and correct analysis of the input sentence as it is capable of 
doing under the circumstances.  
 
Probabilistic approaches to parsing are inherently robust because they consider all 
possible analyses of a sentence and usually propose a parse for any given input. 
Robustness can be added to a rule-based parser in several ways (Nivre, 2006, 
Menzel, 1995). The first way is by relaxing the constraints of the grammar in such 
a way that a sentence outside the language generated by the grammar can be 
assigned a complete analysis. The second way is by getting a parser to try to 
recover as much structure as possible from the well-formed fragments of an 
analysis when a complete analysis cannot be performed. The third way is by 
identifying a number of common mistakes and integrating them into the grammar 

Undergeneration Overgeneration 

L(G) 

L 

x         Liverpool is playing well 

     x     is well Liverpool playing 



 

92  

in anticipation of such errors occurring in texts. This method is limited to few 
predictable high-frequency kinds of errors such as common spelling mistakes and 
high-frequency errors of word order. 
 

5.1.4 The role of semantic information 
 
A purely syntactic approach to language assumes that it is a collection of syntactic 
expressions (Gazdar et al. 1985). However, the reason why natural languages exist 
at all is that human beings associate meanings with these expressions. 
Psycholinguistic research has shown that the human brain processes language 
incrementally by using information extracted from several different levels of 
language (Pollard 1996). The human brain continuously integrates information 
about syntax with semantic, pragmatic and world knowledge, and even with 
probabilistic data. Human beings are consequently well endowed with highly 
developed skills to process natural languages. They are capable, for example, of 
understanding ill-formed sentences – even when they contain several types of 
errors simultaneously (Menzel 1995). But parsing systems encounter serious 
problems when they are confronted even with a single kind of distortion. This is 
partly attributable to the fact that most parsers rely solely on syntactic information 
to guide the parsing process.  
 
Many linguists are of the opinion that meaning and structure are, in principle, 
independent of one another. Tesnière (1959), for example, claims that while 
syntactic structure follows from semantic structure, the contrary case is not valid. 
Chomsky (1957) presented the following, now widely known, examples to 
emphasize that syntax is autonomous of semantics. Even though both sentences 
are perfectly grammatical, their meanings are nonsensical. 

Colorless ideas sleep furiously. 

Golf plays John. 

 
Models that are based on autonomy assume that the description of a linguistic 
expression must refer to only one level of representation, namely syntax. If one 
follows autonomy rules, one might claim that the assignation of a meaning should 
not determine the grammaticality of a sentence. In GPSG (Gazdar et al. 1985), for 
example, semantics is not allowed to act as a post-syntactic filter; nor is it allowed 
to interact with syntactic parsing decisions. It can be argued that although the 
sentence “Colorless ideas sleep furiously”, for example, is not semantically 
coherent, it is nevertheless perfectly grammatical. “This statement is false” is 
another example of a grammatical sentence that is impossible to make sense of. 
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The autonomy of syntax does not mean that it exists in isolation. Syntax cannot be 
reduced to semantics (Abney 1996). In contrast to autonomy, some theories of 
syntax are based on the assumption that no level of grammatical knowledge is 
privileged with respect to others and that no level is derived from any other – even 
though the levels mutually constrain one another. 
 
The notion of plausibility refers to assessment of the sense of a particular sentence 
based on a general human understanding of the world (Crain & Steedman 1985). 
Crain and Steedman suggest the following method for formulating the principle of 
plausibility: 

“If a reading is more plausible in terms either of general knowledge about 
the world, or of specific knowledge about the universe of discourse, then, 
other things being equal, it will be favored over one that is not”. 

 
Crain and Steedman state that in a case where there is a conflict between general 
and specific knowledge, the latter must take precedence. But the use of plausibility 
constraints of this type in syntactic parsing can be problematic because the reason 
why natural languages have syntax at all is presumably because real-life events 
frequently contradict the expectations stated by such constraints. 
 
Using semantic knowledge to guide syntactic parsing decisions is not as 
straightforward a choice as it might intuitively appear to be. One option that is 
applied by CCG is to follow Montague’s (1974) rule-to-rule approach to the 
syntax-semantics interface. This principle states that each syntactic rule is 
associated with a semantic rule that determines the meaning of that part of the 
sentence whose form the syntactic rule specifies. If one accepts this point of view, 
semantic information can be used for filtering syntactic structures (Gazdar et al. 
1985).  
 
The rule-to-rule approach is an example of a weak interaction model in which a 
parser builds syntactic structures which, in turn, are checked by the semantic 
component that selects the ones that are semantically plausible (Crain & Steedman 
1985, Gorrell 1995, Allen 1995). A parser could, for example, create all the parses 
that are syntactically correct according to the grammar and use selectional 
restrictions to discard semantically ill-formed ones. Weak interaction is the model 
employed by most practical parsing systems that use semantics as part of the 
parsing process. In contrast to this, strong interaction makes use of semantic 
information to guide initial syntactic parsing decisions. If one’s purpose is to 
generate semantic representations, the most radical approach one could use would 
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be to throw out the syntax completely and build semantic structures directly. In 
such systems, both grammatical and semantic information is stored in the lexicon.  
 
A successful example of the use of semantic information in parsing is PP and 
relative clause attachment disambiguation (Charniak 1993). As I have already 
noted above, some attachment decisions are impossible to make purely on the 
basis of syntactic information. One approach is to mark a corpus of text with 
semantic tags and to train a probabilistic model on the data. One may then use the 
probabilistic model for the semantic role tagging of the PP clauses, and this in turn 
will act as a guide to making the correct attachment decisions. Another example of 
a successful application of computational semantics is the Minimal Recursion 

Semantics (MRS) framework, which is suitable for parsing with UGs (Copestake 
et al. 2003). MRS has been applied, for example, to an English-Norwegian MT 
system that parses Norwegian by using an LFG parser and generates English with 
an HPSG (Oepen et al. 2004).  
 

5.1.5 Grammar/parser interface 
 
There is no evidence of two physically separate neural assemblies in the human 
language processor, i.e. one that stores grammar rules and another that is an active 
device for accessing grammar-rules in the course of its operation (Crain & Fodor 
1985). From a psycholinguistic point of view, such a division represents only a 
manner of speaking or a method of dividing up components for purposes of 
theoretical convenience. Practical parsing systems nevertheless are required to 
deal with such a division.52 
 
Obviously the more ambiguous a grammar is, the more problems and work it 
causes for the parsing algorithm. In addition to this, a grammar may cause 
problems for the parser by concentrating structural complexity at certain points in 
word strings. For example, in multiple center-embedded sentences such as “The 
attacker that the defender tackled kicked the ball”, the density of nonterminals in 

                                              
52The connectionist approach to parsing, or the use of artificial neural networks, aims at simulating 
the mental processing of human sentence parsing (Rumelhart & McClelland 1986, Nakagawa & 
Mori 1988). Schnelle and Doust (1992), for example, have proposed a neural network structure 
that implements the Earley algorithm. Connectionist parsing is different from other approaches to 
parsing because it is intrinsically non-modular: the grammar and search procedure are interwoven. 
In addition to having an orientation towards modeling the mental processes of human sentence 
parsing, a further advantage of the connectionist approach is that it allows one to use semantic and 
contextual information alongside syntactic information in a uniform manner (Rumelhart & 
McClelland 1986, Nakagawa & Mori 1988). Nevertheless, the successes of such parsers in 
practice have thus far been modest, and it is for that reason I have not dealt with them in this 
research. 
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relation to words is high. The third possible source of complications is the format 

and organization of the grammar itself. The syntactical information may be 
represented in a way that is not well suited to the nature and sequence of the 
computations of the parsing algorithm. 
 
As already noted in Chapter 3, TGs offer a notorious example of the difficulties 
that a grammar can cause for the processing component of a parser. There seems 
to be no way in which a parser can directly use the TG rules: what is required is a 
reshuffling of the information encoding. By contrast, UGs, for example, treat 
parsing as a relatively straightforward process. Such a process is based on a 
grammar that contains rules which can be directly applied to word strings. In the 
purest form of UG parsing, no other filters or constraints or any other devices are 
applied. 
 

5.2 Rule-based vs. Probabilistic Parsing 
 
The debate in the CL and NLP communities over the rule-based (or symbolic) vs. 
probabilistic (or machine learning) approaches has been going on since generative 
grammars first appeared in the 1950s (Klavans & Resnik 1996).53 Research into 
probabilistic and corpus-based methods was discouraged by Chomsky’s (1957) 
observations (Geman & Johnson 2002). The research was predicated on TGs and 
other rule-based approaches. However, as I have noted above, TGs are 
computationally expensive. Many researchers were consequently drawn to 
developing grammar formalisms in which the surface structure is generated 
directly without any separate deep structure or transformations.  
 
The following drawback can be identified in the rule-based approach to parsing 
(Srinivas et al. 1998, Geman & Johnson 2002, Nivre 2006): Firstly, the coverage 
of such grammars is incomplete because of the labor-intensiveness of manual 
grammar construction and because of an inadequate understanding of the syntactic 
constructions that occur in natural languages. Secondly, hand-constructed 
grammars are prone to generate spurious ambiguities – parses that are accepted by 
the grammar syntactically, but which are semantically anomalous. Thirdly, the 
performance of a rule-based grammar may suffer from the lack of text genre-
specific knowledge. In order to minimize this problem, some parsers with a rule-
based grammar use a heuristical disambiguation component that has been trained 

                                              
53 In parsing, the terms grammar-driven and data-driven are also used (Nivre 2006). The rule-
based approach is sometimes called “deep”, by way of the contrast to “shallow” processing 
methods (Oepen et al. 2002). This distinction is actually not sustainable. With state-of-the-art 
methods it is possible to acquire deep grammars automatically. 
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on genre-specific texts. Finally, rule-based approaches are typically not as robust 
as probabilistic approaches.  
 
The success of probabilistic approaches in speech recognition led some 
researchers to apply the methods to other NLP applications (Geman & Johnson 
2002). The probabilistic approach has been applied, for example, to POS tagging. 
Some researchers even went so far as to announce that "linguists need not 
participate" in the development of a probabilistic parser (Magerman 1994). Most 
probabilistic systems are so designed that every input sentence is assigned at least 
one analysis – a move that largely eliminates the problem of robustness. 
Disambiguation may nevertheless become a severe problem because the improved 
robustness often causes massive overgeneration. Although smoothing may be 
useful in some cases,54 automatically induced grammars are usually ambiguous 
and often overgenerate (Manning & Carpenter 1997). The overgeneration problem 
in probabilistic parsing is nevertheless compensated for – at least to some extent – 
by disambiguation and parse ranking mechanisms in the probabilistic model 
(Nivre 2006).  
 
The binary decisions of grammaticality vs. ungrammaticality of rule-based 
grammars are replaced in probabilistic grammars with probability distributions. 
Instead of describing ill-formed structures as impossible, probabilistic approaches 
assign them a low probability. In addition to this, probabilistic approaches offer a 
means of distinguishing more plausible interpretations from less plausible ones. 
The lack of genre-specific knowledge is also often a problem for probabilistic 
parsers. Statistically induced grammars are trained with a specific treebank. 
Consequently their performance may become worse when they are exposed to 
texts from a different domain than the treebank that is used for training (Clegg & 
Shepherd 2005). It is, however, less demanding to modify a probabilistic parser than 
a rule-based parser to a new genre provided that a training material (i.e. treebank) 
representing texts from that new genre is available. If such a resource does not exist, 
the opposite of what was stated in the previous sentence may be true due to the high 

costs of developing treebanks. Table 5-1 compares rule-based and probabilistic 
methods in respect of several key properties. 
 
 
                                              
54 The training data, for example, allows a compound noun to be modified by four adjectives, but 
not by a simple noun. Thus the training data might have the phrase “quick, skilled, long, stylish 
midfield player”, but not “quick, skilled, long, stylish midfielder”. Smoothing would allow for 
analyzing the latter sentence. These added rules are unlikely to appear in the maximum probability 
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Table 5-1. Comparison of rule-based and probabilistic approaches to parsing. 

 
Table 5-1 shows that while the probabilistic approaches tend to be more robust in 
comparison to rule-based ones, their grammar may lack intuitive clarity (Kapur & 
Clark 1996). The development of a grammar for a rule-based system is, on the 
other hand, usually very expensive. This is also true for the development of 
probabilistic parsers if a suitable treebank is not available. The probabilistic 
approaches have been proven to offer a broad enough coverage for practical NLP 
applications. This has not been the case until recently with many of the rule-based 
approaches, such as HPSG (Oepen et al. 2002). 
 
It appears to be the case that the research community has reached a consensus 
about combining the two approaches (see, for example, Oepen et al. 2002, 
Klavans & Resnik 1996, and Foth & Mengel 2006). The combination of the 
advantages of both the rule-based and probabilistic approaches would enable 
compact descriptions and robustness while keeping the grammar development 
costs low. One may also note that there appears to be an upper limit for the 
performance of parsers that use a single approach. 
 
The two basic approaches in combining information from probabilistic and rule-
based sources is either to allow the probabilistic component to choose from among 
the results returned by the rule-based component, or to restrict the number of 
possibilities for the next processing level by, for example, using a probabilistic 
POS disambiguator before rule-based parsing. Foth and Mengel (2006), for 
example, use a hybrid parsing architecture that combines information from more 
than two sources that are both probabilistic and rule-based. Their system is a rule-
based D parser that contains probabilistic predicator components. In their 

                                                                                                                                  
parse. While smoothing consequently allows some correct parses to be generated, the adding of 
unseen rules with low probabilities is unlikely to improve performance to any great extent. 
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experiments in parsing German, Foth and Mengel were able to increase 
performance by several percentage points over the rule-based baseline system. 
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II LINGUISTIC RESOURCES FOR EVALUATION 

 

6 Analysis of Existing Resources and Schemes 
 
Evaluation of the correctness of a parser’s output is generally done by comparing 
the system output to correct human-constructed structures. These gold standard 
parses are obtained from a linguistic resource. Section 6.1 analyzes existing 
linguistic resources and their suitability for parser evaluation.  
 
Linguistic annotation (hereafter referred to as annotation) refers to the notations 
applied to language data that describes its information content. The annotation in a 
treebank, for example, includes at least POS tags and syntactic tags. An 
annotation scheme refers to the specification of a set of practices used for 
annotation in a particular linguistic resource. An encoding scheme defines the way 
in which the annotated data is represented. I will both introduce the annotation and 
encoding schemes used in existing linguistic resources and analyze their suitability 
for parser evaluation in Section 6.2.  
 
Section 6.3 offers an analysis of existing dependency treebanks (D treebanks). The 
results of this analysis are used in Chapter 7 as the basis for the design of a 
treebank for Finnish. 
 

6.1 Evaluation Resources 
 
The most commonly used linguistic resources for parser evaluation are treebanks, 
which are collections of syntactically annotated sentences. These syntactically 
annotated corpora consist of sentences which have been assigned parse trees with 
at least syntactic and morphosyntactic annotation. Treebanks are described in 
Section 6.1.1. Test suites are collections of annotated test items that are organized 
in terms of specific linguistic phenomena (Section 6.1.2). One may describe them 
as treebanks that have been tailored for evaluation purposes because all the 
sentences in them have been annotated with syntactic information that elucidates 
the syntactic phenomena they contain. Section 6.1.3 describes a corpus of 
ungrammatical sentences. I conclude the findings in Section 6.1.4. 
 

6.1.1 Treebanks 
 
Treebanks have several applications in linguistics, CL and NLP (Abeillé 2003). 
Linguists use them, among other things, to gather corroboratory or contradictory 
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evidence for supporting or disproving an hypothesis or theory. Psycholinguists can 
use treebanks for counting the frequency of specific kinds of sentence 
constructions. Applications in NLP include the development and evaluation of text 
classification, parsing and MT systems. 
 
The best-known examples of a treebank with PS annotation are the Penn Treebank 
(PTB) for English (Marcus et al. 1993) and its successor PTB-II (Marcus et al. 

1994). The PTB and PTB-II are the most widely used treebanks for training 
probabilistic parsers and are extensively used for evaluating all types of parsers for 
English. The standard method for training and evaluating a probabilistic parser is 
to use sections 02-21 of the Wall Street Journal (WSJ) dataset of the PTB for 
training the parsing model, and sections 23 and 24 as the test and development 
sets, respectively (Ringger et al. 2004). This will enable an English parser to be 
evaluated with approximately 2,400 gold standard sentences from a prestigious 
financial newspaper written in American English. 
 
The SUSANNE corpus (Sampson 1995) is another PS treebank that is frequently 
used in parser evaluation. It consists of a subset (64 out of the total of 500 texts) of 
the BC. The texts represent four different genres: press reportage, 
biography/memoirs, technical/scholarly and adventure/fiction. The size of the 
SUSANNE, approximately 7,000 sentences, means that it cannot be reliably used 
to train probabilistic parsers. It is nevertheless a useful resource for parser 
evaluation.  
 

6.1.2 Test suites 
 
Test suites consist of artificially constructed test items (Balkan et al. 1994). They 
are collections of examples with both syntactic annotation and additional 
information that can be utilized for controlled testing and evaluation. 
Ungrammatical items are usually also included. This enables researchers to test 
whether or not parsers have the ability to handle ill-formed input. The test items 
are usually artificially constructed so that they contain either a single 
morphological or syntactic phenomenon or a combination of phenomena. The 
systematicity of a test suite is designed to obviate any kind of uncontrolled 
interaction between phenomena. Some of the best-known test suites are the Test 

Suites for Natural Language Processing (TSNLP) (Lehmann et al. 1996) and the 
Hewlett-Packard Test Suite (Flickinger et al. 1987).  
 
The purpose of TSNLP is to evaluate parsers and grammar checkers. It consists of 
test items for three languages: English, French and German (Balkan et al. 1994). 



 

101  

The test suite itself is stored in a relational database from where test items can be 
retrieved by making use of several criteria. Each test item is marked with the 
information about the phenomenon for which it tests and other phenomena in the 
item, that are not designed for testing. Some items are nevertheless specifically 
designed to contain co-occurrences of phenomena. Ill-formed test items are also 
included. In the TSNLP framework, the ability to handle specific grammatical 
phenomena is measured in terms of classes of linguistic phenomena. Summary 
reports can be created, and the progress of a system monitored by comparing 
successive reports over a period of time. 
 
A summary report is a table in which each row contains information about a 
particular grammatical phenomenon (Oepen & Flickinger 1998). The results are 
reported in terms of the percentage of items that have been covered, and they are 
recorded separately for grammatical and ungrammatical test items. Thus, for 
example, if the coverage of grammatical and ungrammatical test items in the 
agreement phenomenon is 59% and 14% respectively, this means (1) that the 
parser is not covering this particular phenomenon adequately (it is rejecting 41% 
of the grammatical items), and (2) that it is also overgenerating (it is accepting 
14% of the ungrammatical test items).  
 

6.1.3 A corpus of ungrammatical sentences 
 
Foster and Vogel (2004) reported a 20,000-word (approx. 1,000 sentences) corpus 
of naturally occurring, ungrammatical English sentences. Such a resource is useful 
for evaluating a parser’s ability to analyze noisy input. The corpus was collected 
from several resources that included newspapers, e-mails and student writings. 
The error types in the corpus include incorrect word forms, extraneous words, 
omitted words, and composite errors (errors that can be fixed by applying more 
than one correction operation). For each sentence, the corpus offers parallel 
correct and ungrammatical versions that are identical in meaning. The assumption 
is that the parse for an ungrammatical sentence should be as close as possible to 
the parse for its grammatical counterpart so that its true meaning is expressed. In a 
case where a particular erroneous sentence can be corrected in more than one way, 
all possible corrected versions are included in the corpus of grammatical 
sentences. The corpus is not annotated with morphological or syntactic 
information. 
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6.1.4 Analysis 
 
In this section, I shall compare the different types of linguistic resources 
(treebanks and test suites) and analyze their suitability for parser evaluation. The 
discussion about treebanks and test suites in Sections 6.1.4.1 and 6.1.4.2 will be 
limited to the two most commonly used PS treebanks and test suites for English 
respectively. 
 

6.1.4.1 Treebanks 
 
It may be argued that the standard method of using the PTB in evaluation makes 
the current parsing practices appear in a rather-too-rosy light. It does this because 
there are certain properties of the PTB that make parsing easy (Manning & 
Carpenter 1997). Even non-lexicalized and CF approaches (such as non-
lexicalized PCFG parsers) work well when it comes to parsing the PTB. The main 
reason why this happens is that the trees in the PTB are quite flat. The less detail 
there is in the structures, and the fewer brackets there are, the easier it is to assign 
structures correctly. As Manning and Carpenter also point out, the analyses 
assigned to certain kinds of sentence structures55 do not give enough advantage to a 
parser that can analyze them correctly. Since the PTB is often used as the only 
evaluation resource in the development of a parser, there is a concern about the 
extent to which the parser will adapt to other data. Diversity of data is the major 
advantage that the SUSANNE corpus has over the PTB. While section 23 of the 
PTB that is often employed in evaluation is composed solely of WSJ sentences,56 
the SUSANNE contains texts from several genres. 
 

6.1.4.2 Test suites 
 
The main difference between the older generation of test suites, such as the 
Hewlett Packard test suite (Flickinger et al. 1987) and the TSNLP introduced 
above, is that, in the latter, the test items are grouped into sets that define classes 
of linguistic phenomena. This enables evaluators to carry out a more controlled 
kind of testing because they can adjust the granularity to their needs (Oepen & 
Flickinger 1998). In more recent test suites special attention has also been paid to 
the systematicity of the phenomena covered. One of the deficiencies in TSNLP is 
that it does not have a mechanism that permits the automated replacement of 
lexical items (Oepen & Flickinger 1998). If therefore a test item contains words 

                                              
55 For example, the adjunction structures of the form [NP [NP the ball] [PP in [NP the field]]]. 
56 Lin (2003) mistakenly claims that PTB consists only of WSJ data. 
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that the evaluated parser cannot recognize, the evaluator will either have to modify 
the lexicon of the parser or skip the test item. 
 
The main difficulty with test suites is that they are extremely complex to construct 
(King 1996). It is also difficult to define test items that will test only the desired 
phenomena – and nothing else. Furthermore, a test suite has to be very large (in 
the order of thousands of test items) if it is to cover all the major syntactic and 
morphological phenomena that occur in a language. Another problem that arises in 
the application of test suites is that they are often designed to test a specific 
system. 
 

6.1.4.3 Treebanks vs. test suites 
 
Test suite evaluation is especially suitable for checking the consistency of a 
grammar and parsing model. After modifications have been made to the grammar 
or the parsing algorithm, it is possible to check the system for undesirable side 
effects. Test suites also provide the means to test phenomena that occur rarely in 
free text. But one disadvantage associated with test suites is the lack of variation in 
the lexical items. Another disadvantage is that the test items usually contain a 
single grammatical phenomenon that leaves interactions between phenomena 
untested. 
 
Since treebanks are usually designed with diverse types of uses in mind, they are 
usually more general than test suites. The main distinction between treebanks and 
test suites, with regard to parser evaluation, is in their focus (Srinivas et al. 1998, 
Carroll et al. 1998). Parser developers usually use test suite-based evaluation to 
monitor the development of a system and to identify its strengths and weaknesses 
in controlled circumstances. Their aim as they do this is to measure competence, 
namely, how successful the system is in covering phenomena and whether or not it 
is consistently successful in treating phenomena in the same way in different 
contexts. One may contrast competence with performance, which is how the 
system behaves when it parses running texts or a treebank (measured as the 
number and type of errors in the output of the system). Table 6-1 compares some 
of the properties of the best-known test suites and treebanks. 
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Table 6-1. A comparison of the treebanks and test suites described above. Column 
“TB/TS”  indicates whether or not the evaluation resource represented in the row is 
a treebank (TB) or a test suite (TS). 

*The authors do not give the size of the vocabulary in the treebank. I was, moreover, unable to 
find this information from any other source. 

 
Because treebanks and test suites are very different in their design, they perform 
different roles in evaluation and should be regarded as being complementary 
rather than competing evaluation resources (Balkan et al. 1995). Prasad and Sarkar 
(2000), for example, observed a small degree of duplication of the error types they 
found when they applied treebank evaluations and test suite-based evaluations 
respectively. Table 6-2 summarizes the discussion above. 
 
Table 6-2. A comparison of treebank and test suite-based evaluation 

 

6.1.4.4 Collections of ungrammatical sentences 
 
The resource constructed by Foster and Vogel (2004) is the only one of its kind for 
English. It consists only of sentences with grammatical mistakes; no misspelled 
words are included. Such corpora with ungrammatical and grammatical sentences 
as well as tests suites with negative test items can both be applied to evaluate 
overgeneration in parsers. Another possibility would be to generate ungrammatical 
sentences by using an automatic sentence-generation method. This approach has, 
however, not yet been tried out. 
 

Test suite / treebank 
TB/
TS Size 

Size of 
vocabu-

lary 
PTB (Marcus et al. 1993) TB ~42,000 sentences ?* 

SUSANNE (Sampson 1995) TB ~7,100 sentences ?* 
TSNLP (Lehmann et al. 1996) TS ~5,000 test items/language ~200 

Hewlett-Packard suite (Flickinger et al. 1988) TS ~1,230 test items ~250 

 Treebanks Test suites 

Coverage 
of linguistic 
phenomena 

They contain naturally occurring 
sentence structures and sentences with 

several syntactic phenomena. They lack 
systematic variations. 

They are restricted to structures that are 
taken into account by the creators of the 

test suite. They usually test only one 
phenomenon per sentence. 

Lexicon 
They are rich in lexical variety, even 

though this variety is usually restricted 
to one text genre. 

This is usually restricted. It is necessary 
to provide a lexical replacement tool. 

Generality 
They are usually constructed to serve a 

number of purposes. 
They are often designed for system-

specific purposes. 
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6.2 Annotation of Evaluation Resources 
 
The annotation scheme defines the tagsets, the inventory of tags, for describing the 
linguistic content and the principles of annotation. The annotation scheme of a 
treebank usually consists of word and syntactic levels. While word-level 
annotation typically consists of at least POS tags, it may also include lemma 
information and morphological descriptions. Some treebanks have an additional 
annotation level for semantics. The Prague Dependency Treebank for Czech, for 
example, is annotated on three levels: morphological, syntactical and semantic 
(Böhmová et al. 2003). There are usually only two choices when it comes to the 
type of syntactic annotation in a treebank: the linguistic resource is annotated 
either in terms of a PS or D structure scheme. 
 
While there are some treebanks that have been annotated completely by hand, the 
manual construction of syntactic trees remains a slow and error-prone process. 
Since taggers and parsers are readily available to automate some of the work, such 
a method is rarely employed in state-of-the-art treebanking. The most common 
practice is to construct a treebank semi-automatically by combining automatic 
processing with human checking. 
 
The differences in the annotation schemes of the linguistic resources and the 
output schemes of parsers are a hindrance to parser evaluation. There is no 
widespread agreement about which POS and morphological tagging schemes are 
best for the linguistic resources – let alone about which tagsets might be best for 
syntactic description. Apart from the fact that there are considerable differences in 
the size of the tagset, word-level annotation often assumes a different 
segmentation of text into lexical units and handles punctuation in different ways.57 
Such differences often result in many-to-many mappings between schemes. The 
problems caused by differences in word-level annotation can often, however, be 
solved – if not perfectly, then at least in a satisfactory way. This is effected by 
automatic mapping and alignment algorithms (see, for example, Leech et al. 1996, 
Déjean 2000, and Chiarcos 2006). The differences between the schemes are much 
greater in sentence-level annotation. 
 

                                              
57 Atwell et al. (2000) have pointed out a problem that arises when one compares schemes. This 
problem is how to identify precisely where a scheme is defined: whether in the annotation 
guidelines (if one exists), or in the annotations observed in the resource/output, or in the intuitions 
generated by the linguists who are in charge of the project. None of these sources is error-free. 
The annotations in the resource may contain inconsistencies, the guidelines may contain 
omissions, and the experts may have made mistakes. 
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There are several approaches that have been devised to overcome the problems 
caused by differences in annotation and output schemes. These are mapping 
algorithms between schemes (Section 6.2.1), abstract annotation models that can 
be transformed into resource-specific annotation schemes (Section 6.2.2), and 
parallel annotations that are undertaken in accordance with several parser-specific 
schemes (Section 6.2.3). One possibility, described in Section 6.2.4, is to organize 
the POS and syntactic tagsets hierarchically. This enables one to compare the 
annotated resource to a variety of parsers because the hierarchy can be used to 
allow inexact matches between the parser output and the annotation. 
 
One may distinguish classes of annotation schemes on the basis of how closely 
they conform to a particular theory of syntax (Nivre 2003). A theory-specific 
annotation scheme that is constructed in accordance with a particular linguistic 
theory runs the risk of being useful only to those researchers and system 
developers who are applying the same framework. While a theory-neutral 
annotation scheme might in theory be serviceable to a wider range of users, it 
would be necessary to make so many compromises in the course of its design that 
there is a risk that it would generate far too little information to be useful to any 
possible group of users. A theory-supporting scheme is one that disavows the 
extremes of the two mentioned above: it supports an annotation scheme that can 
be mapped to theory-specific target annotations. 
 

6.2.1 Mapping between annotation schemes 
 
The most important aim of the mapping approach is to base evaluation on a given 
annotation scheme and then to use mapping algorithms to automatically convert 
parsers’ outputs to that scheme. The function of a mapping algorithm is to map 
from a source annotation scheme to a target scheme without changing the 
information content of the annotation. One may formally define a mapping in the 
following way:  
 

Definition 6-1. Mapping from a source annotation scheme to a target scheme. 

Let S and T be the source and target annotation schemes respectively. Let AS 
and AT be the set of all the annotations that arise from the annotation schemes S 
and T respectively. Let S(txt) denote the annotation of text txt in scheme S; 
S(txt)∈AS. Similarly, let T(txt) denote the annotation of txt in T, T(txt)∈AT. 

1. Mapping M: AS→AT is a function for each text txt, M(S(txt)) = T(txt)∈AT. 
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Nivre’s (2003) notion of theory-supporting treebanks is based on the use of a set 
of mapping algorithms to create the possibility of converting a treebank to theory-
specific formats. Figure 6-1 illustrates how a theory-supporting treebank might be 
utilized.  
 
 
 
 
 
Figure 6-1. A theory-supporting treebank based on mapping algorithms. A text 
annotated according to the scheme S of the source treebank is defined in a way 
that it can be accurately converted into target schemes T1..n by using mapping 
algorithms M1..n. 
 

6.2.2 Abstract annotation models 
 
The aim of an abstract annotation model is to provide a general theory- and tagset-
independent framework for linguistic annotation. XML-based exchange formats, 
such as TIGER-XML (Mengel & Lezius 2000), ATLAS (Bird et al. 2000) and 
XCES (Ide & Romary 2003), have the following goal in common: they each offer 
an intermediate level between the annotated data and the tools for browsing and 
for manipulating data. An advantage of such an approach (which is illustrated in 
Figure 6-2) is that it enables a common set of tools to be used for creating and 
manipulating treebanks that use different annotation schemes. 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-2. Using an abstract annotation format for treebanks. The exchange 
format EF works as an interface between the different annotations stored in 
treebanks that use schemes T1..n. Instead of treebank-specific software, one only 
needs a set of tools that is able to understand the exchange format for 
manipulating, browsing and searching any of the treebanks. 

S(txt) 

T1(txt) 

1M  nM  
2M  

T2(txt) Tn(txt) 

EF(txt) 

T1(txt) T2(txt) Tn(txt) 

Browsing, annotation and 
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Applications 

... 
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TIGER-XML is an exchange format that is sufficiently general for existing 
treebank-specific annotations, both D and PS based, to be exported into its XML-
based representations (Mengel & Lezius 2000). The model is based on the 
encoding of DAGs, each of which represents a sentence using four XML element 
types: sentence <s>, nonterminal <nt> , terminal <t> , and edge <edge>. 
Syntactic, POS, and other kinds of information are represented as attributes in <t>  
and <nt>  elements. Edges encode labeled links between terminals and 
nonterminals. TIGER-XML also allows secondary edges to be encoded. These 
can, for example, be used for encoding semantic information and LDDs. Figure 6-
3 shows examples of a TIGER-XML-encoded sentence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-3. A D and PS structure for the sentence “Liverpool is playing well”  
encoded in TIGER-XML. The POS tags are omitted from the D tree. 

<s id="s1"> 
 <graph root="nt3"> 
  <terminals> 
    <t id="t1" word="Liverpool" pos="N"/> 
    <t id="t2" word="is" pos="V"/> 
    <t id="t3" word="playing" pos="V"/> 
    <t id="t4" word="well" pos="RB"/> 
  </terminals> 
  <nonterminals> 
    <nt id="nt1" word="Liverpool" cat="N"> 
      <edge idref="t1" label="--" /> 
    </nt> 
    <nt id="nt2" word="is" cat="V"> 
      <edge idref="t2" label="--" /> 
      <edge idref="nt1" label="subj" /> 
    </nt> 
    <nt id="nt3" word="playing" cat="V"> 
      <edge idref="t3" label="--" /> 
      <edge idref="nt2" label="aux" /> 
      <edge idref="nt4" label="man" /> 
    </nt> 
    <nt id="nt4" word="well" cat="RB"> 
      <edge idref="t4" label="--" /> 
    </nt> 
  </nonterminals> 
  </graph> 

<s id="s1"> 
 <graph root="nt5"> 
  <terminals> 
    <t id="t1" word="Liverpool" pos="N"/> 
    <t id="t2" word="is" pos="V"/> 
    <t id="t3" word="playing" pos="V"/> 
    <t id="t4" word="well" pos="RB"/> 
  </terminals> 
  <nonterminals> 
    <nt id="nt1" cat="NP"> 
      <edge idref="t1" label="--" /> 
    </nt> 
    <nt id="nt2" cat="VP"> 
      <edge idref="t2" label="--" /> 
      <edge idref="nt3" label="--" /> 
    </nt> 
    <nt id="nt3" cat="VP"> 
      <edge idref="t3" label="--" /> 
      <edge idref="nt4" label="--" /> 
    </nt> 
    <nt id="nt4" cat="ADVP"> 
      <edge idref="t4" label="--" /> 
    </nt> 
    <nt id="nt5" cat="S"> 
      <edge idref="nt1" label="--" /> 
      <edge idref="nt2" label="--" /> 
    </nt> 
  </nonterminals> 
  </graph> 
 </s> 
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In the ATLAS architecture, the abstraction level between the physical and 
application level is called the logical level, with Annotation Graphs (AGs) as the 
central notion (Bird et al. 2000). It is possible to add time-stamps to AGs; this 
makes them suitable for representing, in addition to syntactic structures, videos 
and multi-modal interactions. The functions for manipulating ATLAS structures 
from applications are implemented in the ATLAS Application Protocol Interface 
(API). The ATLAS Interchange Format (AIF) serves as the common XML-based 
representation for specific annotations. The physical storage can be relegated to a 
database. Figure 6-4 illustrates ATLAS architecture. 
 
Figure 6-4. The architecture of ATLAS (Bird et al. 2000). 

 
The XCES format has been designed for several different types of annotation such 
as morphosyntactic, syntactic and coreference annotation (Ide & Romary 2001, 
2003, Ide et al. 2001). The XCES framework is divided into two levels: the 
universal resources, that are shared by all annotation models, and the project 

specific resources.  
 

6.2.3 Parallel annotations 
 
In an approach that relies on parallel annotations, a linguistic resource is annotated 
in terms of several treebank- or parser-specific schemes. The only example of such 
a resource is the MultiTreebank of English which consists of 60 sentences 
annotated automatically according to nine different schemes (Atwell et al. 2000). 
Figure 6-5 illustrates this idea. 
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Figure 6-5. A parallel treebank. The source texts are annotated in formats T1..n. 
 

6.2.4 Hierarchical organization of tagsets 
 
The Grammatical Relations Scheme by Carroll et al. (1998, 2003) (referred to 
hereinafter as the GR scheme) uses an annotation scheme that is based on GRs 
between heads and dependents. In order to facilitate inter-system comparisons, the 
GRs are divided according to the hierarchy illustrated in Figure 6-6. 

Figure 6-6. The hierarchy of grammatical relations in the GR scheme (Carroll et 

al. 2003). 
 
Figure 6-6 shows that dependent is the most generic of relation type (Carroll et al. 
1998). Dependents are further divided into three categories. The relation between 
a head and its modifier is mod (denoted as mod(type, head, dependent)), and the 
relation between a head and its argument arg. The arg_mod relation holds 
between a head and a semantic argument, which is syntactically realized as a 
modifier.  
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A test set of 500 sentences, consisting of texts from the BC, has been developed 
on the basis of the GR scheme (which, in this thesis, is called the GR corpus) 
(Briscoe et al. 2002). There are in total 4,690 relations in the test set, of which 
roughly 60% belong to mods and 40% to args.  

 
Example 6-1. The GR scheme annotation for the sentence “Liverpool is playing 
well”. The first item, for example, indicates that the word “playing” is in dobj 
relation to the word “well”.  
 
 

 

6.2.5 Analysis 
 
Table 6-3 summarizes the differences between the annotation schemes of four 
treebanks that are often used in evaluation and output schemes of five parsers that 
are based on different grammar formalisms. 

 

(dobj playing well) 
(aux _ playing is) 
(ncsubj playing Liverpool _) 
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Table 6-3. A comparison of the annotation and output schemes of some well-
known treebanks and parsers for English.58 In the column “Type”, TB and P 
indicate whether the item is a treebank or a parser. “Grammar” column indicates 
the grammar formalisms on which the parser in question is based. The PS/D 
column indicates whether the scheme is based on PS or on D-style representations. 
The column labeled “Functional labels” indicates whether the scheme includes 
functional labels (subject/object, etc.). The last two columns show the number of 
POS tags and syntactic tags in the tagset. 

Parser / treebank 

T
yp

e 

G
ra

m
m

ar
 

P
S

/D
 

F
un

ct
io

na
l 

la
be

ls
 

No. of POS 
tags 

No. of 
syntactic 

tags 

PTB (Marcus et al. 1993) TB PS No 36 + 12 17 
PTB-II (Marcus et al. 1994) TB PS(D*) Yes 36 + 12 17 
SUSANNE (Sampson 1995) TB PS** Yes 353 8 main, 53 sub 
PARC 700 (King et al. 2003) TB 

 

D Yes - 18 
ENGCG (Lingsoft Ltd 2006) P CG D Yes 16 32 
LG Parser (Sleator et al. 1991) P LG D/PS Yes 8 107 
RADISP 2 (Carroll et al. 2006) P UG D Yes 50 23 

Stanford Parsed (Klein et al. 2003) P PCFG PS/D Yes 36+12 48 (D) 

StatCCG (Hockenmaier 2003) P CCG D Yes 
>1200 lex. 
cat. types 

4 atomic types 

*PAS in the PTB-II. 
**Lin (2003) introduced an algorithm for transforming the SUSANNE structures into D format. 

 
The tendency in treebank building has been to move away from theory-neutral 
annotation schemes toward theory-specific ones (Nivre 2002). This is a retrograde 
development for evaluation. When one considers the high cost of building 
linguistic resources, it would surely be more practical to develop reusable formats.  
 
Each of the approaches discussed above has its own disadvantages. Since 
mappings are often complicated and usually have to be performed in several steps, 
there are a number of problems that may arise during the mapping process (Sasaki 
et al. 2003, Wang et al. 1994). The first of these is that the tagsets may not be 
identical: the number of tags may be different and the mapping is not necessarily 
one-to-one. 59 The second problem is that some constructions in one scheme may 
not be able to be represented by the other scheme.  

                                              
58 Some of these issues were discussed by Atwell (1996) and Atwell et al. (2000) on the basis of 
the classification of annotation levels by Leech et al. (1996a). 
59 As I have already pointed out in Chapter 3, a PS can be converted into D structure if each 
nonterminal has a head child (either a lexical head or a phrase containing a lexical head). The 
problem is that most PS treebanks do not provide information for unambiguously identifying the 
heads. Apart from this, the notion of head might not be compatible in the source and target 
annotations. 
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In those cases where mappings can be devised, they constitute a useful and rather 
simple method for facilitating a certain linguistic resource for evaluating parsers. 
But because of innumerable potential problems, it might never be possible to map 
between most of the existing parser-specific output schemes and resource-specific 
annotation schemes. While this approach might work reasonably well for 
evaluation taggers and morphological analyzers, it is not realistic for comparative 
parser evaluation. 
 
Nivre (2003) has pointed out that there are no theory-supporting treebanks 
available. The most serious hindrance to practical implementation is in the 
construction of mapping algorithms. The problems that arise in mapping could be 
avoided, at least to some extent, by setting conditions for the source annotation. 
The source annotation, for example, should be required to contain sufficient 
information to identify the heads. This would enable successful PS/D mappings to 
take place. It is, however, undesirable to allow the annotation scheme to set 
conditions on the annotations that are allowed. 
 
Each of the three abstract annotation formats discussed above has a different 
focus. TIGER-XML is designed for corpus and treebank annotation and offers an 
exchange format rather than a whole abstraction framework. ATLAS is similar to 
TIGER-XML in the sense that it uses DAGs for representation. ATLAS has a 
broader scope than TIGER-XML because one can apply the framework in the 
annotation of several different types of data including images and video. XCES is 
the most ambitious of the formats. It offers a complete framework and takes the 
abstraction a step further than either of the other two models. The problem with 
general models of linguistic categories, however, is that they often lead to the loss 
of theory-specific information (Sasaki et al. 2003). 
 
The main advantage that the abstract annotation models as well as the mapping-
based approaches have over parallel annotations with regard to parser evaluation, 
is that they offer more grounds for comparing diverse parsing systems. The main 
problem of the multi-treebank approach lies in guaranteeing the consistency of the 
annotations. Because of the size and complexity of annotation schemes, it would 
be too much to expect a single annotator to master several of them (Atwell 1996). 
The creation of a multi-treebank therefore requires the cooperation of several 
research teams, and this might introduce a possible source of inconsistencies. 
Because it is expensive to construct even a “normal” treebank, one would expect 
that the cost of building a multi-treebank would be prohibitive. 
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Organizing the tagset into a hierarchy, as in the GR scheme, allows for differences 
between the annotation of the evaluation resource and a parser output, and it still 
remains reasonably easy to annotate. In fact, once the tag hierarchy has been 
defined, no extra work is required from the annotators. The GR scheme has been 
applied only to the annotation of the rather small GR corpus in English.  
 

6.3 Analysis of Dependency Treebanks 
 
In this section, I will introduce the most important results of the D treebank 
analysis that I have already discussed in paper [1]. 
 
There has been a great deal of interest in recent years in the functional annotation 
of treebanks. Several D treebanks in particular have been constructed. In addition 
to this, grammatical function annotation has been added to some PS-type 
treebanks. The most commonly used argument for selecting the D format for 
building a treebank is that the treebank concerned is being created for a language 
with a relatively free word order. Such treebanks already exist for Basque, Czech, 
German and Turkish. D treebanks have been also developed for languages such as 
English, which are usually regarded as languages that can be better represented 
with PS formalisms. The reasons for using D annotation vary from the fact that the 
type of structure concerned is the one that is needed by many, if not most, 
applications – to the fact that it offers a rational interface between syntactic and 
semantic representation (Lombardo & Lesmo 1998). D trees can, moreover, be 
automatically converted into PS trees (Xia & Palmer 2001), and vice versa (Daum 
et al. 2004) – although not always with 100 % accuracy. The TIGER Treebank for 
German is an example of a treebank with both PS and D annotations (Brants et al. 
2000). Such hybrid treebanks are also available for Danish (Bick 2003) and Dutch 
(Van der Beek et al. 2002). 
 
The following treebanks are discussed in this section: 

1. Prague Dependency Treebank (PDT) for Czech (Böhmová et al. 2003). It 
contains text from the Czech National Corpus (Czech National Corpus 
2005). It is encoded in two treebank-specific formats, feature structure 
(FS) and Czech Sentence Tree Strucutre (CSTS). 

2. The TIGER Treebank for German (Brants et al. 2000). This treebank was 
developed on the basis of the NEGRA Corpus (Skut et al. 1998), and 
consists of a set of articles on diverse topics sourced from a German 
newspaper.  
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3. Arboretum for Danish (Bick 2003), L'Arboratoire for French, Floresta 

Sintá(c)tica for Portuguese (Afonso et al. 2002), and Arborest of Estonian 
(Bick et al. 2005). These are sibling treebanks (Arboretum is the eldest 
sibling). The treebanks are hybrids with both PS and D annotation 
organized into two separate levels.  

4. The Dependency Treebank for Russian (Boguslavsky et al. 2000, 2002). 
This treebank is based on the Uppsala University Corpus (Lönngren 1993). 
The texts were collected from contemporary Russian prose, newspapers 
and magazines. 

5. The Alpino Treebank for Dutch (Van der Beek et al. 2002). This treebank, 
which comprises newspaper articles, was designed mainly for parser 
evaluation. The annotation scheme was taken from the CGN Corpus of 
spoken Dutch (Oostdijk 2000) and the annotation guidelines were based on 
the TIGER Treebank's guidelines. 

6. The Danish Dependency Treebank (Kromann 2002, 2003). The annotation 
scheme of the treebank is based on Discountinuous Grammar and covers a 
wide range of topics. The morphosyntactic annotation was obtained from 
the PAROLE Corpus (Keson & Norling-Christensen 2005). 

7. The Turkish Treebank (Atalay et al. 2003). The texts in this treebank are 
morphologically and syntactically annotated and were obtained from the 
METU Turkish Corpus, which covers 16 main genres of contemporary 
written Turkish (Oflazer et al. 2003). 

8. The Basque Dependency Treebank (Aduriz et al. 2003). This treebank 
consists of manually annotated sentences from newspaper articles. 

9. The Turin University Treebank (TUT) for Italian Treebank (Bosco 2000, 
Bosco & Lomardo 2003, Lesmo et al. 2002). This treebank is divided into 
four sub-corpora. The majority of these texts are from the civil law code 
and newspaper articles. 

10. The Dependency Treebank for English (Rambow et al. 2002). This 
treebank consists of dialogues between a travel agent and customers, and is 
the only D treebank with annotation of spoken language transcripts. 

11. The PARC 700 Dependency Bank (DepBank) (King et al. 2003). This 
treebank consists of 700 annotated sentences from the WSJ dataset of the 
PTB. 

 
Table 6-4 summarizes some key properties of existing D treebanks. The size of the 
treebanks is usually quite limited, and they range from a few hundred sentences to 
90,000 sentences. This is partly due to the fact that even the oldest of the D 
treebank projects, the PDT, was started less than ten years ago. The treebank 
producers have in most cases aimed at creating a multipurpose resource for 
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evaluating and developing NLP systems and for studies in theoretical linguistics. 
Some have been built for specific purposes. The Alpino Treebank of Dutch, for 
example, was designed mainly for parser evaluation. Most of the D treebanks 
consist of written texts, and there is only one (The Dependency Treebank for 
English) that was based on a collection of spoken utterances. The written texts are 
usually obtained from newspaper articles. In other cases such as the Czech, 
German, Russian, Turkish, Danish and Dutch treebanks, they were sourced from 
an existing corpus. Annotation usually consists of POS and morphological levels 
accompanied by D-based syntactic annotation. In the case of the PDT, a higher, 
semantic layer of annotation is also included. 
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Table 6-4. A comparison of dependency treebanks. KEY: M = manual, SA = 
semi-automatic, TB = treebank. 

Name 

Lang. 

Genre 
Size 
(sent.) 

Annotation 
methods Parser 

Encoding 
schemes 

PDT 

C
zech 

Newspaper 
(general, 

economic), 
science mag. 

90,000 M/SA 
Lexicalized 
PCFG parser 

(Collins) 

FS, CSTS 
SGML, 

Annotation 
Graphs XML 

TIGER 
TB 

G
erm

a
n 

Newspaper 50,000 
SA, post-editing & 

interactive 

Probabilistic 
parser / LFG 

parser 

TIGER-XML & 
NEGRA export 

Arbore- 
tum and 
others* 

4
 lan

g. 

Mostly 
newspaper 

21,600 
(Arb.) 
9,500 
(Flor.) 

D to PS mapping, M 
checking 

A CG parser for 
each language 

TIGER-XML & 
PENN export 

(Arb.) 

Depend-
ency TB 

for 
Russian 

R
u

ssia
n 

Fiction, 
newspaper & 

scientific 
12,000 SA 

Morphological 
analyzer and a 

parser 

XML-based TEI-
compatible 

Alpino 

D
utch

 

Newspaper. 
For parser 
evaluation 

6,000 

SA, partially M 
disambiguation aided 
by a parse selection 

tool 

HPSG-based 
Alpino parser 

Own XML-based 

Danish 
Depend-
ency TB 

D
a

nish 

Range of 
topics & 
genres 

~5,500 
M. Morphosyntactic 
annotation obtained 

from a corpus 
- 

PAROLE-DK 
format with 
additions, 

TIGER-XML 
METU-
Sabanci 

TB 

T
urkish 

16 genres 5,000 
M disambiguation & 

M dependency 
marking 

Morph. analyzer 
based on XEROX 

FST 

XML-based, 
XCES- 

compatible 

Basque 
TB 

B
asq

ue
 

Newspaper 3,000 
M, automatic 

checking 
- 

XML-based, 
TEI-compatible 

TUT 

Ita
lia

n 

Mainly 
newspaper & 

civil law 
1,500 

M checking of parser 
& morph. analyzer 

output 

Morph. analyzer, 
rule-based tagger 

and a parser 

Own ASCII-
based 

Depend-
ency TB 

of 
English 

E
n

glish 

Spoken, 
travel agent 

dial. 

13,000 
words** 

SA, M correction of 
parser output & 

automatic checking of 
inconsistencies 

Supertagger and 
Lightweight 
Dependency 

Analyzer 

FS 

Dep-
Bank 

E
nglish 

Financial 
newspaper 

700 
700 M checking & 
correction, autom. 

consistency checking 

LFG parser, 
checking tool 

Own ASCII-
based 

*Not all the treebanks in the Arboretum "family" are included in the table. **Information of 
number of utterances was not available. 
 
The definition of an annotation scheme always involves a trade-off between the 
accuracy of the representation, the coverage of the data and the costs of treebank 
development (Bosco 2000, Bosco & Lombardo 2003). The selection of the tagsets 
for annotation is critical. While the use of a large variety of tags guarantees a high 
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degree of preciseness and specialization in the description, it makes the work of 
the annotators even more time-consuming. In addition to that, highly informative 
annotation in some applications (such as training of probabilistic parsers) will 
frequently cause problems with data sparseness. The opposite of this is that if the 
annotation is highly generalized, the annotation process will be faster but a lot of 
information will be lost. The TUT and Basque treebanks attempt to deal with this 
problem by organizing the set of GRs into a hierarchical taxonomy.  
 
The choice of the type of application for the treebank also often affects the design 
of the annotation scheme. A treebank for evaluation allows for some remaining 
ambiguities but no errors, while the opposite may be true for a treebank used for 
training (Abeillé 2003). In an annotation scheme that consists of multiple levels, a 
definite separation between the levels is a source of concern. The format of the 
annotation is also directed by the specific language for which the treebank is being 
developed. The format needs to be suitable for representing the structures of the 
language. In the METU-Sabanci Treebank, for example, a special type of 
morphological annotation scheme was introduced because of the complexity of 
Turkish morphology.  
 
Semi-automatic annotation that combines parsing and manual checking is the 
method most commonly applied in constructing treebanks. None of the D 
treebanks has been created completely manually; at least an annotation tool 
capable of visualizing the structures is used by each of the projects. There are no 
fully automatically created D treebanks simply because there are no parsers of free 
text that are capable of producing error-free analyses.  
 
The most common way of dividing tasks between the human developers and the 
machine is to let the annotator work as a post-checker of the parser's output. Even 
though such a method is quite straightforward to implement, the method itself may 
generate difficulties. Firstly, if one begins annotation with parsing, this can lead to 
a high number of unresolved ambiguities and these ambiguities can make the 
selection of the correct parse a time-consuming task. A parser that is applied for 
the purpose of building a treebank should therefore perform disambiguation to 
ease the workload of the annotators. Secondly, because the work of a post-checker 
is purely mechanical, there might be a tendency for a checker simply to accept the 
parser's suggestions without any kind of rigorous inspection. The solution that was 
applied in the case of, for example, both the treebanks for English and the Basque 
treebank, was the application of a post-checking tool to the created structures 
before they were accepted.  
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Other variants of semi-automatic annotation do exist: the TIGER, TUT, Alpino, 
and Russian Treebanks apply a method which allows the parser and the annotator 
to interact. The advantage of this method is that since the errors made by the 
parser are already corrected by the human operator at the earlier stages of parsing, 
they have no opportunity to multiply during the later stages. This procedure makes 
it more probable that the parser will produce a correct analysis. In certain 
annotation tools, such as those of the Russian and the English D treebanks, the 
annotator is given the option of adding comments to annotation – a process that 
makes it easier to inspect doubtful structures. In the annotation tool of the TUT, a 
special type of relation can be assigned to mark doubtful annotations. 
 
Recent years have seen an increase in collaboration between treebank projects. 
Thus, for example, the framework developed for the PDT is used in the Prague 

Arabic Dependency Treebank (Hajič et al. 2004) and the Slovene Dependency 

Treebank (Erjavec 2005, 2006). Nevertheless, the main problem with regard to 
current treebanks – insofar as their use and distribution is concerned – is that, 
instead of reusing existing annotation and encoding schemes, developers have 
created new ones. Another problem is that those schemes that have already been 
developed have usually been designed from theory- and even application-specific 
viewpoints, and are consequently of little use for recycling. When one considers 
the high costs involved in developing a treebank,60 it seems obvious that the 
reusability of tools and formats should be given high priority. Apart from the 
difficulties that it creates for reuse, the creation of a treebank-specific 
representation scheme requires the development of a new set of tools for creating, 
maintaining and searching the treebank. But the existence of exchange formats, 
such as XCES (Ide & Romary 2003) and TIGER-XML (Mengel & Lezius 2000), 
already allow multipurpose tools to be implemented and used.  
 

6.4 Conclusion 
 
I would summarize the findings of Section 6.1 in the following way: A linguistic 
resource for comprehensive, full-scale parser evaluation should include the following 
four kinds of materials: 1) unannotated sentences, 2) annotated sentences, 3) test items 
for checking grammatical and morphological coverage, and 4) pairs of grammatical 
and ungrammatical sentences. To my knowledge, no such single unified resource 
exists for any language. While all these materials are indeed available in English, they 
are scattered over several resources. 
 

                                              
60 The estimated costs of the PDT, for example, are around USD 600,000 (Böhmová et al. 2003). 
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The genre-dependency of parsers is an established fact (see, for example, Sekine 
(1997)). Most of these evaluation resources consist of texts from a single genre. 
This constitutes a deficiency in most of the existing parser evaluations reported in 
the literature. This deficiency is caused, in turn, by a lack of treebanks divided into 
genre-specific sub-treebanks. A key issue in available evaluation materials is 
therefore genre homogeneity. The BC part of the PTB is the only sizeable 
evaluation resource to reflect such variations in a systematic way. Most English 
parser evaluations are usually performed on newspaper texts (namely, on section 
23 of the PTB).  
 
A further complication is that many parsing models are trained on the same 
treebank on which they are tested. Parsers therefore come to be applied to texts 
from numerous other genres without being tested. The obvious question that 
confronts us in these circumstances is: How well will a parser that performs well 
on financial texts from the WSJ generalize to other text types? An evaluation 
resource tailored for parser evaluation should include texts from several genres 
such as law, biomedicine and prose. The EASY corpus of French, with its 4,200 
sentences (Paroubek et al. 2006), is the only purpose-built parser evaluation 
resource to reflect such variations in a systematic way.  
 
Based on the findings of Section 6.2, the most promising approach from the point 
of view of practical implementability for annotating parser evaluation resources 
appears to be the approach in which the tagsets are organized into a hierarchy. 
This approach allows for more flexibility than other approaches. Moreover, this 
type of scheme can be more easily mapped into different types of schemes. The 
GR scheme is an example of such an approach. It allows for differences in the 
schemes while still remaining reasonably easy to annotate. In fact, once the tag 
hierarchy has been defined, no extra work is required from the annotators. But this 
kind of approach cannot be generally applied to all possible schemes. A 
hierarchical annotation scheme of this kind could be encoded with one of the 
abstract annotation schemes. The XML-based models have the advantage of their 
inbuilt validation (checking documents against the XML schema) and 
transformation (e.g. XSL Transformations) mechanisms.  
 

It is interesting to note that none of the annotation schemes takes into account the 
possibility of inherently ambiguous sentences that cannot be disambiguated 
without contextual information that spans over a single sentence. An annotation 
and encoding scheme that is tailored for syntactic parser evaluation should allow 
for more than one analysis to be stored for such sentences. 
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I have used the results of the analysis of the existing linguistic resources and their 
annotation schemes as the basis for the design of the evaluation treebank and two 
unannotated evaluation resources represented in the next chapter. One could 
summarize the important findings as follows: Firstly, a comprehensive parser 
evaluation has to be based on several types of linguistic resources. Secondly, the 
linguistic resources must contain texts from several genres. Thirdly, it is desirable 
to organize the tagset of an annotated linguistic resource for evaluation in the form 
of a hierarchy. This facilitates the use of the resource in evaluating and comparing 
different kinds of parsers. An existing XML-based exchange format should be 
utilized in annotation and encoding in order to allow for a reuse of software tools 
for browsing and manipulating the resources. If the outputs of the parser to be 
evaluated are transformed into the same exchange format, the implementation of 
the evaluation tools is simpler. These issues are discussed in more detail in the 
next chapter. 
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7 New Evaluation Resources 
 
This chapter introduces three new evaluation resources that were developed on the 
basis of the findings that I reported in Chapter 6. Section 7.1 deals with the design 
of the parser evaluation D treebank for Finnish called FiEval. Section 7.2 
introduces the design and construction of the two new evaluation resources for 
English called RobSet and Multi-Genre Test Set. 
 

7.1 Developing a Parser Evaluation Treebank for Finnish 
 
FiEval is a treebank for Finnish that is currently under construction. It has been 
designed especially for the evaluation of syntactic parsers, taggers and 
morphological analyzers. This treebank consists of both naturally occurring and 
manually constructed sentences from several genres. The design of the treebank 
and its annotation and encoding schemes are introduced in Section 7.1.1. Section 
7.1.2 describes the purpose-built annotation tool called DepAnn. 
 

7.1.1 Designing FiEval - A parser evaluation treebank for Finnish 
 
This section describes the annotation and encoding schemes of the treebank and 
justifies the choices that were made in its design. It is essential to link the design 
of a treebank to its intended usage. Certain major design decisions, such as 
choosing whether or not a treebank will focus on a specific application, will affect 
other collateral choices. There are a number of major decisions that one has to 
make when designing a treebank. These decisions affect the content, the type of 
annotation and the methods and tools that will be used in the construction of the 
treebank. The annotation guidelines articulate the conventions that guide the 
annotators throughout this process. Figure 7-1 illustrates the process of creating 
the FiEval treebank. 
 

 
Figure 7-1. The process of creating FiEval. 
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Making a treebank especially suitable for parser and tagger evaluation has 
implications for the selection of the content (naturally occurring text vs. artificially 
constructed test sentences) and the design of the annotation and encoding schemes 
(so that one might better match the output of the tools that need to be evaluated). 
Decisions about the methods and tools for creating the treebank are important for 
making the treebank consistent and easy to construct. I will now analyze each of 
these issues in detail in the subsections that follow (some of the treebank design 
criteria have been described in Ide and Romary (2003)).  
 
Selection of the content 

• transcriptions of spoken language or written texts 

• specific genre or balanced over multiple genres 

• size 
 
All the source materials used in FiEval are written texts. No transcriptions of 
spoken language have been included. I made this choice because most of the work 
performed by syntactic parsing focuses on the processing of written texts. It 
therefore seems logical that a treebank for parser evaluation should, in the first 
place, focus on the same modality.61 
 
A key feature in a treebank which is intended to be used for parser evaluation is 
the inclusion of texts from several different genres. FiEval currently consists of 
texts from a work of fiction (a novel) (Gaarder 1994), a newspaper (Karjalainen 
1999), and law code texts (European Union 2005, Finlex). Because we in the 
EdTech group of the University of Joensuu are currently carrying out research into 
automatic and semi-automatic essay assessment (see for example, Kakkonen & 
Sutinen 2004), we are particularly interested in the ability of parsers to analyze the 
kind of text that one will encounter in such a context. These texts consist mainly of 
student texts such as short answers to assignments, longer free-text responses 
(essays), and extracts from student theses. Examples of all such texts were sourced 
from undergraduate and graduate students from the University of Joensuu. Also 
included is a sub-corpus (referred to as TS) which consists of manually 
constructed sentences that reflect the main syntactic and morphological 
phenomena of Finnish. 
 
At the time of writing, the FiEval treebank consists of 3,160 parsed sentences. 
While a larger treebank is always better, increasing the size of a treebank 

                                              
61 As the parsing of spoken language is one of the future application areas of parsers, it might be 
worthwhile later on to add spoken language transcripts to the treebank. 
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obviously also increases the cost of its development. While the current size of the 
treebank is acceptably large for parser evaluation, is not yet adequate for training 
probabilistic parsing models. 
 
Design of the annotation and encoding schemes 

• phrase structure or dependency 

• type of theory support: theory-neutral, theory-specific, theory-supporting 

• using existing annotation and encoding schemes or designing new ones 

• designing the tagsets: the set of tags for POS, morphological and syntactic 
annotation 

• the type of the encoding scheme: markup-language, ASCII/text file 

• data architecture: the files/database and annotations are interspersed 
throughout the document containing the primary text or are stored in one or 
more additional documents linked to the primary text 

 
Because the Finnish language is characterized by a relatively free word order, and 
because existing parsers for Finnish are implemented in DG frameworks, D 
representation becomes an obvious choice for a parser/tagger evaluation treebank 
for Finnish. Moreover, by many (such as Yamada and Matsumoto (2003)) the D 
annotation is regarded as being more intuitive and easier to understand than PS 
annotation. This feature of course makes for faster and less error-prone treebank 
construction. Because semantic dependencies are embedded in the syntactic 
dependencies, the D description also offers a more straightforward interface 
between syntactic and semantic representations. 
 
Instead of creating a theory-specific treebank, I designed the annotation scheme in 
such a way that it will allow the treebank to be used for evaluating several 
different types of parsers. This was partly achieved by organizing the POS tagset 
into a hierarchy. In that sense, the treebank is theory-supporting. The two grammar 
formalisms that were used as the basis for the design, CG and FDG – the only two 
frameworks in which parsers have been implemented thus far for Finnish– are 
closely related. From this point of view, one might argue that the treebank is 
theory-specific.  
 
Designing an annotation format involves several steps. Firstly, the annotation 
scheme consisting of the morphosyntactic labels and the syntactic tags together 
with the general structural principles for the annotation needs to be designed. Then 
it is necessary to select an encoding scheme – the physical representation of the 
annotation information in a physical document with tags. Finally, a data 
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architecture has to be chosen for the primary text and its annotations. This will 
dictate whether the treebank is stored in a database or files and whether 
annotations will be interspersed throughout the document containing the primary 
text or stored in one or more additional documents linked to the primary text. The 
annotation scheme of FiEval consists of word-level information (the word form, 
the lemma, and POS and morphological tags) and syntactic description. The 
encoding is based on TIGER-XML and has been designed in terms of the 
guidelines proposed by the Nordic Treebank Network (Kromann 2005). The 
annotation and encoding schemes and the data architecture of FiEval will be 
discussed in more detail in Sections 7.1.1.3. to 7.1.1.5. 
 
Construction method and tools 

• annotation method: manual, semi-automatic, automatic 

• checking the annotation: checking the levels of annotation (POS and 
syntax, for example) separately or simultaneously 

• annotation tool: the use of an existing tool or the development of a new one 

• the morphological analyzer and parser: the selection of appropriate ones 
 
I already pointed out above that the manual construction of syntactic trees is both 
slow and error-prone. It is unfortunate because there are no tools available for 
creating high-quality treebanks fully automatically. Treebanks are therefore 
usually created by means of a combination of automatic and manual processing. In 
addition to parsers/taggers for creating the initial structures, several types of 
resources are needed for semi-automatic treebank construction. These include the 
annotation guidelines on which the work of the annotators is predicated, and an 
annotation tool that one applies for checking and correcting automatically created 
structures as well the validity of structures that have already been created.  
 
FiEval currently consist of sentences that have been automatically tagged by two 
morphological analyzers/parsers: CG parser for Finnish, (FINCG) (Karlsson 
1990) and FDG parser for Finnish (FI-FDG) (Tapanainen 1997). A few sentences 
have been manually checked as part of the process of implementing the purpose-
built annotation tool DepAnn (which will be introduced in Section 7.1.2) and 
defining the annotation format.  
 

7.1.1.1 Related work 
 
The Alpino Treebank of Dutch is similar to FiEval because it too focuses on parser 
evaluation (Van der Beek et al. 2002). Apart from having this feature in common, 



 

127  

FiEval and Alpino both utilize the TIGER Treebank of German (Brants et al. 
2002) as the main inspiration for the annotation format. While FiEval only applies 
the TIGER-XML (Mengel and Lezius 2000) encoding scheme, both the annotation 
and encoding schemes of Alpino are similar to those of the TIGER Treebank. In 
addition to the TIGER Treebank, there are two Danish treebanks (Kromann 2003, 
Bick 2003) that also support the TIGER-XML format. The morphosyntactic tagset 
of FiEval has been organized in such a way that inexact tag matches can be 
accounted for in the process of parser/tagger evaluation. The idea was originally 
used by Carroll et al. (2003) in the syntactic annotation scheme based on GRs. 
 

7.1.1.2 The Finnish language 
 
Finnish has a rich morphology. Nouns, for example, have fourteen cases. Finnish 
is an agglutinative language in which grammatical markers and endings are joined 
to a word root. For example, the word “autoissanikinko?” (which literally means 
“In my cars, too?”), can be broken down into the following structural components: 
root (“auto”) + plural marker “i” + inessive “ssa” + 1st person sing. possessive 
“ni” + enclitic particle “kin” + question marker “ko”. 
 
As in English, the subject-verb-object sequence is the word order that occurs most 
frequently in Finnish (Karttunen & Kay 1985). Because it possesses such a rich 
inflectional system, word order in Finnish is relatively free. Because of its 
inflection, the function that a word plays in a sequence of words can be often 
understood without any additional reference to its specific position in a sentence. 
For instance, all the six permutations of the three words hän “he” (sg nom), söi 
“eat” (past sg 3rd), and kalan “fish” (sg acc) are grammatical sentences in Finnish. 
This looseness of ordering constraints is not, however, found in all syntactic 
categories in Finnish. For example, the order of constituents in NPs in Finnish is 
almost as fixed as it is in English. Furthermore, although all the possible word 
orderings in the example above are grammatical, they are not identical. While all 
six sentences express the same proposition, they are used in different discourse 
modalities to place emphasis on different aspects of the proposition.  
 

7.1.1.3 Morphosyntactic annotation scheme 
 
Because of the complexity of Finnish morphology, the morphosyntactic annotation 
scheme of FiEval is rather extensive. The morphosyntactic tagsets of FINCG and 
FI-FDG are similar, and the tagset of FiEval closely resembles both of these. The 
scheme is defined as follows: 
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Definition 7-1. Word-level annotation in FiEval. 
1. The word form WORD. 
2. The base form LEMMA. 
3. The part-of-speech tag POS ∈ {V, N, A, AD-A, ADV, PRON, PRE, 

PSP, NUM, CS, CC, CC>, INTJ, FW}. 
4. Morphological tags MORPH ∈ {SG, PL, NOM, GEN, PTV, …}. 

 
The word-level tagset is designed in a way that allows for inexact matches 
between the two parsers and the treebank. The morphosyntactic annotation scheme 
consists of 14 POS and 58 morphological tags. The POS tags and their 
descriptions are given in Table 7-1 (below). Figure 7-2 illustrates the organization 
of the POS tagset. FW is the only tag not present in either parser’s tagset. All FI-
FDG tags and all except two FINCG tags (ABBR for abbreviations and Q for 
quantifiers) have a matching tag in the tag hierarchy. Table 7-3 gives all the 
morphological tags for nouns. 
 
Table 7-1. The POS tags in FiEval. KEY: coord. conj. = coordinating conjunction. 

Tag Name Example Transl.  Tag Name Example Transl. 
V Verb mene go  N Noun pallo a ball 
A Adjective suuri big  AD-A Adjective adjunct melkein almost 

ADV Adverb nopeasti quickly  PRON Pronoun minä I 
PRE Preposition ennen before  PSP Postposition takana behind 

NUM Numeral yksi one  CS 
Subordinate 
conjunction 

kun when 

CC 
Coord. 
conj. 

ja and  CC> 
Multipart 

coord. conj. 
sekä..että both...and 

INTJ Interjection Hei! Hey!  FW Foreign word word - 
 
 

Figure 7-2. The part-of-speech tagset. The boxes with solid lines denote tags used 
in the treebank. The boxes with broken lines represent tags used by either of the 
parsers although they are not included in the treebank annotation. KEY: PP = post- 
or preposition, C = conjunction, ART = foreign article, PREP = foreign 
preposition. 
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Table 7-2. Morphological tags for nouns (N) in FiEval.  

Tag Name Example Translation 
SG Singular pallo a/the ball 
PL Plural pallot (the) balls 

CASES 
GRAMMATICAL CASES 

NOM Nominative pallo a ball 
GEN Genitive pallon ball’s 
PTV Partitive palloa some/(without a) ball 

LOCATIVE CASES 
INE Inessive pallossa in a ball 
ELA Elative pallosta out of a ball 
ILL Illative palloon into a ball 
ADE Adessive pallolla on a/by means of a ball 
ABL Ablative pallolta from a/the ball 

ABSTRACT LOCATIVE CASES 
ESS Essive pallona as a ball 
TRA Translative palloksi transformed into a ball 

OTHER CASES 
ABE Abessive pallotta without a ball 
CMT Comitative palloineen with a ball/with the balls 
INS Instructive laivoin by means of a boat 
PRO Prolative meritse by sea 

POSSESIVE SUFFIXES 
1SG 1st pers. sing. palloni my ball 
2SG 2nd pers. sing. pallosi your ball 
3 3rd pers. s./plu. pallonsa his/her/their ball 
1PL 1st pers. plur. pallomme our ball(s) 
2PL 2ns pers. plur. pallonne your ball 

CLITICS 
HAN -han/hän pallohan the ball (adds politeness) 
KAAN -kaan/-kään ei pallokaan not even the ball 
KIN -kin pallokin also the ball 
KO -ko palloko [do you mean] the ball? 
PA -pa/pä pallopa the ball (adds emphasis) 
S*  -s pallopas the ball (adds emphasis) 

*Often implies an explicit reversal of the other discussant’s presupposition. 

 

7.1.1.4 Syntactic annotation scheme 
 
The syntactic annotation scheme of FiEval follows the D description employed by 
the FI-FDG parser. The dependencies are marked in edges connecting the words. 
The formal definition of the syntactic annotation scheme is given in Definition 7-2 
below. The D relations are labeled with 31 D types described in Table 7-3. 
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Definition 7-2. Sentence-level annotation in FiEval. Td={MAIN, SUBJ, 
OBJ,…} is the set of dependency relation labels (tags). Let S be an annotated 
sentence, consisting of: 

1. Sequence =δ (α1, α2,…,αn) of words α1… αn, where each αi is annotated 
with word-level information. 

2.  A partial function Dδ:{1,2,…,|δ|}→Td, where D(i, j) = l dT∈ if and only 

if there is a dependency link from the word i to the word j, tagged with 

the label l { }ORDOBJSUBJMAIN ...,,,∈ . The root of the sentence is 

denoted with 0. 
 
Table 7-3. The dependency tags in FiEval. The head of the relation and all the 
elements dominated by it are denoted by italics. KEY: comp. = complement; 
postmod. nom. = postmodifying nominal; attrib. adv. = attributive adverbial. 

Tag Name Example Translation 
MAIN Main verb Potkaise palloa. Kick the ball. 
SUBJ Subject Hän potkaisi palloa. He kicked the ball. 
OBJ Object Ostin pallon. I bought a ball. 
DAT Indirect obj. Syötätkö sen minulle? Are you going to pass it to me? 
COMP Subject comp. Pallo on pyöreä. The ball is round. 
OC Object comp. Hänet palkattiin valmentajaksi. He was hired as the coach. 

PM 
Preposed 
marker 

Syötin, että tekisit maalin. 
I passed so that you can score a 
goal. 

PHR Phrase Häntä pidettiin kiinni. He was held. 
COPR Copredicative Hän oli tuomarina. He was acting as the referee. 
VOC Vocative Pele, syötä pallo! Pele, pass the ball! 
TMP Time Pelasimme eilen. We played yesterday. 
DUR Duration Pelasimme kaksi tuntia. We played for two hours. 
FRQ Frequency Voitimme kolmesti. We won three times. 
QUA Quantity Se nousi yli kolme prosenttia. It went up over three percent. 
MAN Manner Hän taklaa rajusti. He tackles hard. 
LOC Location Pele asuu Brasiliassa. Pele lives in Brazil. 
SOU Source Liverpool FC on Englannista. Liverpool FC is from England. 
GOA Goal Potkaisin pallon maaliin. I kicked the ball into the goal. 
PUR Purpose Pelaamme voittaaksemme. We play to win. 
PTH Path Pallo tuli postitse. The ball came by mail. 
RSN Reason Miksi et syöttänyt? Why didn’t you pass? 
CND Condition Hävetkää, jos ette voita! Shame on you, if you don’t win! 
META Clause adv. Tein melkein maalin. I almost scored a goal. 
QN Quantifier Pystytkö tekemään viisi maalia? Can you make five goals? 

ATTR 
Premodifying 
nominal 

Joukkueen kannattajat huutavat. 
The spectators of the team are 
shouting. 

MOD Postm. nom. Se, joka pystyy, tekee maalin. The one who can, will score. 
AD Attrib. adv. Peli oli todella rankka. The game was really tough. 

CC Coordination 
Taklasin puolustajan ja kaksi 
hyökkääjää. 

I tackled a defender and two 
strikers. 

INS Instrument Löin palloa mailalla. I hit the ball with a bat. 
COM Comitative Pelaa hänen kanssaan! Play with him! 
ORD Ordinance Sitten potkaisin palloa. Then I kicked the ball. 
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Example 7-1. The parse tree and annotation of the sentence: “Liverpool pelaa 
hyvin” (Liverpool is playing well). 
 
 
 
 
 
 
 
 

7.1.1.5 Encoding scheme and data architecture 
 
In order to avoid having to implement browsing and searching tools for the 
treebank, I made a decision to base the encoding on an existing encoding format. 
After a detailed analysis of XML-based encoding schemes (which are described in 
Section 6.2.2 above and in paper [1]) had been made, TIGER-XML was selected. 
TIGER-XML offers an XML-based representation that is capable of encoding 
different kinds of corpus and treebank annotations (Mengel & Lezius 2000). 
Syntactic categories, POS, lemma and other word information, are described as 
attributes in the terminal nodes in DAGs. The nonterminals encode D links.  
 
I selected TIGER-XML for the following reasons. Firstly, it is flexible and 
extensible enough to accommodate different treebank annotation types, both D- 
and PS-based. Secondly, several well-implemented tools such as the TIGERSearch 
viewing/query tool and TIGERRegistry indexing tool (König et al. 2003) already 
exist for TIGER-XML. These are capable of transforming many well-known 
corpus and treebank formats such as the SUSANNE and the PTB into TIGER-
XM. Thirdly, TIGER-XML has already been successfully used for D annotation 
by other treebank projects such as the TIGER Treebank (Brants et al. 2002) and 
the Danish treebank (Kromann 2003). Fourthly, there are explicit specifications 
available on how to encode D structures TIGER-XML (Kromann 2005). Finally, 
the architecture of the annotation and encoding scheme of a treebank should allow 
for refining the encoded information at a later stage, both in width and depth (Skut 
et al. 1998). Adding depth refines the existing representation. TIGER-XML allows 
the user to define the attributes for nodes in a syntactic tree, thus enabling one to 
create a flexible depth of representations. “Increasing width” refers to adding new 
levels of annotation. An extension called SALSA/TIGER-XML (Erk & Padó 
2004) has been devised that allows for incorporating semantic role annotation into 
a TIGER-XML encoded treebank. This same mechanism could be used for adding 
levels other than semantics.  

δ={ 
{WORD=Liverpool, LEMMA=Liverpool, POS=N, MORPH=SG NOM}  
{WORD=pelaa, LEMMA=pelata, POS=V, MORPH=ACT PRES SG3} 
{WORD= hyvin, LEMMA=hyvä, POS=ADV, MORPH=-} 
} 
 

Dδ(0, 2)=MAIN, Dδ(2, 1)=SUBJ, Dδ(2, 3)=MAN 

pelaa 

ROOT 

Liverpool hyvin 

MAN SUBJ 

MAIN 
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In TIGER-XML the annotations are interspersed throughout the documents. But it 
is easy to extract the original content of a document if one needs to do so. The data 
architecture of the treebank is organized in the following way. Texts are divided 
into sub-corpora on the basis of genre. Each sub-corpus is then stored in a separate 
TIGER-XML file. One of the features of the treebank design is that it allows for 
the inclusion of parallel annotation for a part of the sentences. This feature is 
useful for annotating ambiguous sentences. When one evaluates a syntactic parser, 
it is fair to accept any of the ambiguous analyses as correct for sentences that 
cannot be disambiguated solely on the basis of syntax.  
 

7.1.2 DepAnn – An annotation tool for dependency treebanks 
 
Constructing a treebank – even with a semi-automatic method – is a labor-
intensive undertaking. Efficient tools play a key role in keeping down the costs of 
treebank development and in allowing developers to create larger and better 
quality treebanks. A crucial component in semi-automatic treebank creation is the 
annotation tool. A well-designed and well-implemented tool can play an important 
role in making the work of annotators easier. A user can use an annotation tool to 
browse, check, and correct the parser’s output, and create structures from scratch. 
In some existing tools, the annotations are automatically checked against 
inconsistencies before they are saved to the treebank. The user is also able to add 
comments to the structures or mark them as doubtful where necessary. 
 
After carrying out an investigation into existing annotation methods and tools, 
such as GRAPH (Böhmová et al. 2003), Abar-Hitz (Díaz de Ilarraza et al. 2004), 
Annotate (Plaehen & Brants 2000), DTAG (Kromann 2003), CDG SENtence 

annotaTOR (SENATOR) (White 2000), I came to the conclusion that none of the 
available tools were able to satisfy all the needs and requirements. The tools were 
either not suitable for D annotation or were incompatible with any common XML-
based encoding schemes, the user interface was unsuitable, or the tool did not 
offer all the necessary functions. In addition to that, there are no annotation tools 
that are capable of showing outputs from several parsers for the purpose of 
assisting the annotator to make choices. A decision was therefore taken to design 
and implement an annotation tool that did contain all the desired characteristics. 
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7.1.2.1 Design principles 
 
It was necessary to conduct a prior analysis of existing annotation tools in order to 
get a clear idea of what I would need in the system that I intended to develop. On 
the basis of that analysis, I decided to include the following key features: 

1. Support for an existing XML encoding scheme 

The use of an existing encoding scheme would make the system 
reusable. Existing tools that support the same scheme could be used for 
browsing, manipulating and searching the annotated treebanks. 

2. Both text and graphic display and manipulation of parse trees 
It is necessary for any annotation tool to be able to show sentence 
structures in a visual display. Any such graphic display should also 
preferably be interactive so that the user can manipulate the structures 
wherever necessary. There are, however, certain annotation tasks for 
which a text view of the structure would be more suitable. 

3. An interface between morphological analyzers and parsers for 

constructing the initial trees 
In order to generate the trees for human inspection and modification, 
the annotation tool must have an interface for a morphological parser, a 
POS tagger and a syntactic parser. This tool should be capable of 
simultaneously using outputs from several tools to guide the annotator’s 
decisions. 

4. An inconsistency checker for both structures and encoding 
The annotated sentences that will be saved to the treebank need to be 
checked for tagging inconsistencies. Apart from an XML-based 
validation of encoding, the inconsistency checker needs to be able to 
alert the annotator to several other kinds of mistakes such as 
mismatching combinations of POS and morphological tags, a missing 
main verb, and fragmented, incomplete parses. 

5. Menu-based tagging 

In order to speed up the annotation process, tags need to be chosen from 
a pre-defined tag list rather than by the annotator typing the tag labels 
manually. Menu-based tagging is not only efficient: it also diminishes 
the error rate by eliminating the errors generated by typos in the labels. 
Keyboard shortcuts for selecting appropriate tags should also be 
provided for more advanced users. 

6. A commenting tool 

For facilitating later revisions that might need to be performed by other 
annotators, a user should be in a position to add comments to the 
annotated structures. A user should also be able to mark a sentence as 
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either ready or unfinished so as to make it easier to locate sentences 
needing further revision. 

 
The predominant design principles, apart from making the annotation process 
faster and less error-prone, were that the tool should be reusable and modifiable. 
The system was therefore designed in such a way that the modules for processing 
the treebank output and input were kept separate from the structure viewing and 
manipulation modules. This makes it easier to modify the tool. Support for an 
existing encoding scheme is a crucial reusability feature of any treebanking 
software. The selection of the format was initially narrowed down by the decision 
that the format should be XML-based – because XML offers a set of validation 
capabilities – so that it could automatically check for encoding inconsistencies.62 
 

7.1.2.2 Main functionality 
 
Figure 7-3 illustrates the main frame of DepAnn’s user interface. 

A

C

B

D

E

 
Figure 7-3. The main frame of the DepAnn tool. 
 
The main groups of functions are indicated in Figure 7-3 by boxes A...E. The text 
field in the area bordered with box A shows the sentence being annotated in the 

                                              
62 As described in Section 7.1.1.5, TIGER-XML was selected as the encoding scheme because of 
the several advantages that it offers. Since TIGER-XML is a general model of treebank encoding, 
it would be possible to show and manipulate PS structures with DepAnn. A decision was 
nevertheless made not to include both PS and D structures in the design of the tool because it was 
felt that too general a design would hamper the efficiency of D annotation. The visualization 
functions and user interface are therefore tuned for manipulating D structures. 
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raw text format. Area B is a toolbar with controls for treebank browsing (buttons 
for showing the next and the previous sentence and a slidebar for browsing), 
checking and saving the sentence, and modifying the tagsets. In area C, the user 
can graphically manipulate the structure by changing the values on nodes 
representing the words and D links, and by removing, adding and rerouting the 
links between the nodes. Area D consists of the revision functions. The user can 
also mark the sentence as ready: this indicates that further revision is not needed. 
In addition, the user can utilize the comment field to write notes about the 
sentence structure. Box E frames the tables for text-based structure manipulation 
and viewing. The parser and tagger outputs for aiding the annotation decisions are 
shown in a separate resizable and customizable dialog. In a computer system with 
multiple monitors, for example, the dialog can be placed into a separate desktop. 
In the current version, the user can select which parser’s output is used as the 
initial tree for correction and modification. 
 
In the DepAnn tool, the structure to be annotated is represented to the user in text 
and graphic formats in order to offer the use of the best possible option for his or 
her needs. Because the text and graphic views are fully integrated, changes applied 
in the graphic view immediately affect the text view, and vice versa. The user 
interface is also customizable to suit the task and the annotator’s preferences. A 
user can add comments on annotations such as reminders about problematic parts 
in the sentence structures. Completed trees can be marked as ready, thereby 
indicating that no further inspection or modifications are needed. Outputs of 
several parsers and POS taggers can also be applied in parallel. These allow the 
annotator to compare the outputs before making any annotation decisions. To be 
able to use the output of a parser in DepAnn, a converter is needed to transform 
the output from the parser- or tagger-specific format to the format used by 
DepAnn. TIGER-XML (Mengel & Lezius 2000) is used as the input format for the 
structures obtained from the automatic tools, as well as the output format for the 
annotated treebank. For internal data representation, the TIGER-XML structures 
are transformed into Java objects.  
 
The annotation process that uses DepAnn begins with processing the treebank 
texts with one or more parsers and taggers. It then applies a converter to the 
outputs in order to transform the tool-specific output into TIGER-XML. After the 
conversion, the annotator can view the parsed structures. The annotator can select 
the parser output to be used for creating the initial trees and modify these. 
 
Once the user stops editing a sentence, the program performs an automatic 
consistency check to validate sentence structure, annotation, and encoding. In the 
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first place, it runs a series of checks to verify that the sentence has a main verb and 
a root, that all the words have word form and lemma information and 
morphosyntactic tags, that the sentence is not fragmented, and so on. Secondly, if 
the first series of checks is passed, the program transforms the sentence into 
TIGER-XML and validates it against the XML schema to identify any possible 
errors in the encoding. If any such errors appear, the user is alerted. The user can 
select which checks should be run by modifying the system set-up. 
 

7.1.2.3 Implementation details 
 
The annotation tool is implemented in Java. Because Java is platform-independent, 
the system can be used in any environment in which Java is available. The system 
consists of three main components: the interface to parsers and taggers, the 
annotation tool itself, and the output module. I used two freely available open-
source packages, OpenJGraph (Salvo 2006) and TIGER API (Demir et al. 2006), 
for developing the system – although both had to be modified before they could be 
used as a part of DepAnn. TIGER API, a Java API for TIGER-XML, is used for 
input and output processing. The graphic annotation manipulation functionality 
was built on top of OpenJGraph. The annotation tool uses Java Database 

Connectivity (JDBC) both for storing the outputs from the parsing and tagging 
tools, user comments and information on completed sentences. Because of this, the 
MySQL database currently being used can be replaced by any other JDBC-
compatible database. 

annotation

textual

graphical

consistencyChecker

database

graph

tigerAPI

java.sql

 
Figure 7-4. The main Java packages of DepAnn. 
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7.2 Evaluation Resources for English 
 
In this section I will describe the two linguistic resources for English that I 
developed as part of this research. Sections 7.2.1 and 7.2.2 respectively describe 
the design and construction of the Multi-Genre Test Set and RobSet. 
 

7.2.1 Multi-Genre Test Set 
 
The Multi-Genre Test Set (MGTS) is a test set that comprises 826,485 sentences in 
English. It contains six subsets that cover the following genres: newspaper, 
legislation, fiction, non-fiction, religion and biomedicine. 
 

7.2.1.1 Main design principles 
 
MGTS aims to provide a sizeable corpus of texts for evaluating parsers’ 
performance on diverse text genres. Because the corpus is divided into genre-
specific subsets, it allows a user to measure the effects of genre variance on the 
performance of parsers. The texts differ not only with regard to genre but also in 
terms of discourse function and intended audience. While most of the texts address 
a general readership, the biomedical texts and some of the texts in the non-fiction 
data set are written for experts.  
 

7.2.1.2 Developing the resource 
 
The text materials were obtained from the following sources: the Leipzig Corpora 

Collection (LCC) (Quasthoff et al. 2006), the Oxford Text Archive (OTA) (Oxford 
Text Archive 2006), the Project Gutenberg (PG) (Project Gutenberg 2006), 
GENIA (GEN) (GENIA Project 2006), the Yapex Corpus (YAP) (Yapex Project 
2006) and the Aligned Hansards of the 36th Parliament of Canada corpus (HAN) 
(Natural Language Group of the USC Information Sciences Institute 2001). All the 
text sources were available for use without charge. 
 
The test set was constructed in the following way: 

• Deletions were made to the texts. These included the removal of some 
poems and song lyrics as well as sentences in languages other than English.  

• Text normalizations were carried out. These included the removal of 
underscores (_), markup (e.g. XML tags) and other codes. 

• The texts were divided into sentences by using the sentence tokenizer of 
the Maximum Entropy Part of Speech Tagger (MXPOST) tool 
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(Ratnaparkhi 1996, Ratnaparkhi 2007). A Java-based post-processor was 
implemented for correcting some of the systematic problems observed in 
MXPOST’s output. 

• Automatically tokenized texts were checked manually for inconsistencies. 
A considerable number of errors left by the automatic tools were 
corrected.63 

• The texts were collected into sub-corpora of between 6 and 12 MBs size. 

• Two separate versions were made of each file to be parsed: one for parsers 
that take raw text as input and another for those that take the input text in 
the PTB format. A small Java tool was implemented to produce the two 
versions automatically. 

• Finally, the texts were tagged with MXPOS for use with the parsers that 
make use of a POS tagged input. 

 
Table 7-4 shows the subsets of MGTS. There are 15,385,855 tokens in total (with 
an average length of 18.6 tokens per sentence). The average number of tokens per 
sentence in the sub-corpora varies between 15.9 and 27.1. 
 
Table 7-4. The materials in the Multi-Genre Test Set. 

Genre Description No. of 
sent. 

Avg. 
length 

Sources 

Legislation 
Proceedings from the Canadian Parliament 

(Hansard) 
390,042 17.2 HAN 

Newspaper 
Newspaper texts from Financial Times, Wall 

Street Journal & Associated Press 
217,262 19.5 LCC 

Fiction Novels from the 20th and 21st centuries 97,156 15.9 OTA, PG 

Non-fiction 
Non-fiction books from the 20th and 21st 

centuries 
61,911 21.9 OTA, PG 

Religion The Bible, the Koran, the Book of Mormon 45,459 27.1 OTA, PG 
Biomedicine Abstracts from biomedical journals 14,655 21.6 GEN, YAP 

TOTAL 826,485 18.6  

 

7.2.2 RobSet 
 
RobSet consists of 443 test items, each of which contains a pair of erroneous and 
correct sentences. Each of the erroneous sentences contains one to three 
misspelled words. 
 

                                              
63 The manual checking and correction took approximately one week of working time. Checking the 
whole test set sentence-by-sentence would take up to several months. I estimated the error 
frequency to be 0.4% by sampling a total of 1450 randomly selected sentences. I considered the 
error rate to be low enough for the purpose to which the test set was to be used in this research. 



 

139  

7.2.2.1 Main design principles 
 
It is clear that as the level of noise in the inputs increases, the performance of a 
parser degrades. The effect of the noise on the performance can be measured by 
parsing sentences with successively more spelling mistakes and observing the 
consequent effect on the performance of a parser. RobSet enables one to make 
these kinds of evaluations. 
 

7.2.2.2 Developing the resource 
 
I began the test set construction by selecting 19 sentences from a public domain 
web page. I then altered one, two or three words per test sentence, and this gave a 
total of 443 test sentences – 255 with one error and 94 with two and three errors 
respectively. The length of each of these sentences was between 5 and 36 words, 
and the average length was 16.3 words per sentence. I then manually introduced 
misspellings into the sentences by deleting, adding and transposing characters, 
permitting only one edit operation per word. The character additions were based 
on the keyboard proximity of letters in order to simulate errors in naturally-
occurring texts. Since the purpose was not to introduce structurally distorted 
sentences, only alterations that did not create an acceptable word were permitted. 
Table 7-5 shows examples of sentences from the test set. 
 
Table 7-5. Example sentences from RobSet. The errors that were introduced are 
indicated by in italics. 

Correct sentence Noisy sentence 
Your username is not logged. Yoru username is not logged. 
Please e-mail suggestions for improvements. Please e-mil suggestions for improvements. 
A text-only browser such as Lynx is great for 
viewing almost all the pages at this site. 

A text-only browser usch as Lynx si great for 
viewin almost all the pages at this site 

Once you have files loaded into the cache, 
reaccess is speedy. 

Once you have files loadsd itno the cache, 
reaccess is speedu. 

 

7.3 Conclusion 
 
I have introduced three resources for the evaluation of natural language parsers, 
and have discussed the design principles and the construction methods as well as 
the contents of the resources involved. The two resources for English are applied 
in Section 10 for evaluating parsers for English. As the treebank for Finnish 
currently consists of automatically parsed sentences, it can not yet be used reliably 
for parser evaluation. Manual checking of a treebank containing thousands of 
sentences is beyond the scope of this research. 
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III EVALUATION METHODS AND TOOLS 

 

8 Analysis of Existing Methods and Tools 
 
It is an extremely laborious task for a human being to evaluate individual parser 
outputs manually, and it is also one that is likely to give rise to errors. There are 
some methods such as TextTrees, that have been developed to assist the work of 
inspection (Newman 2005).64 Experiments have shown that formats such as 
TextFree can speed up the manual evaluation process. In spite of this, it is 
necessary to use automatic evaluation methods for systematic parser evaluation 
because of the major drawbacks inherent in manual evaluation practices. The first 
of these drawbacks is that manual inspection is both slow and error-prone. It 
would be extremely cumbersome in practice, if not impossible, to use manual 
inspection for comparing parsing systems that use different output formats. The 
second drawback is the possibility of introducing bias along with human 
evaluators. Whenever an evaluator decides whether or not a parse is appropriate or 
acceptable, he or she introduces bias by making such a judgment (Bod 1998). In 
those cases where an evaluator might judge an analysis to be appropriate, he or she 
might have assigned a completely different analysis to the sentence if he or she 
had not already seen the parser’s analysis. 
 
In addition to the linguistic resource that is used as a comparative material, metrics 
and measures are also needed for automatic evaluation. An evaluation metric 
allows one to compare a system’s performance after improvements, as well as to 
compare the performance of different systems. Mappings often need to be applied 
to parser outputs and evaluation resources in order to make them sufficiently 
similar for metrics to be applied. Measures define the way in which the results are 
reported. 
 
The quality of a parser can be approached from several perspectives. The most 
commonly used perspective in parser evaluation is the preciseness of the parses 
produced by the systems. Most of the work that has been done on parser 
evaluation has in fact concentrated solely on this particular point of view. 
Preciseness evaluation methods are described in Section 8.1 below. Coverage 
(Section 8.2) refers to the proportion of the structures in the gold standard to 
which the parser assigns one or more parses. A parser’s ability to produce an 

                                              
64 In TextTrees, parser output trees are converted into unlabeled indented strings. These trees 
contain a minimal amount of bracketing to ease inspection work. 
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error-free or only a slightly altered output from input sentences containing errors is 
referred to as robustness. Robustness evaluation methods are discussed in Section 
8.3. Efficiency (Section 8.4) refers to the speed with which a parser performs 
analyses. It can be extended to cover the use of memory. Existing evaluation tools 
are discussed in Section 8.5 of this chapter. 
 

8.1 Preciseness Evaluation 
 
Preciseness refers to a parser’s ability to correctly analyze grammatical structures. 
These structures, depending on the type of evaluation, may be either constituents, 
dependencies or sentences. Preciseness is measured by comparing the analyses in 
the gold standard to the parses in the parser output. 
 
Definition 8-1. Gold standard. 

Gold standard is a 2-tuple GS=(S,A) where 
1. S=(s1,s2,…,sn) is a finite sequence of grammatical structures, i.e. 

constituents, dependency links or sentences. 

2. A=(a1,a2,…,an) is a finite sequence of analyses. For each i, ni ≤≤1 , ai 

∈A, is the analysis of si∈S. 
 

Definition 8-2. Parser output in evaluation. 
Let GS=(S,A) be a gold standard. Let P be a parser.  

1. Parser output O(P,GS)=(P(s1), P(s2),… P(s|S|)) is a sequence of 

analyses such that P(si) for each i, ni ≤≤1 is the analysis assigned 
by parser P for sentence si∈S. 

 
Let GS=(S,A) be a gold standard and O(P,GS) a parser output for sentences S in 
the gold standard. Preciseness evaluation is carried out by comparing each element 

in O(P, GS) to each element in A. GS consist of two sets: TP (true positives) and 
FN (false negatives). TP is the subset of GS whose analyses in O(P,GS) match 
with the corresponding analysis in A; the parser produced a correct analysis for 

these sentences. The members of set FP (false positives) do not match in O(P, GS) 
and A. This means that the parser was not able to produce a correct analysis for 
these sentences. Set FN consists of the elements in GS that do not have an analysis 
in O(P, GS), i.e. they comprise the set of sentences for which the parser was 

unable to produce an analysis. FN UTP  constitutes the gold standard. The parser 

output is formed of TP and FP. Figure 8-1 illustrates these concepts. 
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Gold standard

Not parsed
(FN)

Correctly parsed
(TP)

Incorrectly parsed   
(FP)

Parser output

 
Figure 8-1. The sets of analyses in parser evaluation. TN is the set of all the 
sentences in the language L not included in the gold standard or parser output, 

called the true negatives. 
 
Example 8-1. Let GS=(S, A) be a gold standard. Let O(P,GS) be a parser output 
for S. The following table shows for each sentence s1…s5 the gold standard 
analysis, the parser output and the group to which (TP, FP or FN) the parser 

analysis belongs. 
 
 
 
 
 
 

The most common measures used in preciseness evaluation are precision (P) and 
recall (R), which are defined as follows: 
 
Definition 8-3. Precision and recall. 

1. 
FPTP

TP

U
 P =  

2. 
FNTP

TP

U
 R =  

 
F-score is a combined measure of precision and recall that facilitates the 
comparison of evaluation results. F-score can be defined as in Definition 8-4. 
Figure 8-2 illustrates examples of F-scores for certain precision-recall pairs. 
 

S A O(P,GS) Set 
s1 a1 a1 TP 

s2 a2 NULL FN 

s3 a3 a3 TP 

s4 a4 a4 TP 

s5 a5 p5≠ a5 FP 
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Definition 8-4. F-score. 

F-score = 
RP

PR

+
2  

0.75

0.00 0.67
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Figure 8-2. Precision-recall pairs with their corresponding F-scores. 
 

8.1.1 Phrase structure based metrics 
 

8.1.1.1 PARSEVAL 
 
Perhaps the most widely used parser evaluation metric is known as PARSEVAL 
(Black et al. 1991). It uses PS bracketings to compare the structures in a parser 

output and a treebank. For the evaluation, parser output (TPUFP) and the gold 

standard (TPUFN) are represented in bracketed string format. 

 
Example 8-2. Bracketing representation of the PS parse tree shown in Figure 3-2. 
Phrase boundaries are represented with brackets spanning an interval [i, j], where i 
indicates the index of the first and j the last word in the phrase. There are therefore 

five phrase boundaries in the sentence used as the example: [0,5], [0,1], [2,5], [3,5] 
and [4,5]. 

 
 
 
 
 

[S [NP [Det the][Noun ball]][ VP [Verb is][NP [Prep in][NP [Det the][Noun goal]]]]] 
 [0,1] [4,5] 

[3,5] 
[2,5] 

[0,5] 
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In PARSEVAL, precision and recall measures are operationalized on the basis of 

the brackets: |TP| is the number of bracket pairs for which the parser output and 
gold standard match. |FP| is the number of bracket pairs in which the analyses do 

not match. |FN| is defined as the number of the brackets in the gold standard for 
which the parser was unable to produce an analysis. While unlabeled PARSEVAL 

compares only the brackets, in labeled PARSEVAL two analyses match if and only 
if both the brackets and the labels (POS and syntactic tags) match. In addition to 
precision, recall and F-score, the number of crossing brackets is used as an 
evaluation measure. The number of crossing brackets is defined as the mean 

number of bracketed sequences in which the parser output overlaps with the gold 
standard structure. Figure 8-3 illustrates the idea of the crossing brackets measure. 

Example 8-2 shows an unlabeled PARSEVAL evaluation. 
 
 
 
 
 

Figure 8-3. Non-crossing and crossing brackets. The phrase boundaries [i, j] and 
[i’ , j’ ] are boundaries in the gold standard and the parser output respectively. Pair 

[i, j] [ i’, j’ ] is defined as a pair of crossing brackets if they overlap, that is, if i < i’  

≤ j < j’ .  

 
Example 8-2. An example of PARSEVAL measures. A is the gold standard 
structure and B the parser output (adapted from (Lin 1998)). 
 
 
 
 
 
 
 

8.1.1.2 Maximal projections of heads 
 

To eliminate some of the problems in PARSEVAL bracketing-based evaluation, 
Ringger et al. (2004) have proposed a method that they claim is suitable for 

evaluating and comparing both probabilistic (treebank) and rule-based (non-
treebank) parsers. Their idea is to concentrate on the aspects that are common to 
different types of parsers. The method is therefore directed at comparative 
evaluation. Instead of using bracketed structures, the authors apply maximal 

i                  i’            j                   j’    i        j i’      j’    i         i’ j’     j  

Crossing 

 
Non-crossing 

 
Non-crossing 

 

A) [[He [hit [the post]]] [while [[the all-star goalkeeper] [was [out [of [the goal]]]]]]] 

B) [He [[hit [the post]] [while [[the [[all-star] goalkeeper]] [was [out of [the goal]]]]]]] 

precision 
recall  
F-score 
crossing brackets  

= 75.0% (9/12) 
= 81.8% (9/11) 
= 78.3% 
= 1 pair 
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projections of heads (MPHs)65 to obtain a more suitable format for comparing 

parsers across frameworks. 
 

8.1.1.3 Leaf-ancestor metric 
 

Leaf-ancestor (LA) metric is based on evaluating the similarity of lineages of 
individual terminal elements in the parser output and the gold standard (Sampson 

(2000), Sampson & Babarczy (2002)). A lineage is the sequence of node labels for 
the nodes on the path from a terminal to the root. A left bracket is inserted in the 
lineage of a terminal element immediately before the label of the highest 

nonterminal beginning with that element. A right bracket is inserted in the lineage 
of a terminal element immediately after the label of the highest nonterminal 
ending with that element. 
 
The evaluation is carried out by comparing each word’s lineage by using the edit 

distance measure (Levenshtein 1966). Edit distance is defined as the minimum 
number of insert, delete and replace operations needed to transform one string into 
the other. While deletions and additions have the cost one, LA metric uses a 

modified edit distance measure in which the cost of replacing a node label is 
defined by a function that sets a value between 0…2 to each replacement. This 
reflects the fact that when two grammatical categories are entirely dissimilar, they 
actually count as two separate errors (namely, failing to recognize the right tag and 
falsely assigning another tag). However, when the categories are more or less 
similar, the lineages should be recognized as less far apart. They are then assigned 
value 1. A sentence-level LA measure is defined as the average of the LA values 
for the words in the sentence. 

 

                                              
65 Maximal projections are projections of a head that unite with the start symbol or with a non-
head daughter of a rule For example, in the structure [X’’ [specifier] [X’ [ X] [complement]]] X is 
the head of the phrase and X' and X'' projections of X. More specifically, the top node X'' is 
referred as the maximal projection and X’ as the intermediate projection of X. Unlabelled precision 
and recall are used as evaluation measures to further abstract away from differences between 
parser output formats. 
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Example 8-3. Leaf-ancestor metric. The analyses A and B are from the gold 

standard and the parser output respectively. The column “LA” gives the LA score 
for each word. The LA score for the whole sentence is 0.88. 

 

                                                          
 
 
 

 
 

8.1.2 Dependency-based metrics 
 
Several methods have been proposed that use D structures as the basis of 

evaluation instead of PS bracketings. In addition to the developers of D parsers, D-
based evaluation methods have been widely applied within the PCFG parsing 
research community (by Collins (1999), for example), and by developers of CCG 

parsers (such as Clark and Hockenmaier (2002a, 2002b)). In addition to the 
evaluation methods based on D treebanks and D output, several methods that are 
based on mapping or mixed D/PS representation have been proposed. Lin’s (1996, 
1998, 2003) model maps the treebank and parser output into D structures. The 
Relation Model of Srinivas et al. (1996, 1998) – referred to hereinafter as RM – 

aims at combining PS and D representations by adding D relations between 
phrasal constituent chunks. The GR evaluation scheme (Carroll et al. (1998, 
1999)) uses a corpus annotation scheme with GRs between heads and dependents. 

 

8.1.2.1 Pure dependency measures 
 
Table 8-1 summarizes the pure D evaluation measures66 that will be described in 
this section. 

                                              
66 The term “pure D evaluation” is used in this research to refer to the methods that are used for 
comparing D trees with one another – without using any mappings from other types of structures 

A LA  Word B 
N NP ] [ S  1.0 Liverpool N NP ] [ S 

V ] [ VP S  1.0 is V ] [ VP S 

V ] [ VP VP S   0.8 playing [ VP VP S 

ADV [ ADVP VP VP S ]  0.73 well VP VP S ] 

A) [S [NP [N Liverpool]] [VP [V is] [VP [V playing] [ADVP [ADV well]]]]]  

B) [S [NP [N Liverpool]] [VP [V is] [VP playing well]]] 
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Table 8-1. Evaluation measures based on D structures (adapted from Nivre & 

Scholz (2004)). All the measures are reported as percentages of the nodes or 
sentences that are correct. 

Name Measure Origins 

Unlabeled attachment score (UAS) 
Nodes that are assigned the correct 

head or no head if it is the root 
Eisner (1996), 

Collins et al. (1999) 

Labeled attachment score (LAS) 
Nodes that are assigned the correct 
head and D label or no head if it is 

the root 
Nivre et al. (2004) 

Dependency accuracy (DA) 
Non-root nodes that are assigned the 

correct head 

Root accuracy (RA) 
Sentences in which the root is 

recognized correctly 

Complete match (CM) 
Sentences whose unlabeled D 
structure is completely correct 

Yamada & 
Matsumoto (2003) 

 

Example 8-4. Pure dependency evaluation measures. A is the gold standard parse 

and B the parser output. The roots are denoted with the bold face font. For 
example, UAS is calculated as 6/7 because out of the total of seven word nodes, 
six of which have been assigned the same head (no head for the root) in both 

analyses. Only the word “him” has been assigned a wrong head. Only three of the 
labels match in the D links. LAS is therefore calculated as 3/7. In DA score the 
root is excluded and it is defined as 5/6. Although the root matches (RA = 1/1), the 
whole sentence has not been correctly analyzed (CM = 0/1). 

promisedA) Pele him     to

SUBJ OBJ AUX

XCOMP DOBJ

DET

promisedB) Pele

SUBJ
AUX

CCOMP OBJ

DETSUBJ

bring     the     ball

him     to bring     the     ball  

 
 
 
 

The Shared Task on Multilingual D Parsing at the 10th Conference on 
Computational Natural Language Learning (STMDP-CoNLL-X) (Buchholz & 
Marsi 2006, CoNLL-X Shared Task 2006) was the first evaluation to use standard 

                                                                                                                                  
(such as Lin’s model, which will be described in Section 8.1.2.2) or specific annotation format for 
the evaluation resources (such as in GR model in Section 8.1.2.4). 

UAS = 85.7% (6/7) 
LAS = 42.9% (3/7) 
DA = 83.3% (5/6) 
RA = 100% (1/1) 
CM = 0% (0/1) 
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metrics and test data for a wide range of D parsers, including parsers for languages 

other than English. 67 LAS was the official measure used for ranking the parsers. 
UAS was used for an additional measure for system comparison and error 

analysis. 
 

8.1.2.2 Lin’s mapping model 
 
As I have already noted in Section 3.1.3, PS trees can be mapped, with certain 
restrictions, into D trees. Lin (1996, 1998, 2003) has proposed an evaluation 

method based on PS/D mappings. The mapping algorithm is based on the one 
proposed by Magerman (1994). Lin (1998) applied the method to evaluate the D-

based MINIPAR parser on the SUSANNE corpus by first transforming the corpus 
from PS to D structures. A D relation in Lin’s model consists of a modifier, a head 
and an optional label indicating the type of relationship between these two.  
 
A D output or a mapped PS output is scored on the basis of either labeled or 
unlabeled D relations that classify each into one of the following four categories: 

(1) A “correct” word modifies the same word in the evaluation resource and parser 
output or else it does not modify any other words in either structure. (2) 

“Incorrect” words modify a different word in the parser output than in the gold 
standard. (3) If the word does not modify any word in the output, but does so in 
the gold standard, it is referred to as “missing”. (4) In the opposite case of a 

missing link in the gold standard parse, the modifiee is referred to as being 
“spurious”.  
 
Precision and recall are calculated over the D links. Precision measures the 
percentage of D links in the parser output that match the D link in the gold 

standard parse. Recall is defined as the proportion of the D links in the gold 
standard that match the parser output. Lin (1996, 1998, 2003) does not report F-
scores.  

 

                                              
67 The shared task in the 10th CoNLL provided test sets for D parsing in 13 languages. 
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Example 8-5. Lin’s D-based evaluation method. This example represents a 

labeled evaluation. The correct words are “Pele”, “promised”, “to”, “bring”, and 
“ball”. There is one incorrect word, “him”, and a missing word, “the”. 

A) Pele promised him    to     bring    the     ball   

SUBJ

XCOMP

OBJ AUX

DOBJ

DET

B) Pele promised him    to     bring    the     ball   

SUBJ

CCOMP

SUBJ
AUX

OBJ

 
 
 
 

8.1.2.3 The relation model 
 
The RM model (Srinivas et al. (1996, 1998)) is based on the idea that evaluation 
can be defined as measuring how well a parser can express a certain relation. 
Srinivas et al. (1998) propose two derivatives from this general model. In chunk-
based evaluation, the relation is the one between the words starting and ending the 
chunk. In the D-based evaluation, the relation is defined as “word x depends on 

word y”. 
 

These two models can be applied in parser evaluation in the following way. The 
parser outputs are flattened into chucks and the evaluation is first carried out by 
using these chunks. D-based evaluation is next used to check the correctness of the 
internal structure of the chunks. Evaluation is carried out on the basis of the links 
between these. The results are reported by using either labeled or unlabeled 
precision, recall and F-score measures. Srinivas et al. (1998) represent an 

evaluation in which the output from a TAG parser and PTB structures used as the 
gold standard are compared firstly on the basis of chunks, and, secondly, on the 

basis of dependencies between words. 
 

8.1.2.4 The grammatical relations metric 
 
The GR metric is based on the GRs annotation scheme that was introduced in 
Section 6.2.4 (Carroll et al. 1998, Briscoe & Carroll 2006). Two GRs are 
considered to match if the relation assigned by the parser is on the same level or – 
in the case of mod, sub and clausal relations – one level apart in the hierarchy. A 

clausal relation, for example, matches both xcomp and ccomp relations. 
Furthermore, the type slot in the mod, iobj and clausal relations can be unspecified 

Precision = 60.0% (3/5) 
Recall = 50.0% (3/6) 
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in the parser output. Recall and precision over GR structures are used as 

evaluation measures (Carroll et al. 1998). 
 

Example 8-6. An example of GR measures. A is the gold standard structure and B 
the parser output (adapted from Lin (1998)). Precision and recall are both 1.0 in 
this case, since the dobj and obj reltations and ncsbuj and subj relations are on 
adjacent levels in the GR hierarchy (see Figure 6-6). 
 
 

 
 

8.1.3 Analysis 
 
In this section I will offer an analysis of existing preciseness evaluation metrics on 
the basis of the methods and measures applied, the type of linguistic resources 
needed, and suitability for evaluating specific types of parsers. Table 8-2 
summarizes the properties of the preciseness evaluation methods mentioned 

above. 
 

                A 
(dobj playing well) 
(aux _ playing is) 
(ncsubj playing Liverpool _) 

                B 
(obj playing well) 
(aux _ playing is) 
(subj playing Liverpool _) 
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Table 8-2. Comparison of preciseness evaluation metrics described. The column 

headed “Basis” indicates whether the metric is based on either PS or D structures. 
The two columns below the heading “Aim” indicate whether the metric is aimed at 

evaluating PS or D parsers, or both. Column “P/R” indicates whether the metric 
uses recall and precision as the evaluation measures. Column “Other” lists the 
other evaluation measures used by the metric. The last column of the table 
indicates whether the method relies on some existing annotation scheme (e), and 
whether it uses its own scheme (o) or mappings between annotation and output 
schemes (m). 

Aim Measures 
Metric Basis 

PS D P/R Other 
Scheme 

Unlabeled PARSEVAL PS Yes No Yes e 

Labeled PARSEVAL PS Yes No Yes 

F-score, no. of 
crossing brackets e 

MPH PS Yes (Yes)* Yes 
No. of crossing 
brackets, no. of 

matching sentences 
m 

LA metric PS Yes (Yes)** No Edit distance e 

UAS, LAS, DR, CM, RA D No Yes No 
Percentage of 

correct words/D 
links 

e 

Lin’s model D Yes Yes Yes - m 

Relation Model D&PS Yes Yes Yes F-score o 

GR metric D Yes Yes Yes - o 

*Ringger et al. (2004) claim that the approach generalizes to D structures – a claim remains as yet 

untested in practice. **While Sampson and Babarczy (2002) claim that this metric could be used 
for evaluating D trees, no such evaluations have as yet been reported in the literature. 

 

8.1.3.1 PS-based evaluation 
 
One of the advantages of PARSEVAL is that the evaluation can be based on a 

relatively undetailed treebank. PARSEVAL also provides one with a means to 
compare parsers by using rather different types of PS output schemes. Several 
criticisms of PARSEVAL have nevertheless been documented. Srinivas et al. 

(1996, 1998) point out, firstly, that parsers generating detailed analyses are 
penalized by the PARSEVAL precision measure if the comparison is based on an 
undetailed treebank, and, secondly, that PARSEVAL is unsuitable for evaluating 
partial or D parsers. Lin (1998) also argues that a crossing brackets measure 
counts a single bracketing error more than once in some cases. PARSEVAL is 

most commonly combined with the PTB as the gold standard, and this may cause 
serious problems. Because the PTB trees are flat and have few brackets in them, 
the number of crossing brackets is likely to be low; the less structure is assigned to 

a sentence, the fewer are the possibilities for error. This makes it easier to obtain 
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high precision and recall scores. One can predict that attempt to generalize 

PARSEVAL to D structures would face serious problems. 
 

While the method proposed by Ringger et al. (2004) makes PARSEVAL-style 
evaluation suitable for a wider range of parsers, such an approach would not be 
without drawbacks. Firstly, in order to perform MPH evaluation, both the parsers 
to be evaluated and the evaluation resource need to have an annotation scheme 
that marks the heads. This is not true with, for example, the PTB. This means that 
the heads have to be automatically marked – a process that might introduce errors 

into the resultant structures. Secondly, as Ringger et al. themselves point out, this 
approach cannot be generalized to all kinds of structures, for example small 

clauses. Thirdly, although Ringger et al. claim that the approach generalizes to D 
structures, this claim remains as yet untested in practice. 
 
Sampson and Babarczy (2002) claim that the LA metric is better than PARSEVAL 
because it allows imperfect matches to be made between the parser output and the 
gold standard. Furthermore, LA accounts for the severity of the mismatch by 

applying the function that determines the replacement costs of each label pair. The 
LA metric is moreover better suited to locating parsing errors. While the LA 

metric is based on comparisons on the terminal level, PARSEVAL deals with 
global scores (bracket matches). LA assigns every terminal with a path to the root: 
this allows detailed error analyses to be carried out. Sampson and Babarczy 

suggest that LA could be used to identify configurations (particular words and 
structures) that are regularly associated with low scores. This would enable parser 
development to be focused on problematic areas. 
 

8.1.3.2 D-based evaluation 
 
One may justify the use of D-based evaluation schemes by pointing to the fact that 
semantic dependencies are embedded in the syntactic dependencies. One can 

therefore argue that the results of a D-based evaluation are more meaningful than 
those that rely on PSs. Buchholz and Marsi (2006) made the following observation 
on pure D evaluation measures based on the experiences of the STMDP-CoNLL-
X. Firstly, there is little difference in the ranking between the parsers that occur 
when one uses UAS or DA instead of LAS. Secondly, one can observe very little 

difference in scores or rankings when scoring is performed on all tokens 
(including punctuation) instead of only on word tokens.  
 

However, one needs to be cautious when one uses pure D evaluation methods. 
When evaluating her probabilistic CCG parser using LAS, for example, 
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Hockenmaier (2003) observed that the results were not directly comparable to the 

evaluation results of Collins’s PCFG; CCG categories encode subcategorization 
information and are more specific than those of Collin’s (Hockenmaier 2003).68 In 

addition to this, parsers use different sets of D types. Hockenmaier therefore 
argues that the scores based on unlabeled D relations are the only ones that can be 
compared across parsers that are based on different grammar formalisms.  
 
Lin’s precision measure is equivalent to the DA measure. The main advantage of 
Lin’s metric is his use of PS/D mappings: this makes it applicable to a wide range 

of parsers. The problem with Lin’s approach resembles the central problem of 
PARSEVAL: part of syntactic information is lost in the mapping, and some detail 

in the evaluation is also lost. Moreover, as I have already noted in Chapter 3, 
mapping from dependencies to PS structures is one-to-many: there are many 
possible trees that can be generated for a given D structure. Non-projective D 
structures can also not be mapped into single PS trees.  
 
Srinivas et al. (1996, 1998) claim that the RM model is suitable for inter-system 

comparisons. This model, however, remains untested in comparative evaluations. 
In addition to this, the details of the metric are rather vaguely represented by 

Srinivas et al. (1996, 1998). Why this approach should be preferred to other 
models based on D/PS mappings, is not entirely clear. The two most problematic 
parts of the evaluation scheme appear to be the definition and automatic 

identification of chunks – as well as the fact that both the evaluation resource and 
parser output in most cases need to be mapped onto the RM scheme. Because 
parsers do not produce a chunked output, these need to be introduced 
automatically. On the other hand, if a treebank used in evaluation is of the PS type, 
mappings need to be done so that the second, word-word based evaluation phase 

can be carried out. 
 
Evaluation using the GR scheme is in many ways similar to Lin’s method. The 

main difference is that the GR scheme defines a specific inventory of D relations. 
Because the relations are organized into a hierarchy which enables parsers using 
varying levels of detail in their output to be compared to a GR-annotated treebank. 
Using GR metric requires the parser to be evaluated to identify heads and 
dependents. The main disadvantage of the GR scheme is that it requires the 

construction of a custom-built test set. GRs also lack uniformity across languages 

                                              
68 In order to get a D link correct, a CCG parser needs to identify whether the dependent is an 
adjunct or a complement. A PCFG treebank parser does not need to make this distinction. 
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(Van Valin & LaPolla 1997). The relations and the hierarchy would consequently 

need to be modified for each language or group of languages.  
 

Both GR and Lin’s models compare favorably with PARSEVAL in their ability to 
provide detailed information about the preciseness of parsing. In the GR scheme, 
for example, precision and recall scores can be provided on the word level by 
using either groups of relation types or single relation types. 
 

8.1.3.3 Conclusion 
 

In conclusion, I make some recommendations about which of the evaluation 
metrics and measures would be best used for evaluating various types of parsers 
and suggest ways in which existing methods and measures might be improved. 

 
The LA metric is undoubtedly best for PS evaluation. Firstly, it allows for 
imperfect matches between the parser output and the gold standard annotation. 

This facilitates system comparisons and makes it possible to evaluate a wider 
range of PS parsers against a single gold standard resource. Secondly, because it is 
based on paths between the nodes in the parse tree, the LA metric offers error 
analysis and error locating capabilities. In addition therefore to providing 
information about the performance of a parser, it also provides directions for 

improving the system. 
 
The most important D-based word-level evaluation measures are UAS and LAS. 

LAS provides information about which D links are assigned completely correctly, 
and this, in the end, is the ultimate purpose of every D parser. While UAS is only 
concerned with the structure and not with the labels, it is better for comparing 
parsers, even when they use dissimilar tagsets. When this type of evaluation is 
accompanied by the use of an evaluation resource with a hierarchically organized 

tagset (as in the GR corpus and FiEval), it facilitates comparability between 
different systems. One should also report evaluation results separately for each 
relation/D type in order to allow for a detailed analysis of differences in the 

performance of various parsers.  
 
When a direct comparison of the preciseness figures of several parsers is not a 
concern and when a linguistic resource that is annotated with a scheme similar to 
the parser’s output scheme is available, it would be preferable to use that resource 

along with corresponding (PS or D) evaluation metrics. It is better to use D-based 
evaluation metrics for comparative preciseness evaluation when possible. This is 
because the results of a D-based evaluation are more meaningful than those that 
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rely on PSs because of the fact that semantic dependencies are embedded in the 

syntactic dependencies. Moreover, at least one of the output schemes in the 
majority of parsers contains a type of word-word dependency-based scheme (i.e. it 

is either a D output, or a GR output or a PAS output).  
 
It is interesting to note that many current evaluation metrics lack a sentence-level 
measure. Manning and Carpenter (1997) point out that what makes NLP hard is 
the fact that an NLP system has to make consecutive decisions correctly if it is to 
be successful. In order to parse a sentence correctly, a parser therefore needs to 

make a correct decision about each word as well as the sentence structure. The 
overall success rate in parsing a full sentence is thus the nth power of the 

individual decision success rates. In PARSEVAL, for example, precision, recall 
and crossing brackets measure success at the level of individual decisions – and 
not at the level of the sentence. This means that they are rather easy measures on 
which to do well. It may thus be argued that these measures miss those essential 
qualities that define a high-quality parser. 
 

Hence, in addition to word and PS nonterminal/D link -level analysis, which is 
much more useful than sentence-level measures for error-analysis, it is crucial to 

report the percentage of sentences that have been correctly parsed. With D-based 
evaluation, this can be done by using the CM measure proposed by Yamada and 
Matsumoto (2003), which was discussed in Section 8.1.2.1 above. In addition, it is 

reasonable to report labeled CM figures because this measure indicates the number 
of sentences for which there are exactly correct analyses. This, in the end, should 
be the main goal of preciseness in parsing. The LA metric defines a sentence level 
measure for PS evaluation, that calculates the proportion of sentences that have 
matching structures and labels in the gold standard and parser output. 
 

8.2 Coverage Evaluation and Error Mining 
 

The most straightforward way of evaluating the coverage of a parser is to parse a 

set of sentences and measure for which proportion of the sentences the parser is 
able to produce a parse. Coverage is defined as: 

FNFPTP

FPTP

UU

U
      (8-1) 

 
Van Noord (2004), and Sagot & de la Clergerie (2006), have proposed error 

mining methods in which the results of coverage evaluations are used for further 

analysis. The aim of this is specifically to locate deficiencies in the lexicon and the 
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grammar. The methods compare the sentences that the parser is able to analyze 

with those that it is unable to cover. Both methods are based on observing the 
frequencies of word n-grams. A word n-gram is either an individual word (n=1) or 

a sequence of words (n>1). The purpose of using word n-grams is to detect the 
words and sequences of words that make a parser fail to analyze a sentence. 
 
Example 8-7. The sets Gn, n={1, 2, 3} of word n-grams of the sentence 
“Liverpool is playing well.” 
 

 
 

 

8.2.1 Van Noord’s method 
 

The error-mining method suggested by Van Noord (2004) works in the following 
way. Let GS(S,A) be a gold standard and O(P,GS) output of a parser for the 

sentences in the gold standard. The parsability of n-gram q is calculated as 
follows: 
 
Definition 8-5. Parsability of n-gram q in Van Noord’s error mining method. 

Let T = ( mδδδ ,...,, 21 ) be a sequence of sentences. Let q be an n-gram. 

C(T,q) is the set of sentences in T that contain q: 

C(T, q)= [ ]{ }11  where,1... +−≤≤=−+ njqnjji ii δδ . 

The parsability of q is defined as 

 parsability(q)=
),(

),(

qFPTPC

qFNTPC

U

U
, 

where TP, FN and FP are sets of sentences as defined in Section 8.1. 
 
If an n-gram is to be considered normal, its parsability should be close to the 
overall coverage of the parser. A considerably lower parsability score indicates a 
problem in the lexicon or the grammar. Error mining is performed by using 
increasing n values, starting from 1.69 The result of the mining is reported as an n-
gram table, and is sorted according to the parsability scores and frequencies.  
 

                                              
69 When n is increased, only the n-grams that have lower parsability values than its sub n-grams 
(obtained with lower values of n) are considered (Van Noord (2004)). The purpose of this is to 
identify the most important n-gram and thus to reduce the number of redundant n-grams that are 
within each other. 

”Liverpool is playing well.” 
G1 = {“Liverpool”, “is”, “playing”, “well”} 

G2 = {“Liverpool is”, “is playing”, “playing well”} 
G3 = {“Liverpool is playing” , “ is playing well” }  
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8.2.2 Sagot and de la Clergerie’s method 
 
In contrast to Van Noord, Sagot and de la Clergerie (2006) base their error mining 
method (hereinafter referred to as the SC method) on observing the sentences that 
were not covered. Their aim is to use statistical modeling for finding the cause for 
the parsing failures. The SC method uses the term suspicious forms to refer to the 
kind of results that Van Noord’s method can detect. In addition to this, one of the 
capabilities of SC is to identify the cause of the failure in each uncovered 
sentence. This word is then called the main suspect.  
 
Sagot and de la Clergerie have devised several ways of extending this basic model. 
For example, they have developed a method for providing an estimate of the 
benefit that might accrue from the correction of the corresponding error in the 
parser for each suspicious form. This process allows parser developers the option 
of identifying the most critical directions for further development. 
 

8.2.3 Analysis 
 
I shall now analyze the two error mining methods by comparing their similarities 
and differences, their respective degrees of usability, and the information that they 
are able to provide. Both these methods are similar in their aim: they have been 
developed to detect errors and deficiencies in the lexicon and the grammar of a 
parser. The main advantage of both approaches is that no annotated resource is 
needed for carrying out error detection. Since both these methods are based on 
using unannotated texts, one can apply huge collections of text for mining. 
 
The main deficiency of the SC method is that it is applied only to single words and 
word bi-grams. This limits the errors that are detectable by using this method 
mostly to problems in the lexicon. Van Noord’s method has been applied with n 
values from 1 to 5, and this allows for the observation of a wider array of error 
types. While Van Noord’s method does not analyze uncovered sentences directly 
at all, the SC method bases its analysis solely on these sentences. In addition to 
providing information about the items that most frequently cause problems, the SC 
method is able to provide estimates of the main causes of parse failure for each of 
the sentences that have not been covered. But Van Noord’s method can only 
provide the former kind of information. Another advantage of the SC method is 
that it offers a graphic tool for viewing mining results. 
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8.3 Robustness Evaluation 
 
A parser’s ability to produce an error-free or only a slightly altered output from 
input sentences containing errors is referred to as robustness. A robust parser is 
able to provide as complete and correct an analysis of the input sentence as is 
possible under the circumstances. Foster (2004) and Biggert et al. (2003, 2005) 
have proposed metrics for evaluating the extent to which the parser is able to parse 
noisy inputs. 
 

8.3.1 Evaluation based on manually constructed examples 
 
Foster (2004) has proposed a robustness evaluation method based on the corpus of 
ungrammatical sentences discussed in Section 6.2.4. Her idea is that the highest 
similarity score between the parse for an ungrammatical sentence and any of its 
grammatical counterparts is chosen for each sentence.70 This may be formally 
expressed as follows. Let U and G be the set of analyses for the ungrammatical 
and grammatical sentences respectively. It is possible that there may be more than 
one grammatical (corrected) sentence corresponding to each ungrammatical 
sentence. Thus, each element g∈G is the set A={1,…,n} of analyses for the 
grammatical sentences. The sentences are compared as follows: 
 
 
 
 
 
 
 
 
 
 

Figure 8-4. Pseudocode of the Foster’s robustness evaluation method. 
 
The robustness of a parser can then be defined as the precision and recall it 
displays over all of the test sentences. Foster (2004) reports on an evaluation of a 
state-of-the-art probabilistic parser by Charniak (2000). This parser was able to 
produce an exactly correct parse for one third of the ungrammatical sentences. For 
agreement errors and errors caused by the use of a wrong preposition, the accuracy 

                                              
70 If, for example, an ungrammatical sentence has two possible corrections, and if its parse is 90% 
similar to the first correction's parse and 80% similar to the second correction's parse, it is 
allocated a score of 90%. 

GetSentenceScores(U, G) 

 sentScores←∅  

 FOR i ← 1 TO |U| DO 

  sim←∅  

  u←Ui 
  FOR j ← 1 TO |Gi| DO 
   g←Gij 

   sim←simU CalculateLabeledPARSEVAL(u,g) 

  sentScores←sentScoresU GetMax(sim) 

RETURN sentScores 
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rate was over 70%. The most problematic type of error, which reduced the 
accuracy rate to only 20%, was one erroneous word with a POS category than was 
different from the original correct one. It is not surprising that similar behavior 
was observed on sentences with more than one error.  
 

8.3.2 An unsupervised robustness evaluation method 
 
Bigert et al. (2003, 2005) deliberately constructed sentences that contained errors 
for the purpose of evaluating robustness by using an automatic tool that simulates 
naturally occurring typing errors and so introduces spelling errors into input 
sentences. This automated introduction of errors enabled the researchers to 
undertake controlled testing of the effect of increased error rates on outputs. The 
evaluation was conducted in the following way. Firstly, the parser to be evaluated 
was given an error-free text to parse. Secondly, the parser was given ill-formed 
input texts to parse. Finally, the results obtained from the first and second stages 
were compared. The degradation of a parser’s output was then measured by 
comparing the parser’s preciseness on error-free texts to its preciseness on ill-
formed inputs. 
 
The procedure described above was repeated for several levels of distortion. The 
lower the level of degradation is, the more robust is the parser in the face of ill-
formed input. Bigert et al. conducted these experiments at error levels of 0%, 1%, 
2%, 5%, 10%, and 20% respectively. They iterated the procedure several times 
and calculated the results as the average of the test runs. The preciseness of a 
robust parser was expected to deteriorate as much or less than the level of errors 
introduced. 
 

8.3.3 Analysis 
 
I analyzed the two robustness evaluation methods on the basis of the type of 
information they can provide and on the type of resources that are needed for 
carrying out evaluations. While Bigert et al.’s measure is based on the overall 
preciseness on a certain error-level, Foster’s measure provides sentence-level 
figures on the similarity of the parses returned for the grammatical and 
ungrammatical sentences. This information can be used for error analysis. 
 
Both these methods base their evaluations on unannotated texts. This renders them 
applicable to a wide range of parsers without any further need for any 
modifications to the evaluation resource or for devising mapping algorithms 
between parser output and annotation schemes. Another advantage of the method 
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of Bigert et al. is that it does not require any human intervention for constructing 
the evaluation resource. The only prerequisite is a set of unannotated sentences 
and an estimate of a parser’s preciseness on error-free text. Foster’s method, by 
contrast, relies on manually constructed test sentences. Bigert et al.’s tools, 
however, have only been applied to Swedish. While Foster’s method has been 
applied to a wide variety of grammatical errors, Bigert et al. have only reported 
experiments on spelling errors. It nevertheless appears to be possible to generalize 
the method to other types of errors. 
 

8.4 Efficiency Evaluation 
 
Few studies have been undertaken to compare the efficiency of parsing algorithms 
on the basis of parse times and the effects of different grammars. I have already 
described one of the rare works that uses common grammars and test data, that of 
Van Noord (1997), in Section 4.5.3. The problem with experiments of this kind is, 
however, that when they are carried out with different machines and when the 
algorithms are implemented for different languages, comparisons between studies 
become problematic. In the following section, I describe several methods 
suggested for resolving these difficulties. 
 

8.4.1 Heap- and event-based measures 
 
Carballo and Charniak (1998) have used the number of edges that have popped off 
the agenda of a chart parser71 to measure efficiency in probabilistic parsing. Roark 
and Charniak (2000) propose a related measure, based on events considered, that 
is applicable to a wider range of parsing approaches. It measures the number of 
events for which a probability must be calculated. A search or pruning technique is 
more efficient than others if it reduces the number of events that must be 
considered.  
 
Carballo and Charniak (1998) argue that their efficiency score cannot be 
artificially reduced through optimization. They claim, however, that the measure is 
general enough to cover different search and pruning techniques, and that it is 
independent of the execution environment and – to a certain extent – independent 
also of the implementation language. Carballo and Charniak (1998), and Roark 
and Charniak (2000), argue that such a measure enables parsing efficiency to be 

                                              
71 In addition to the chart, a chart parser has another data structure. It is the agenda that contains 
the items yet to be recognized. The data is recorded by using edges that contain information such 
as the head of the current item and the position of the word in the sentence. When an edge is 
placed onto the chart, it is said to be “popped off” the agenda. 
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compared at the algorithmic level without any attention to the low-level 
optimization that has been performed. However, they also point out that some 
significant part of a parser’s function may be disconnected from the heap 
operations. 
 

8.4.2 Moore’s method 
 
Moore’s (2000) method is based on using common grammars, test data and 
standard implementations of reference algorithms in all programming languages of 
interest. The logic behind this is that the efficiency of an algorithm can be reported 
relative to the speed of this reference parser. This factors out the influences of 
different programming languages and computing platforms. 
 
In contrast to Charniak et al.’s (Carballo & Charniak 1998, Roark & Charniak 
2000) experiments, Moore evaluated non-probabilistic algorithms. His method 
works in the following way. Firstly, a set of grammars, a test set and reference 
parser implementations72 in the most commonly used programming languages, are 
provided. Secondly, the evaluator parses the test sentences on one machine with 
his/her parser and the reference parser is implemented in the same programming 
language. Thirdly, efficiency is measured as the percentage of the execution time 
of the parser being evaluated over the time recorded for the reference parser.  
 

8.4.3 Evaluation based on strongly equivalent grammars 
 
Yoshinaga et al. (2003) describe a method based on the use of strongly equivalent 
grammars obtained by grammar conversion. They represent an algorithm for 
converting LTAGs to strongly equivalent HPSG grammars and demonstrate an 
evaluation on manually constructed and automatically induced TAGs and an 
HPSG. The authors claim that grammar conversion abstracts away from the 
surface differences between grammar formalisms, and this means that one can 
gain a deeper insight into generic parsing techniques and share techniques that 
have been developed for different grammar formalisms.  
 

                                              
72 The CYK algorithm could, for example, be implemented with maximum efficiency in C and 
Lisp. The source code should be made available so that researchers will be able to examine and 
improve the implementation without changing the basic algorithm (Moore 2000). 
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8.4.4 Analysis 
 
While the observation of the running times of parsers is well-suited to monitoring 
the progress of a single parser, such a method does not allow for making reliable 
comparisons with other systems unless the same grammars and test sentences are 
used and unless it is possible to relate the parse times obtained across different 
implementation languages and platforms (such as Linux, Windows and SunOS).  
 
Moore (2000) points out that Roark and Charniak (2000) have applied the events 
considered measure to a best-first parser and to a beam-search-based parser. 
Although these parsers differ in some respects, they also have a number of 
attributes in common. This makes it easier for researchers to identify a common 
measure for comparing their efficiency. Moore further claims that there are several 
ways in which the number of events that are being considered can fail to correlate 
with the parse time. The metric, for example, does not take into account the effort 
needed to compute the probabilistic models. The measure does not take into 
consideration the pruning phase, which may be one of the most time-consuming 
tasks.  
 
Moore’s (2000) experiments showed that the number of chart edges do in fact 
often fail to predict the running time of parsers correctly. This led him to conclude 
that it is necessary rather to measure the actual parse times. Moore’s method does 
not address Roark and Charniak’s search for a metric that is insensitive to different 
degrees of optimization. In fact, when one wants to compare different parsing 
algorithms, one needs to restrict oneself to a comparison of implementations that 
are as similar as possible in that regard.  
 
Since the outputs of strongly equivalent grammars are equivalent, the method 
proposed by Yoshinaga et al. (2003) allows meaningful comparisons to be carried 
out among parsers for different grammar formalisms regardless of their surface 
differences. This method therefore seems to offer the ultimate solution to the 
problem of comparing the efficiencies of parsing systems. Where mappings 
between grammars exist, that is clearly the case. The problem is similar to the 
difficulties that one encounters when creating mappings between treebanks: such 
algorithms are difficult, and in many cases impossible, to devise. Where mappings 
do exist, this method is valuable for comparing the effects of specific parsing 
approaches, filtering mechanisms, and so on.  
 
I argue that a clear separation should be maintained between the following two 
notions of efficiency. The first one focuses on efficiency in parsing algorithms and 
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the parsability of grammar formalisms. This type of evaluation is of the greatest 
use to developers of parsing algorithms. The second one focuses on parsing times. 
NLP practitioners are interested in practical differences in the efficiency of 
parsers, i.e. in parsing times. An orientation towards either of the types of 
efficiency should also affect the choice of metrics and the measures applied. The 
methods of the type that Carballo and Charniak (1998), and Roark and Charniak 
(2000), have proposed are useful for comparing the efficiency of parsing 
algorithms in those cases where the algorithms are sufficiently similar. The 
method proposed by Yoshinaga et al. (2003) is especially useful for comparing the 
parsability of grammar formalisms. But such methods are only of limited use to 
NLP practitioners who want to compare actual parsing times. In order to do this, it 
is best to have the actual parsing times measured on standardized machine 
configurations.  
 

8.5 Evaluation Tools 
 
There are few freely available parser evaluation tools. Most of the tools are 
constructed for preciseness evaluation, and they use a single evaluation metric. I 
shall discuss these tools in this section.  
 
Evalb is a freely available bracket-scoring program that reports the PARSEVAL 
measures precision, recall, and the number of crossing brackets (Sekine & Collins 
2006). It also reports tagging accuracy as the percentage of the POS tags correctly 
assigned. This program takes the gold standard and parser output files as the 
inputs, and reports the scores for each sentence separately by printing them to the 
standard output. Randomized Parsing Evaluation Comparator by Bikel (2006) is a 
statistical significance tester for Evalb outputs. When parser evaluation is 
performed repeatedly on the same data and materials, it is important to know if the 
improvements in the preciseness are statistically significant. Bikel’s Perl script 
takes outputs from two separate Evalb evaluations as input, and calculates whether 
the differences in recall and precision are statistically significant or not. 
 
The LA metric has been implemented in C (Sampson & Higgins 2006). The 
program takes two input files, one of which consists of parser output and the other 
of which consists of gold standard analyses. The output consists of a preciseness 
figure for each word and the whole parse tree. If one wants to make a change to 
the partial match function used in node label replacements, one needs to modify 
the source code. 
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The creators of STMDP-CoNNL-X released an evaluation script for the task 
(Buchholz & Marsi 2006). It is a Perl implementation of the three pure D 
evaluation measures (UAS, LAS and LA) used in the task, and is available on-line 
(CoNLL-X Shared Task 2006). The user can choose whether to use punctuation in 
evaluation or whether to base it only on the word tokens. This tool also reports 
error analysis statistics: the precision and recall figures for D relations, distance 
figures for heads and dependents and a list of frame confusions.73 
 
Trnstree is Lin’s C++ implementation of his preciseness evaluation metric, and it 
can translate SUSANNE structures into D trees and perform evaluations on those 
(Lin 1999). Since the tool’s scripting language allows one to define mapping rules 
between annotation and output schemes, this makes it usable for treebanks other 
than SUSANNE. In spite of this, no such use has been reported in the literature. 
The tool reports precision and recall figures over the D structures. 
 
Carroll’s (2006) GRAMRELEVAL is a Lisp-implemented evaluation tool for the 
GR metric. The tool takes as input the GR corpus and the parser output and 
calculates precision and recall measures. The input consists of four files: a 
lemmatized word file, a file with the input sentences numbered, and files for gold 
standard and parser output GRs respectively. The system outputs precision, recall 
and an F-score for each GR and an overall figure over all the relations. It also 
gives a confusion matrix over the GR types for further error analysis. 
 
The HPSG community uses the term competence and performance profiling for a 
structured snapshot of the parser status at a certain development point (Oepen & 
Flickinger 1998, Oepen & Callmeier 2000, Oepen & Carroll 2000). [incr tsdb()] is 
a software package for producing, maintaining, and inspecting such profiles. The 
tool has a graphic user interface and functions for profile analysis and comparison. 
It is also able to store profiles in a database for later use. This tool is suitable for 
comparing a parser’s performance with earlier results and between various 
parameter settings. Approximately 100 attributes are recorded in a profile that 
consists of information about the system setup and parameters, the coverage (parse 
trees per reading, the number of analyses, etc.), ambiguity and resource 
consumption (the use of memory and time). 
 
AutoEval and Missplel (Bigert 2006) are robustness evaluation tools that were 
used in the evaluations reported by Bigert et al. (2003, 2005). AutoEval has been 

                                              
73 A frame is a list of the D relations of a token and the relations of all its children. Frame 
confusion occurs when the gold standard and the parser output frame are not identical. 
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designed to simplify the gathering, processing and counting of the kind of data 
often involved in NLP evaluation tasks. It includes a script language for describing 
the evaluation task that will be carried out. It is also able to store the data from test 
runs. While Missplel is a tool that introduces human-like spelling errors into text, 
it is trained only for Swedish data. 
 
Table 8-3 summarizes the main characteristics of the evaluation tools introduced 
above. 
 
Table 8-3. Evaluation tools. KEY: P = precision; R = recall. 

Tool Type Metrics Measures 
Evalb Preciseness PARSEVAL P, R, no. of crossing brackets 

Randomized Parsing 

Evaluation 

Comparator 

Significance 
tester for 

Evalb 

Comparison between R 
and P of two Evalb runs 

p-value 

LA C implementation Preciseness LA LA word and sentence level 

STMDP-CoNNL-X 

evaluation script 
Preciseness Pure D UAS, LAS, LA 

Trnstree Preciseness Lin’s mapping based P, R, F-score 

GRAMRELEVAL Preciseness GR scheme P, R, F-score 

[incr tsdb()] 
Profiling tool 

for HPSG 
parsers 

Coverage, efficiency 

Items covered, time and 
memory consumption, the 
number of chart edges + 

several others 

AutoEval 
General NLP 

evaluation 
Definable by the script 

language 
P, R, F-score 

Missplel 
Error 

induction 
- - 

 
Most of the existing evaluation tools are for preciseness evaluation and they 
implement a single evaluation method. AutoEval and [incr tsdb()] are the only 
tools that take a more broad perspective on evaluation. The advantage of AutoEval 
is its flexibility: the user can define an evaluation task by using the script 
language. However, AutoEval has only been used in the robustness evaluations 
reported by Biggert et al. (2003, 2005). While [incr tsdb()] implements a set of 
evaluation methods and measures, it is designed for evaluating only UG parsers 
and has been applied to parsers using HPSG. The tool has a graphic user interface 
for making browsing and the interpretation of results easier. The system, however, 
offers only a limited ability to make inter-system comparisons. 
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8.6 Conclusion 
 
In conclusion I would like to make the following observations. Firstly, there is a 
need for a framework that defines the criteria for evaluating parsers and that 
establishes a coherent set of evaluation metrics and measures for each criterion. 
The evaluation methods should be based either on current best practices or their 
improved versions. New methods and measures should be devised for those 
criteria for which no suitable methods and measures are currently available. 
Secondly, it is necessary to define the interaction between the different aspects of 
parsers’ performance. Since current evaluation methods focus on a single aspect, 
namely the preciseness, they are deficient in interactions of this kind. It is 
nevertheless clear that undergeneration, overgeneration and robustness, for 
example, are tightly connected (this point was discussed in Section 5.1.2). Thirdly, 
the greatest challenge in comparative evaluation is the integration of the level of 
detail in parser outputs. It is necessary to include a measure of this kind in the 
evaluation framework that is devised. Fourthly, what are needed are software tools 
for carrying out evaluations – especially the kind of tools that offer several types 
of evaluation metrics and measures and that also support several annotation and 
output schemes. 
 



 

168  

 



 

169  

9 FEPa – A Framework for Evaluating Parsers 
 
As described in Chapter 8, existing evaluation methods focus on one single aspect 
of parser performance. While each approach to parsing has distinctive strengths 
and weaknesses and the structure and detail of parser outputs varies, it becomes 
obvious that a single scalar value cannot fully or comprehensively reflect the 
quality of a particular parser. It is for this reason that more sophisticated and fine-
grained methods are needed. 
 
The Framework for Evaluating Parsers (FEPa) that I describe in this chapter 
focuses on intrinsic evaluation and provides useful information for parser 
developers. My purpose is to provide a fuller picture of a parser than other existing 
methods are able to do. The goal of FEPa is to provide a framework for practical 
evaluations of parser performance and to define a set of measures for evaluating 
parsers. FEPa can be used, moreover, for comparing parsers based on several 
criteria. 
 
This chapter is organized in the following way. Section 9.1 describes the metrics 
and measures applied in the FEPa framework. Section 9.2 is concerned with the 
types of linguistic resources that are needed for carrying out evaluations with such 
a framework. Section 9.3 concludes the chapter with some closing remarks. 
 

9.1 The Framework 
 
An evaluation framework needs to be able to address the following five questions: 

1. Purpose: What is the purpose of the evaluation? Purpose in this context 
would typically be defined by what the user intends to do with the 
evaluation results. One might ask, for example, whether the results will be 
used by parser developers or by NLP system developers who are trying to 
select a suitable parser. 

2. Criteria: What is being measured? Evaluation criteria define the set of 
characteristics of the system that is being evaluated. PARSEVAL, for 
example, focuses on the single criterion of preciseness. 

3. Metrics: What are the means that one uses to observe the performance of a 
system in terms of each of the criteria? A metric is a system of related 
measures that facilitates the quantification of assessing a criterion. The 
PARSEVAL metric, for example, is based on a comparison of bracketed 
tree structures. 
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4. Measures: How are the results reported? A measure is the way in which the 
results of an evaluation are quantified when one uses a specific metric. 
Measures can be used for monitoring the progress of a particular parser and 

for comparing system performances. Precision and recall, for example, are 

used as the measures of preciseness in PARSEVAL. 
5. Materials: What kinds of resources (i.e. software tools, linguistic 

resources) are used for evaluation? PARSEVAL evaluations, for example, 
are based on a treebank – often the PTB. The EVALB tool is usually used 
for PARSEVAL evaluations. 

 

9.1.1 Purpose and criteria for parser evaluation 
 
There are two main reasons why parsers need to be evaluated. The first reason is 
that evaluations give parser developers the information they need to guide their 
work. There are two separate kinds of developers: grammar writers and parsing 
algorithm developers, and they both have particular evaluation needs. The second 
reason is that evaluation provides NLP system developers with information about 
the relative performances of different parsing systems. 
 
The evaluation criteria in FEPa are preciseness, coverage, robustness, efficiency, 
and subtlety. The evaluation process for each of these criteria consists of selecting 
the resources for evaluation, parsing selected texts with the parsers to be 
evaluated, and performing the calculations that are needed to measure their 
performances in terms of a given criterion. Distinctive metrics and measures are 
needed for each criterion. The evaluation criterion used will obviously also affect 
the choice of the linguistic resources that will be utilized. When the results of the 
evaluations undertaken in terms of the five criteria are combined into performance 
profiles for parsers, those parsers can then be compared from several different 
points of view. In the following five sections I will introduce each of these criteria 
in detail and describe the metrics and measures for observing parsers’ performance 
in terms of each of them. 
 

9.1.2 Preciseness 
 
Preciseness is the most important evaluation criteria for parsers: a parser that 
cannot produce correct analyses is not much of a use. Firstly, a preciseness 
evaluation method should measure the parser’s preciseness in assigning syntactic 
tags. Secondly, if a parser performs a morphological analysis, the preciseness of 
morphological tagging should also be measured. Thirdly, since the tags cannot be 
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correctly assigned if segmentation has failed, the preciseness of word and sentence 
segmentation will also obviously be indirectly assessed. Apart from its ability to 
define the preciseness of a parser, this kind of evaluation is also useful for 
producing error analyses. Detailed information on the preciseness of a parser in 
assigning certain tags can, for example, be provided.  
 
I concluded on the basis of the results of the analysis described in Section 8.1.3.3 
that FEPa should apply the following evaluation methods. In D-based evaluation, 
LAS and labeled CM should be applied for intrinsic evaluation and for a 
comparison of parsers whose tagsets match one another. UAS and CM need to be 
used for comparing systems in those cases where output schemes do not match. 
For PS-based evaluation FEPa uses the LA metric, because of its many desirable 
characteristics described in Chapter 8. D-based evaluation is the preferred type for 
comparative evaluation where applicable.  
 

9.1.3 Coverage 
 
The concept of coverage has two meanings (Prasad & Sarkar 2000). In the first 
place, grammatical coverage refers to a parser’s ability to cope with different 
linguistic phenomena. Parsing coverage, by contrast, measures the proportion of 
naturally occurring, free-text for which a parser is able to produce a full, 
unfragmented parse. I further divide parsing coverage into categories of genre 
coverage based on different types of text such as prose, newspaper, law, financial, 
religious, and so on. This allows one, for example, to measure the generalizability 
of a parsing approach over text genres. I use the term generalizability to refer to a 
parser’s ability to analyze texts from diverse genres. 
 
The results of grammatical coverage evaluation can be reported by listing the 
types of grammatical phenomena covered and not covered. This kind of 
information can be especially useful for grammar developers. Parsing coverage 
can be measured as the percentage of input sentences that a parser is able to assign 
a complete, unfragmented parse.74 No annotated text is needed for performing this 
type of evaluation. While results obtained in this way are comparable across 
parsers, the detail in each parser output should be taken into consideration in order 
to assure the fairness in this type of evaluation. 
 

                                              
74 Note that a more strict definition of parsing coverage (namely, the proportion of sentences 
covered correctly) is equivalent to sentence-level preciseness evaluation. 
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On the one hand, one can argue that coverage alone constitutes a rather weak 
measure of parser performance. An obvious problem that arises from measuring 
coverage alone is that a parser that returns undetailed and flat analyses for every 
sentence will easily obtain high coverage scores, whereas a parser that outputs 
detailed analyses will suffer in covering all the input sentences. Another 
consideration is that one may regard preciseness and coverage as conflicting 
requirements for a parser. While increasing the preciseness of the grammar often 
causes its coverage to decrease, the addition of more constraints to the grammar 
will cause some of the sentences to be rejected even if they are acceptable to users 
of the language. In contrast, a loosening of the constraints will allow more 
sentences be parsed. While this will increase coverage, it can simultaneously cause 
overgeneration, problems with disambiguation and decreased preciseness (see 
Sections 5.1.2 and 5.1.3). 
 
On the other hand, the points that I have raised above confirm that there is a strong 
relationship between coverage and preciseness. This implies that coverage can be 
used as an indirect measure of preciseness and generalizability. The aim of 
syntactic parsers is to analyze whole sentences (and not just fragments such as 
constituents/D links) precisely. The connection between coverage and preciseness 
is clear in the case of sentence-level preciseness evaluations.75 One may define this 
connection by saying that a sentence that cannot be fully analyzed cannot have a 
complete match with the correct structure. Coverage can consequently be used an 
indirect measure of preciseness and can also, for example, be utilized for 
measuring the generalizability of a parser. Preciseness and subtlety, however, have 
to be taken into consideration while performing such an evaluation. 
 

9.1.4 Robustness 
 
A robust parser is one that is able to recover from various kinds of exceptional 
inputs while parsing – and not crash in the process. A robust parser is able to 
provide a complete and correct analysis for a noisy input sentence. This is the 
underlying assumption of the two existing robustness evaluation methods 
introduced in Chapter 8. A robust parser, moreover, should perform in a coherent 
way when faced with increasing levels of noise. I accept the terminology 
suggested by Biggert et al. (2003, 2005) in this matter, and refer to this property as 
degradation. Secondly, robustness is connected to stability. Stability means that a 
system will not crash while attempting to parse given inputs. 

                                              
75 The CM measure, for example, uses the percentage of sentences whose unlabeled D structure is 
completely correct to evaluate the sentence-level preciseness. 
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FEPa makes the simplifying assumption, as do Bigert et al. (2005), that a parser is 
robust if it is able to produce a similar analysis for a correct sentence and a noisy 
version of the same sentence.76 The assumption behind this is that if a parser is 
able to do this, it will also be able to perform in a robust way when it is confronted 
by noisy inputs. In order to measure the degradation of a parser, one needs a 
corpus of parallel correct and erroneous sentences. One can measure the stability 
of a parser by observing the number of times that a parser fails to parse or crashes 
while attempting to parse input sentences. 
 
Robustness evaluations are carried out in FEPa in the following way. Firstly, the 
correct sentences (CSe) are parsed. Secondly, the noisy sentences (NSe), each 
representing an error-level e, are parsed. Thirdly, the analyses produced for each 
sentence in CSe and its corresponding noisy sentence in NSe, are compared. 
Finally, the performance is measured by using two distinct evaluation measures. 
The first evaluation measure is the percentage of sentences for which a parser 
produced exactly the same structure for both the correct and noisy input sentence. 
I refer to this measure as an unlabeled robustness score (UR score). The second 
measure, labeled robustness score (LR score), is stricter: it accepts an analysis 
only if the two structures are the same and if, in addition, the labels on syntactic 
categories (GRs, dependencies) match.77 The UR and LR scores are defined in the 
following way: 
 

Definition 9-1. The structure and labels of a syntactic analysis. 
Let X be an analysis for sentence s that consists of a sequence of 

grammatical structures x∈X (i.e. bracket pairs in a PS tree or D links in a D 

tree) and a label (i.e. tag) for each x. 
1. Structure(X) denotes the sequence of grammatical structures in X. 
2. Labels(X) denotes the sequence of labels assigned to each x∈X. 

 

                                              
76 Since some parsers are designed to check grammaticality of input sentences, their returning of a 
“failure to parse” in response to an ungrammatical sentence is (for them) a correct result. This 
metric is not applicable to such systems. In such cases, one could use the proportion of ill-formed 
sentences that the parser accepts as a measure of robustness. If one defines grammar checker to be 
a parser that locates errors in input sentences and corrects them, robustness can be defined as the 
proportion of noisy sentences that the system is able to correct so that it matches the original 
sentence, and in addition, is able to produce a parse to the corrected sentence. 
77 For example, the introduction of a single misspelling into a sentence often results in the type of 
the D link associated with the misspelled word to be altered. 
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Definition 9-2. Unlabeled and labeled similarity of two analyses. 
Let X and Y be syntactic analyses. 
1. Unlabeled similarity is defined as 

ULSim(X,Y)=




=
≠

)()(,1

)()(,0

YstructureXstructure

YstructureXstructure
. 

I.e. the two analyses match in unlabeled similarity if every structure in the 
analyses is similar. 
2. Labeled similarity is defined as 

LSim(X,Y)=

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otherwise
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I.e. the two analyses match in labeled similarity if their structures are 
similar and if, in addition, the labels assigned to each structure match. 

 
Definition 9-3. Unlabeled and labeled robustness score. 

Let CS=(s1,s2,…,sn) be the sequence of correct sentences. Then P(CS) is the 
sequence of analyses assigned to these sentences by parser P. Let 
NS=(r1,r2,…,rn) denote the sequence of noisy sentences that correspond to 
the correct sentences CS. P(NS) is the set of analyses assigned by a parser 
to sentences NS. 

The UR score is defined as 
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The LR score is defined as 
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It is quite clear that as the level of noise in the inputs increases, the performance of 
a system degrades correspondingly. The extent to which this occurs, referred to as 
degradation, can be measured by increasing the number of errors in the noisy input 
sentences and then observing the effect that this will have on its performance. 
 

9.1.5 Efficiency 
 
The FEPa framework is restricted to the type of efficiency defined in Section 
8.4.4, namely, the one based on the measurement of a parser’s practical efficiency 
in terms of the time and space spent in parsing a specific test set. This kind of 
efficiency is the most easily measurable and comparable of the five criteria in 
FEPa. In practical terms, the efficiency of a parser can be measured by observing 
the time and space it takes for a parser to analyze a sentence. 
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The most straightforward method for empirically evaluating the efficiency of a 
parser (described in detail in Chapter 8) is to record the time that the parser takes 
to parse a set of test sentences. This is exactly what FEPa does. Efficiency 
evaluations are carried out in the following way. Firstly, the same corpus of text is 
parsed with the parsers that are being evaluated in the same computer 
environment. Secondly, one records the parse times for each of the parsers. When 
one uses the same input texts and identical machines and environments, one can 
compare the parsers’ performances. The efficiency figures thus obtained can be 
analyzed in terms of sentence length to provide insight into the time and space 
complexity of the parser. A parser’s efficiency in analyzing ill-formed input can 
also offer insight into the way in which the robustness mechanisms of the system 
are implemented. 
 

9.1.6 Subtlety 
 
I use the term subtlety78 in reference to the level of detail in a parser’s output. 
Subtlety refers to both the levels of description in the output (syntax, semantics, 
etc.) as well as to the complexity of the description for each level. Some parsers 
leave some of the ambiguities in the output unresolved because they either return 
multiple analyses for an input sentence or because they leave some words 
underspecified. While the amount of desired detail depends on the application in 

which a parser is to be applied, ambiguity and underspecification are regarded as 
negative properties in a parser.79  
 
Subtlety has two uses in evaluation. In earlier discussion (Chapter 3), I noted that 
varying levels of detail in parser output are needed for different NLP tasks. NLP 
developers who are searching for a suitable parser for their application need 
information about the type and richness of syntactic description they will get in 
parser outputs. Subtlety can be applied, moreover, as a factor for the fair 
measurement and therefore comparison of systems that produce different levels of 
richness in their outputs. It is obvious that the level of detail in the analysis is 
proportionate to the number of decisions that are made during parsing. This makes 
it more difficult and time-consuming to assign a correct analysis which is rich in 

                                              
78 I have avoided using the term “delicacy” – coined by Atwell (1996) – because it might suggest 
fragility and therefore be misunderstood as a negative property of a parser. 
79 If one were to restrict oneself to considering those parsers that use only syntactic information (as 
most of the existing parsers do), one could assert that a parser should leave pending the types of 
ambiguity (for example, PP attachment (see Section 5.1.1)) that it cannot resolve reliably and that 
it should leave such decisions to later processing stages. 
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information. One should therefore use the subtlety of the outputs as a factor in the 
comparison of parsers in order to make such comparisons fairer. The lack of 
sensitivity to subtlety is one of the main deficiencies in existing methods of 
comparative evaluation. 
 
The subtlety of an output scheme is measured in FEPa in the following way. 
Firstly, the evaluator needs to consider the amount of detail in the output scheme. 
The amount of detail can either be defined manually after an examination of the 
parser’s documentation or automatically by scrutinizing the complexity of the 
tagset. The subtlety measures for describing the detail in parser output in FEPa 
are: the number of POS tags, the types of output produced (PS, D, semantics, etc.) 
and the size of the syntactic tagset. Secondly, the level of ambiguity remaining in 
the output is measured by observing the average number of analyses per sentence 
and the proportion of sentences that are left with more than one analysis in the 
output. Thirdly, the underspecification remaining in the outputs is measured from 
the output. Underspecification is measured by the proportion of words that are left 
underspecified. This information is finally combined into a subtlety profile of the 
parser.  
 

9.1.7 Conclusion 
 
While preciseness and coverage are essential criteria for grammar developers, 
robustness and efficiency metrics are needed mostly by the developers of parsing 
algorithms. Subtlety is useful both for those who are making inter-system 
comparisons and for NLP system developers who are looking for a parser that will 
suit their needs. The criteria, metrics and measures in FEPa and their prospective 
users are summarized in Table 9-1 below. Figure 9-1 illustrates the interactions 
between the criteria. 
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Table 9-1. FEPa evaluation criteria, metrics and measures. The column “Users” 
specifies the groups of users to which each criterion might be most useful. KEY: 
G = grammar developers; A = parsing algorithm developers; P = NLP 
practitioners 

Criterion  Sub-criterion Metrics Measures Users 
Morphological 

tagging 
Comparing parser output 
and correctly tagged text 

The percentage of correct 
tags 

G, A 

D-based  
UAS, LAS, CM, labeled 

CM 
Preciseness 

Syntactic parsing 
PS-based (LA metric) 

Precision, recall, f-score. 
sentence-level measure 

All 

Grammatical 
coverage 

Comparing parser output 
and a test suite 

Grammatical construction 
types covered 

G 

Parsing coverage 
Observing the proportion 
of analyzed sentences on 

unannotated texts 

The percentage of 
sentences covered 

All 
Coverage 

Genre coverage 

Observing the proportion 
of analyzed sentences on 
unannotated texts from 

several genres 

The percentage of 
sentences covered 

All 

Stability 
Observing the number of 

crashes 
The percentage of failures A 

Robustness 
Degradation* 

Comparing the outputs 
for correct and erroneous 

sentences 

Unlabeled and labeled 
percentage of similar 

analyses 
A, G 

Time 
Parse time on a single 

machine & environment 
Minutes/seconds A, P 

Efficiency 
Space Memory consumption KBs/MBs A, P 

POS 
Observing the output / 
consulting the manual 

The number of tags P 
Level of 

detail Syn-
tax 

Observing the output / 
consulting the manual 

The number of tags P 

Underspecification Observing the output 
The number of 

underspecified words per 
sentence 

All 
Subtlety 

Ambiguity Observing the output 
The number of analyses 

per sentence 
All 

*Degradation can be further divided on the basis of the type of noise in the inputs (grammatical 
mistakes, misspellings). 

 



 

178  

 
Figure 9-1. Connection between the properties of parsers. 
 
Some of the connecting lines in Figure 9-1 need further explanation. The 
discussion above (see Section 9.1.3) emphasizes that there is a strong connection 
between the coverage and preciseness of a parser. The purpose of syntactic parsers 
is to analyze whole sentences rather than just fragments (constituents/D links) 
precisely. The connection between coverage and preciseness is clear in the case of 
sentence level evaluation measures such as CM: a sentence that cannot be fully 
analyzed cannot make a complete match with the correct structure in the 
evaluation resource.  
 
The connection between preciseness and coverage is two-way. Preciseness and 
coverage can also be seen as conflicting requirements for a parser. Increasing the 
preciseness of the grammar often causes its coverage to decrease; adding more 
constraints to the grammar causes sentences to be rejected even when they are 
acceptable to users of the language. While the loosening of constraints allows 
more sentences to be parsed (and therefore increases coverage), it can at the same 
time easily cause overgeneration, problems with disambiguation and decreased 
preciseness.  
 
The effect of subtlety on preciseness and coverage is two-fold. Firstly, the 
provision of detailed analyses makes it more difficult to cover all input sentences. 
Conversely, it is easier to achieve a high coverage and preciseness if only shallow 
analyses are provided. Secondly, a high performance is easier to achieve when 
parses contain underspecification and when ambiguities are left unresolved. 
 
There is an important connection between robustness, preciseness and coverage. If 
robustness is achieved by adding new rules to the grammar and/or relaxing the 
constraints, the coverage of the parser increases. But, it is more than likely that 

Robustness 

Efficiency Preciseness Coverage 

Subtlety 

Increases 

Are 

connected 

May decrease by 
increasing overgeneration 

May increase 
computational complexity 

May increase 
computational complexity 

May decrease by making parsing 

decisions more complex May decrease by making parsing 

decisions more complex 
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such a parser will suffer from overgeneration and produce large numbers of 
candidate parses for every sentence, including ungrammatical sentences. This, in 
turn, would diminish the preciseness of the system. Robustness may also 
compromise the efficiency of a parser because robustness mechanisms often 
generate more processing and so overload a system’s computational capacity. 
 

9.2 Linguistic Resources for FEPa 
 
It is best for an evaluation to be performed by using different kinds of linguistic 
resource: a treebank, a test suite, and a corpus of ungrammatical sentences. The 
resources should also preferably consist of texts from diverse text genres. Such 
resources, however, do not currently exist for any language or parser, and the 
evaluations have to be carried out with resources that lack exhaustiveness.  
 
Along with evaluation of grammatical coverage, preciseness evaluation makes the 
greatest demands on the annotation of the evaluation resources. As for the 
resources used for preciseness evaluation, it is debatable whether the resources 
should be tailored towards linguistically interesting sentences, which are often rare 
in running text, or more commonly occurring cases.  
 
All the above-mentioned types of resources are equally useful for measuring 
efficiency, stability and subtlety. While test-suite-based evaluation is more 
suitable for measuring grammatical coverage, evaluation that is based on a 
treebank or unannotated texts is better suited for evaluating parsing coverage. 
Measuring grammatical coverage calls for a test suite in which items are marked 
with the grammatical phenomena that they contain. Prasad and Sarkar (2000) point 
out that the difference between the two concepts of coverage can also be 
approached from the points of view of competence and performance that I 
described in Section 6.1.4.3. This observation can be understood in terms of the 
type of evaluation resources that are needed. Grammatical coverage, or the 
proportion of linguistic phenomena that a parser can handle correctly, depends on 
competence and is better measured by a test-suite-based evaluation. Parsing 
coverage, the proportion of sentences from a naturally occurring free text a parser 
is capable of parsing correctly, depends on the performance of the system, and is 
better captured by treebank-based methods or evaluations carried out with the use 
of unannotated texts. 
 
An annotated evaluation resource would be needed to measure the robustness of a 
parser against human judgments. However, this would require the annotation of 
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noisy sentences and their correct counterparts in a format that is compatible with 
the output formats of all the parsers that need to be evaluated. In such 
circumstances it is probable that the resource would have to be annotated in terms 
of more than one annotation scheme. This would be an enormous task. Assuring 
consistency between the annotations would be another difficulty inherent in this 
approach. Because of such complications, robustness evaluations in FEPa are 
performed on unannotated texts. In addition to robustness evaluation, a collection 
of ungrammatical sentences can be applied for measuring the performance of a 
grammar-checking parser. Table 9-2 summarizes the discussion on linguistic 
resources for evaluation. 
 
Table 9-2. Types of linguistic resources most suitable for evaluating each FEPa 
criteria. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Can be further divided on the basis of the type of noise in the inputs (viz. grammatical mistakes, 
misspellings). 

 

9.3 Comparative Evaluation in FEPa 
 
The FEPa framework does not provide direct measures of relative preciseness of 
parsing systems working in different formalisms. As I will point out below, it 
remains debatable whether such an approach is feasible at all. FEPa nevertheless 
offers a common ground for measuring and representing the performance of 
parsers according to several dimensions and thus provides a way for the 
comparison of their strengths and weaknesses.  

Criterion Sub-criterion Material 
Morphological 

tagging 
Corpus, treebank 

Preciseness 

Syntactic parsing Treebank 

Grammatical 
coverage 

Test suite 

Parsing coverage Unannotated texts Coverage 

Genre coverage 
Unannotated texts, several 

text genres, treebank 

Stability All 
Robustness 

Degradation* 
Corpus of ungrammatical 

sentences 

Time All 
Efficiency 

Space All 

POS All 

Syntax All 

Underspecification All 
Subtlety 

Ambiguity All 
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I concluded, on the basis of my analysis and discussion in Chapter 6 and 8 of the 
problems generated by comparative parser evaluation that it is unrealistic to expect 
to be able completely to harmonize the outputs of all parsers by mapping, an 
hierarchically organized tagset or by any other means or resource available for 
comparative evaluation. Only the dimensions common to all parsers (such as POS 
tagsets, nonterminal/D labels) can be compared directly, and the variety of detail 
in the output of a parser cannot be taken into consideration when one is making 
direct comparisons. Many parsers do not agree about even such low-level tasks as 
segmentation or basic word classes, let alone syntactic description. For this reason, 
metrics such as PARSEVAL that try to directly compare the preciseness of 
different types of parsers always need to abstract away from parser-specific 
information. 
 
Santos (2003), among others, came to the same conclusion. Black (1998) is of the 
same opinion when he states that it may never be possible to compare all parsers 
of any given language in a uniform way. He suggests that, instead of comparing 
parsers across grammar formalisms and parsing approaches using coarse-grained 
scores based on dubious technical compromises, evaluation could be carried out 
by using highly accurate methods within the framework of the parser to be 
evaluated.  
 
Because of these considerations, FEPa does not aim at directly comparing parsers 
that are based on different output formats, but rather at facilitating comparative 
evaluations by applying the subtlety measures. Asserting this is not, however, to 
claim (as has already been discussed in Chapters 6 and 7) that annotation schemes 
that support comparative evaluation should not be developed. Linguistic resources 
with well-defined annotation schemes that can be mapped into different parser 
output schemes are one of the most important components of successful evaluation 
practices. For parsers for which more direct methods of comparing relative 
performances are available (because they use the same or highly similar output 
formats or have a parallel treebank), such measures can be incorporated in 
evaluation to provide more direct measures of relative parser performance. 
 
The evaluation scores can be made more comparable in FEPa by using the subtlety 
measures. This method takes into account the level of detail in a parser’s output 
and the possible ambiguity and underspecification that remains in the parser’s 
output. Thus, for example, the overall preciseness score (PRp) of parser p can be 
formulated according to Equation (9-1). 
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pp

pp
p ficationunderspeciambiguity

detailsprecisenes
PR

*

*
=    (9-1) 

 

Parsers that produce detailed analyses should be accorded an advantage over those 
that produce undetailed parses. For example, the level of detail in the syntactic 
description of a D-based parser could be defined on the basis of the number of D 
link types in its tagset. The factors of ambiguityp and underpecificationp are used 
respectively to account for remaining ambiguity and underspecification in the 
output. If the parser returns, say 1.05 syntactic tags per word, it should be 
penalized when it is compared to a parser that produces only a single tag per 
word.80 Similarly, a parser that leaves part of the words or structures 
underspecified should be penalized in a comparison to a parser that assigns a tag 
for each word.  
 
Another mechanism that FEPa uses to facilitate comparative evaluations and 
adaptability to evaluators’ needs is the use of factors for emphasizing specific 
criteria. If a particular evaluator regards efficiency as a crucial component, she can 
emphasize it when making comparisons between parsing systems. For example, if 
preciseness is seen as the most important criterion, an evaluator can give it extra 
weight in parser comparisons. 
 

9.4 Conclusion 
 
In this chapter, I described in detail a framework for carrying out empirical parser 
evaluations and explained how such evaluation could be performed. The purpose 
of the method thus offered is to provide a basis for characterizing how well and 
efficiently a parser is able to analyze syntax. I also considered the ways in which 
this model can be utilized to compare the performance of different parsing systems 
– without the need for using compromising direct comparison metrics. I also 
outlined a method in Section 9.3 for using FEPa to make comparative evaluations. 
I utilize this method in Chapter 10 to compare two parsers that use a grammar 
based on the same formalism and also to compare parsers based on different 
grammar formalisms. 
 

                                              
80 Determining the level of ambiguity for a syntactic analysis is a rather complicated issue. In 
order to distinguish between overgeneration and real, inherent ambiguity, the treebank that is used 
for evaluation should include several parses for sentences that cannot be disambiguated purely on 
the basis of syntactic information. 
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The main advantage of this framework over existing evaluation methods is that 
FEPa adopts a broad approach to parser evaluation and provides a set of criteria 
for defining the quality of a parser. FEPa also provides a set of measures for 
carrying out evaluations according to each of the criteria.  
 
The subtlety factors for comparative evaluation in Equation 9-1 are admittedly 
difficult to define and are therefore open to question. If, however, one wants to 
compare diverse parsing systems, one has to take into account the difference in the 
complexity of the decisions that a parser has to make in order to succeed. 
Although one has to make compromises when defining subtlety factors, one can 
avoid thereby the main problem associated with attempts to compare parser 
outputs directly: no compromises needs to be made in the evaluation itself. A 
parser output can be compared to an evaluation resource with a similar annotation 
scheme, and there is no need to abstract away from the differences in the outputs 
of the parsers under consideration. I will describe my practical experiments in 
which I compare parsers by using FEPa in Section 10.7 of the next chapter. 
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IV EVALUATIONS 

 

10 FEPa in Use 
 
This chapter describes a series of experiments that use the FEPa. The parsers that 
were used in the experiments are described in Section 10.1. Section 10.2 analyzes 
the preciseness results reported in the literature for the six selected parsers. The 
experiments themselves are described in the following four sections: coverage 
(Section 10.3), robustness (Section 10.4), efficiency (Section 10.5), and subtlety 
(Section 10.6). The parsers are then compared in Section 10.7 on the basis of the 
data obtained from these experiments. Section 10.8 concludes with the findings 
and analyzes the amendments that will be made to the FEPa framework as a result 
of the information obtained from these experiments. 
 

10.1 The parsers 
 
The six parsers listed in Table 10-1 below were selected for the evaluation. The 
parsers are based on five different grammar formalisms: the four state-of-the-art 
parsers are based on CCG, PCFG and LG; one of the older parsers uses a DG 
formalism, and the remaining one uses its own parser-specific grammar 
formalism. 
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Table 10-1. The parsers in this experiment. The two “grammar” rows indicate the 
grammar formalism on which the grammar used by the parser is based, and the 
type of the grammar. The two “output” rows indicate the type of output used for 
evaluation in this experiment (Type 1), and the other scheme for those parsers that 
support more than one output scheme (Type 2). KEY: A= automatically induced; 
M= manually constructed. 

*Sekine (1998) states that the grammar is semi context-sensitive, but leaves this grammar class 
undefined. **SP supports both unlexicalized and lexicalized grammars. I used the unlexicalized 
grammar bundled with the parser in the experiments. ***Because StatCCG does not perform POS 
tagging, I used the MXPOST tagger (Ratnaparki 1996) to preprocess the texts before inputting 
them to StatCCG. ****StatCCG’s lexical category set contains approximately 1,200 types, and 
there are four atomic types in the syntactic description. 

 

While I wanted to include parsers that use different formalisms, I also wanted to 
include two CCG parsers in order to find out how well FEPa is capable of 
comparing parsers that use the same formalism. I chose two parsers, APP and 
MINIPAR, that were developed in the 1990s, and four state-of-the-art parsers, for 
this evaluation. My inclusion of older generation systems was motivated by my 

 
Apple Pie 

Parser 
(APP) 

C&C 
Parser 

Link 
Grammar 

Parser 
(LGP) 

MINI-
PAR 

Stanford 
Parser (SP) 

StatCCG***  

Version 
v. 5.9, 4 

April 1997 

v. 0.96, 23 
November 

2006 

4.1b, January 
2005 

unknown 
version, 

1998 

v. 1.5.1, 30 
May 2006 

preliminary 
release, 14 

January 2004 

Formalism 

semi 
context-

sensitive*, 
probabilistic 

CCG LG DG 
Unlexicalized 

PCFG** 
CCG 

G
ra

m
m

a
r 

Type A (PTB) A (PTB) M M A (PTB) A (PTB) 

Algorithm 

probabilistic,  
bottom-up, 

chart 

probabilistic, 
log-liner, 
packed 
chart, 

supertagger 

dynamic 
programming 

principle-
based, 

distributed 
chart 

probabilistic, 
CYK 

probabilistic, 
generative, 

CYK 

Type 1 PS, 20 GR, 48 LG, 107 D, 27+20 GR, 38 
CCG 

derivations**** 

O
u

tp
u
t 

Type 2 - PAS PS PS PS PAS 

Reference 
Sekine 
(1998) 

Clark & 
Curran 
(2004) 

Sleator & 
Temperley 

(1991) 

Lin 
(1998) 

Klein & 
Manning 
(2003), de 

Marneffe et 

al. (2006) 

Hockenmaier 
(2003) 
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desire to evaluate the level of development in parsing systems over the last decade. 
One of these older parsers is a PS parser (APP) and the other a D parser 
(MINIPAR). 
 
Language processing applications that involve parsing must set practical limits on 
resource consumption. In order to create similar and equal conditions for all 
parsers throughout the evaluation, I limited the use of memory to the same value 
for all the parsers and experiments. I accordingly selected 650 MB as the limit 
because it is a realistic setting for free working memory in an average personal 
computer with 1GB of memory. 81 In addition, parsing in the order of hundreds of 
thousands of sentences with six parsers consumes thousands of hours of processor 
time. I was therefore obliged to limit memory consumption so that I could run the 
experiments in parallel on a server and complete them all within a reasonable 
period of time. 
 

10.2 Preciseness 
 
For preciseness evaluation, I used the results reported in the literature. There are 
several reasons for this. Firstly, these results were available for all the evaluated 
parsers. Secondly, I did not have access to the PTB, and I would have needed such 
access for carrying out further experiments. Table 10-2 summarizes the 
preciseness figures for the six parsers. 
 

                                              
81 I used several methods (depending on the parser concerned) for limiting memory usage. In the 
Java-based parsers, I set the limit according to the size of the Java heap. With the C&C parser, for 
example, setting values at 1,250,000 to 1,300,000 for the maxsupercats parameter limited the 
memory usage to approximately 650 MB. In APP, the limit for the chart size was set at compile 
time.  



 

188  

Table 10-2. Preciseness results reported in the literature. KEY: P = precision, R = 
recall; F = F-score. 

Results 
Parser Source 

Gold 
standard 

Metric 
P R F 

APP Sekine (1998) PTB 
Unlabeled 

PARSEVAL 
71.1 70.3 70.7 

C&C 
Clark & Curran 

(2004a) 
PTB 

Labeled 
PARSEVAL 

84.8 84.5 84.6* 

LGP 
Molla & 

Hutchinson 
(2003) 

SUSANNE GR-based** 54.6 43.7 48.5 

MINIPAR Sampson (1995) SUSANNE Lin’s D-based 88.0 80.0 83.8 

SP 
Klein & 

Manning (2003) 
PTB 

Labeled 
PARSEVAL 

86.3 85.1 85.7 

StatCCG 
Hockenmaier 

(2003) 
PTB 

Labeled 
PARSEVAL 

83.7 84.2 84.0*** 

*90.7 for unlabeled F-score. **Only four GR relations (subj, obj, xcomb, mod) were considered in 
the evaluation. ***91.2 for unlabeled F-score (Clark & Curran 2004a). F-score 91.3 and 83.3 for 
unlabeled and labeled word-word dependencies in the PAS output (Hockenmaier 2003). 

 
A direct comparison of the results reported in Table 10-2 would be unreliable. 
While four of the parser were evaluated on the PTB, the SUSANNE corpus was 
used for evaluating the two others. Although the same measures were used in the 
SUSANNE-based evaluations, the results were calculated with different metrics. 
Even if the parsers had been evaluated on the same data and the same metrics had 
been applied, the figures would not take into the account the differences in the 
subtlety of the parsers’ outputs. A CCG parser, for example, needs to distinguish 
between complements and adjuncts and to identify LDDs in order to get a 
derivation right. Most PCFG parsers, such as SP, do not need to predict these in 
order to do well on labeled PARSEVAL measures because the LDDs are ignored 
by these parsers. 
 
One may draw the following conclusions about performance of the parsers on the 
basis of the preciseness results.82 

1. SP performs best. Its labeled PARSEVAL F-score on the PTB data is 85.7. 
This is slightly higher than those of the two CCG parsers.83 

                                              
82 This ranking does not address the differences in the subtlety of the parser’s outputs. See Section 
10.6 for preciseness evaluation that considers subtlety. 
83 Hockenmaier (2003) points out two sources of difficulty when comparing CCG preciseness 
figures to parsers using other grammar formalisms. The first is that since CCG trees use a fine-
grained category set, PARSEVAL scores cannot be compared. The second is that the grammar in 
StatCCG has over 1,200 lexical category types. FEPa does, however, address both kinds of 
difference by using subtlety measures. 
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2. C&C, StatCCG and MINIPAR form the second group. No reliable ranking 
can be made between these three parsers on the basis of the reported scores. 
Depending on the test settings, either C&C or StatCCG is more precise 
than the other.84 While MINIPAR achieved an F-score of 83.8 in D 
evaluation on the SUSANNE, StatCCG scored 83.3 on labeled PAS 
evaluation. This indicates a comparable preciseness. 

3. APP is the second-worst performer. If one compares it to the unlabeled 
PARSEVAL evaluations of C&C and StatCCG, the parser scored an F-
score which is over 20 percentage points lower than the F-scores of these 
two parsers. Although the evaluations were performed with different 
measures on different test sets, it is reasonable to assume that APP is more 
precise than LGP because it achieved an F-score that is higher by 22.2 
percentage points than that achieved by LGP.  

4. LGP performs worst. Although the reported evaluation used only four GR 
types, the F-score is more than 30 percentage points lower than the two 
parsers for which there are comparable evaluation results available: 
MINIPAR’s F-score on labeled D-based evaluation was 83.8 and CCG’s F-
score on labeled PAS dependencies was 83.3. 

 

10.3 Coverage 
 
In this section I describe a set of parsing coverage evaluations. In addition to 
examining overall parsing coverage, I will also consider the genre coverage of the 
evaluated parsers. This will allow me to make judgments about the generalizability 
of the parsers. The three questions for which I sought answers were as follows: 

• What is the parsing coverage of state-of-the-art parsers? 

• How does the text genre affect the parsing coverage? 

• How much progress has been made on parsing coverage in the last decade? 
 

10.3.1 Previous work 
 
This experiment is the only one reported in the literature that compares the 
coverage of a set of parsers for English. The studies that critically examine the 
genre dependency of parsers have all come to the same unsurprising conclusion 
that the text genre has an effect on parser performance. Clegg and Shepherd 
(2005) conducted experiments on biomedical data by using the GENIA treebank 
                                              
84 In the experiments reported by Clark and Curran (2004a), the model was slightly better than 
Hockenmaier’s. But Hockenmaier (2003) compared the performance of the two parsers and found 
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(GENIA Project 2006). They point out that biomedical English is distinctly 
different from newspaper English, and that it might indeed be characterized as a 
sub-language (Friedman et al. 2002). Laakso (2005) reports experiments on the 
CHILDES corpus that consists of transcriptions of conversations between parents 
and their children. Mazzei and Lombardo (2004) report cross-training experiments 
in Italian on newspaper and civil law texts, in which an LTAG, CFG and DG were 
trained on one data set and tested on the other. When they did this, they observed a 
dramatic drop of usually around 10 to 30 percentage points in the parsing coverage 
of all the three grammars. 
 
It has been found out that the performance of a probabilistic parser degrades – 
often to a considerable extent – when it parses texts from genres other than those 
that were used for training the model. Sekine (1997) observed the following order 
of performance from best to worse between the training and testing data: the same 
genre, the same class,85 all genres, another class, and other genres. Sekine also 
found out that even a significant increase in the size of the training data from a 
genre other than the one being parsed often has no effect on the performance. 
Gildea (2001) reports similar findings. 
 
One of the rare studies that reflects upon the possible reasons for the drop in 
performance when a parser is applied to a genre other than the one intended when 
developing the system, is reported by Baldwin et al. (2004). The authors evaluated 
the performance of the manually constructed ERG HPSG grammar (Copestake & 
Flickinger 2000) on 20,000 sentences from the British National Corpus. The 
grammar was created on the basis of corpus of data extracted from informal genres 
such as conversations about schedules and e-mails about e-commerce. Baldwin et 

al. (2004) restricted the experiment to sentences with a full lexical span (i.e. 
sentences that only contain words included in the lexicon). ERG had a full lexical 
span for 32% of the sentences in the test data. The parser was able to generate a 
parse for 57% of these. A total of 83% of the analyses were correct. The parser 
was thus able correctly to parse 47.3% of the sentences with full lexical span. This 
represented 15.1% of all the sentences. These results indicated that an extension of 
the grammatical coverage of the grammar increases the coverage on the 
unparsable sentences with a full lexical span (18% of all the sentences). However, 
extending the lexical coverage raises the coverage on the sentences without a full 
lexical span (68% of the whole test set). They therefore came to the conclusion 

                                                                                                                                  
out that when they were trained on the same data, her parser slightly outperformed the parser of 
Clark et al. (2002) with 90.5% unlabeled precision and 91.1% recall. 
85 In Sekine’s experiment, class refers to the distinction between fiction and non-fiction texts. 
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that lexical expansion should be the first step in the process of parser 
enhancement. 
 

10.3.2 Test settings 
 
I performed a parsing coverage evaluation by using unannotated texts drawn from 
MGTS. The design of the test settings was guided by the three questions 
enumerated above. I answered the first question by parsing a document collection 
that contained hundreds of thousands of sentences and by then measuring the 
coverage of the parsers on the data. Because MGTS is divided into genre-specific 
subsets, this allowed to measure the effects of genre variance and so provide an 
answer to the second research question. 
 
One might argue on the one hand that coverage alone is a rather weak measure of 
a parser’s performance and therefore of its generalizability. An obvious problem 
inherent in the measurement of coverage alone is that a parser, such as APP, that 
returns undetailed and flat analyses will easily produce high coverage, whereas a 
parser (such as C&C and StatCCG) that outputs detailed analyses will be unable to 
cover all the input sentences.  
 
On the other hand, as I pointed out in Section 9.2.6, it is clear that coverage and 
preciseness are connected. The connection between coverage and preciseness is 
clear in the case of sentence-level evaluation measures: a sentence that cannot be 
fully analyzed cannot have a complete match with the correct structure in the 
evaluation resource. I consequently argue that coverage can be used an indirect 
measure of generalizability. It sets the upper bound for performance on sentence-
level measures such as the CM and LA sentence measure. An evaluation should 
nevertheless always be accompanied by data about the preciseness of the parser 
and the level of detail in its output. 
 
The most important decision about parsing coverage evaluation is how to make the 
distinction between a covered and an uncovered sentence. Since it was also my 
intention to collect data about the proportion of sentences for which the parsers 
generated a fragmented analysis, I had to define other criteria for this purpose. 
These criteria have to be defined separately for each parser. I set out the criteria 
that I used in this experiment in Table 10-3. 
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Table 10-3. The criteria for defining whether a sentence was covered. 

Criteria Parser 
Covered sentences Fragmented analyses 

APP 
A single S non-terminal is found which 

dominates the whole sentence. 
More than one S non-terminal is found. 

C&C 
The parser marks the sentence as fully 

parsed. 

After projecting each GR to a graph that 
allows cycles, more than one connected 

set is found. 

LGP 
At least one linkage without null links is 

found. 
No linkage is found that does not contain 

null links. 

MINIPAR 

A single root is found for the sentence 
that is connected to all the words in the 
sentence through a path. The root is, in 

addition, assigned with a phrase/sentence 
type marker. 

The analysis contains U tags that indicate 
unrecognized structures. 

SP 
After projecting each GR to a graph that 
allows cycles, only one connected set is 

found. 
More than one connected set is found. 

StatCCG 
StatCCG does not mark the sentence as 

“failed” or “too long” in its output. 
No sentence-level non-terminal is found 

in the CCG derivations output. 

 
I implemented a set of tools in Java to record the statistics from the parsers’ 
outputs, and also devised experiment runner tools for some of the parsers. 
Whenever a parser crashed, these tools restarted the evaluation process from the 
following sentence. The results are reported by determining an overall percentage 
of the sentences covered over all the text genres and also by determining separate 
results for each genre. 
 

10.3.3 Results 
 
Table 10-4 summarizes the results of the experiment. The parsing coverage of the 
parsers for each of the sub-corpora in MGTS is reported separately. Total figures 
are given on parser and sub-corpus level. The generalizability of the parsers was 
measured by comparing their coverage on the newspaper genre to their coverage 
on the lowest-scoring genre: 

( )
( )newspaperCoverage

newspaperCoveragegenresallCoverageMIN
bilityGeneraliza

−−= ))((
1  



 

193  

Table 10-4. Comparison of the parsing results for each sub-corpus and parser. The 
column labeled “Average” gives the average of the coverage figures for the six 
genres weighted according to the number of sentences in each genre. The column 
labeled “Generalizability” shows the percentage of the coverage in the lowest-
scoring genre compared to the coverage in the newspaper genre. 

*SP experienced a coverage drop of tens of percentage points in comparison to other genres on the 
Hansard dataset. This was caused mainly by a single issue: the dataset contained a number of 
sentences that contained only a single word – sentences such as “Nay.”, “Agreed.”, “No.” and so 
on. Because no root node is assigned to D analysis by SP, the parser did not return any analysis for 
such sentences. These sentences were omitted from the evaluation. When the sentences were 
included, the coverage on legislation data was 59.5%. 
 
Table 10-5 breaks down the coverage figures to indicate the percentage of the 
analyses that failed or were incomplete, and the number of occasions on which the 
parser crashed or terminated during the process. 
 
Table 10-5. Breakdown of the failures. All the results are reported as a percentage 
of the total number of sentences (826,485). The column labeled “Incomplete” 
reports the proportion of sentences that were parsed but the analysis was not full. 
The column labeled “Failed” indicates those cases in which the parser was not 
able to return a parse. The column labeled “Terminated” shows the proportion of 
the cases in which the parser crashed or terminated during the process of parsing a 
sentence. 
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APP 99.8 98.9 97.5 96.4 93.1 98.9 98.5 93.3 

C&C 87.8 84.9 86.0 81.2 75.5 84.8 85.0 86.0 

LGP 74.1 38.7 38.4 42.1 15.0 49.4 50.2 20.2 

MINIPAR 88.0 68.8 68.0 71.5 34.4 70.1 72.1 39.1 

SP* 99.8 99.5 98.0 98.3 98.9 98.5 99.2 98.2 

StatCCG 96.7 85.2 87.7 86.7 94.0 83.3 89.1 86.1 

Average 91.0 79.3 79.3 79.4 68.5 80.8 82.4 70.5 

Parser Incomplete Failed Terminated 
APP 1.5 0.0 0.001 

C&C 12.8 2.2 0.006 

LGP 42.2 7.4 0.206 

MINIPAR 27.9 0.0 0.009 

SP 0.5 0.4 0.002 

StatCCG 9.6 1.4 0.000 

Average 15.8 1.9 0.037 
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APP and SP performed at the highest rate of coverage in this experiment. APP 
produces shallow parses, which enables it to obtain a high coverage. When it is 
unable to recover a full parse for a sentence, this parser enters a fitted parsing 
mode in which a fragmented parse is recovered from the partial trees in the chart. 
This typically causes the analysis to have two root (S) constituents. Klein and 
Manning (2003) claim that SP is able to analyze all the sentences in section 23 of 
the PTB in a machine with 1GB of memory. If one excludes the one-word 
sentences from the legislation dataset, SP gave the best coverage and best 
generalizability rate. The most common reason for not fully covering a sentence 
was a fragmented analysis caused by segmentation errors in which a delimiter was 
considered to be a node in the D tree.  
 
The overall performance of C&C (85.0%) was slightly worse than the 
performance of the other CCG-based system that scored an average coverage of 
89.1%. Compared to StatCCG, C&C’s coverage was, however, more consistent 
over the genres. Although StatCCG skipped extremely long sentences, it only did 
this on 353 occasions. 
 
LGP (average coverage 50.2%, generalizability rate 20.2%) and MINIPAR 
(72.1%, 39.1%) gave the worst coverage and lowest generalizability in the 
experiment. While MINIPAR achieved an 88.0% coverage on the newspaper 
corpus, its performance dropped over 15 percentage points on other corpora. Its 
coverage was only 34.4% with the religion corpus. The most commonly occurring 
problem with this data was a fragmented analysis occasioned by sentences 
beginning with an “And” or “Or” that was not connected to any other words in the 
parse tree. LGP coverage on the religion dataset was the lowest in the whole 
experiment, only 15.0%. 
 

10.3.4 Conclusion 
 
The six parsers were able to cover, on average, 82.4% of the sentences. The 
coverage was, unsurprisingly, highest on the newspaper genre. The lowest average 
coverage was achieved on the religion and legislation genres. The difficulties in 
parsing the religious texts are attributable at least in part to the length of the 
sentences in the sub-corpus (on average 27.1 words per sentence), which was the 
highest over all the genres. The legislation genre consists of transcribed speech, 
which may be the main reason for the lower-than-average performance on that 
data. Contrary to my expectation, the biomedical genre, with its specialist 
terminology, was not the most difficult genre for the parsers. 
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If one compares these results to those obtained by MINIPAR, it is clear that the 
coverage of the newer parsers has improved. APP produces a shallow analysis that 
enables it to achieve a high coverage. The good performance of the APP may be 
partly explained by its rather poor preciseness: its rate of just over 70% is much 
lower than that of other parsers. The poor performance of the two parsers that are 
based on manually constructed grammars, MINIPAR and LGP, supports what was 
said in Section 5.2 about how probabilistic parsers typically have an advantage 
over rule-based ones with regard to coverage. 
 

10.4 Robustness 
 
The robustness comparison of parsers for English that I describe in this section are 
the only evaluations of their kind reported in the literature. In making this 
evaluation I sought answers to the following questions: 

• What is the overall robustness of the evaluated parsers? 

• What effect does an increasing error level have on the parsing results? 

• How stable are the parsers? 
 

10.4.1 Previous work 
 
Not much work has been done on methods for empirically evaluating the 
robustness of parsers. Foster (2004) is the only researcher to have reported a 
robustness evaluation of a parser for English in the literature. She evaluated 
Charniak’s (2000) PCFG parser by using the corpus described in Section 6.1.3. 
The parser returned the same analysis for correct and erroneous versions of the 
same sentence in 32% of the cases. The highest score was achieved on agreement 
errors and the use of the wrong preposition. Of these, over 70% of cases obtained 
a complete match. 
 
The research most closely resembling my own is reported by Bigert et al. (2005) 
(see Section 8.3.2). The automatic introduction of errors enabled the researchers to 
undertake a controlled testing of degradation which is the effect of an increased 
error rate on a parser’s output. But they only applied this method for Swedish. 
 

10.4.2 Test settings 
 
In order to evaluate the degree to which a parser can handle noisy input, and 
spelling errors in particular, the following experiment was set up. A set of test 
sentences, both correct and erroneous, was obtained from the RobSet. I then used 
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the metric and measures defined in Section 9.1.4, namely UR score and LR score, 
to compare the overall robustness of the six evaluated parsers and considered the 
degradation in the parsers’ performances in relation to increasing error levels. In 
order to evaluate the stability of the parsers, I recorded the number of crashes 
while parsing the MGTS. The final step was to consider the preciseness figures 
reported in the literature for the parsers and to compare them to these findings. 
 
While some might claim that input with misspelled words tests the accuracy of 
POS tagging rather than the preciseness of syntactic description, it is my opinion 
that such an assertion is inadmissible. Firstly, if a parser is able to distinguish 
grammatical sentences from ungrammatical ones, it should be able to rule out a 
considerable number of analyses generated by erroneous POS sequences which the 
misspelled words might have caused. Secondly, if a parser’s POS tagger is well 
designed, it should not try to disambiguate the POS tags of the words that it cannot 
recognize, but rather leave disambiguation to the syntactic analysis component. 

 

10.4.3 Results 
 
Table 10-6 summarizes the results of the experiment on noisy input and indicates 
the overall robustness scores as well as separate scores for each error level (1,2,3).  
 
Table 10-6. The results of the experiment are reported separately for the two 
evaluation metrics. Separate scores for each error level are also given. The column 
labeled “D” gives the degradation rates. These are defined by comparing the 
robustness scores on levels 1 and 3 and calculating the drop in performance in 
percentages. 

*C&C failed to parse 23 correct sentences in this sub-corpus. Because I considered the inability of 
a parser to cover some sentences to be a serious robustness flaw, I deliberately included these 
sentences in the calculations. This brought the scores down from 80.2 to 72.9 and 66.8 to 60.8 for 
UR and LR respectively. **LGP leaves some of the ambiguities unresolved and returns several 
parses for such sentences. This occurred with most of our test sentences. But in the interest of 
ensuring an entirely fair comparison among the parsers, I only considered the first highest-ranking 
linkage in the evaluation. 

UR LR Parser 
Avg. 1 2 3 D Avg. 1 2 3 D 

APP 43.3 59.2 28.7 14.9 74.9 37.0 54.5 19.2 7.5 86.3 

C&C 63.8 72.9* 62.8 40.4 44.6 45.4 60.8 34.0 14.9 75.5 

LGP** 29.8 40.4 22.3 8.5 78.9 17.6 22.0 20.2 3.2 85.5 

MINIPAR 37.9 57.4 22.1 1.1 98.2 20.6 33.2 6.3 1.1 96.8 

SP 55.3 71.0 42.6 25.5 64.0 19.2 29.4 9.6 1.1 96.4 

StatCCG 57.1 72.6 41.5 30.9 57.5 44.0 58.8 27.7 20.2 65.6 

Average 47.8 62.3 36.7 20.2 69.7 30.6 43.1 19.5 8.0 84.4 
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The results show, as was expected, that the performance of the parsers degrades as 
the level of distortion in the input sentences increases. The results indicate that 
performance usually declines by tens of percentage points when parsers are 
presented with texts that contain misspellings. While the parsers produced the 
same analyses for correct and erroneous sentences for 43.1% of the sentences in 
labeled evaluation on error level 1, the average score on error level 3 was only 
8.0%. 
 
When tested on the purpose-built test set of 443 sentences, the best parser in the 
experiment (C&C parser) was able to return exactly the same parse tree for the 
grammatical and ungrammatical sentences for 60.8%, 34.0% and 14.9% of the 
sentences with one, two or three misspelled words, respectively. 
 
The overall performance of StatCCG and SP are similar on the unlabeled 
evaluation in which the LGP performs considerably worse than the other five 
parsers. Error level 3 on labeled evaluation was the only category in which 
StatCCG outperformed C&C in this experiment. Figure 10-1 shows the 
performance of the parser at each error level for unlabeled evaluation. 
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Figure 10-1. Unlabelled robustness scores on the three error levels. The UR-axis 
indicates the robustness score on the three error levels given on the x-axis. 
 
Figure 10-1 shows that while C&C is the best performer, LGP and MINIPAR are 
the worst performers on all three error levels on structural similarity evaluation. 
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StatCCG beats SP on error levels 1 and 3. The same pattern of performance 
degradation is repeated as the error level rises. While the robustness score of C&C 
decreases from 72.9% on error level 1 down to 40.4% on level 3, equaling to 
44.6% drop, the figure for LGP is 78.9% and 98.1% for MINIPAR. StatCCG and 
SP are again in the upper middle-class, at around 60%, while APP positions itself 
between these two and C&C with 74.8% degradation. 
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Figure 10-2. Labeled robustness scores. 
 
The results of the labeled evaluation (see Table 10-6 and Figure 10-2 above) 
indicate that while structural similarity can be preserved for close to 73% of the 
sentences on error level 1 by the two best parsers (StatCCG and C&C), the 
performance drops to around 60% when the labels are also required to match. The 
degradation figures in labeled evaluation are: StatCCG (65.6%), C&C (75.5%), 
LGP (85.5%), APP (86.3%), SP (96.4%), and MINIPAR (96.8%). 
 
The large tagset of 107 tags makes it difficult for LGP to obtain a good 
performance on labeled evaluation. LGP was able to rank third on degradation, 
largely due to the fact that its performance was poor (22.0%) even on the lowest 
error rate. It was rather surprising, however, to observe how dramatically SP’s 
robustness scores decreased between the unlabeled and labeled evaluations. This 
indicates a flaw in the robustness mechanisms of the parser, a flaw that might be 
attributable to the poor ranking of candidate parse trees for noisy sentences or 
problems with the POS tagging model of unknown words. 
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In addition to being able to perform well when faced with just slightly distorted 
input, C&C is the most consistent parser when faced with increasing distortion: 
the unlabelled robustness score dropped by 44.6% from error level 1 to error level 
3. LGP has the lowest reported preciseness and its performance also degrades 
drastically, especially on unlabelled evaluation (a 78.9% drop from error level 1 to 
error level 3). MINIPAR was the worst performer with regard to degradation, 
scoring 98.2 and 96.8 for unlabeled and labeled degradation respectively. 
 
I carried out a stability evaluation by parsing the whole of the 826,485-sentence 
MGTS and recording the number of times each of the parsers terminated during 
the parsing. These figures are given in the column “Terminated” in Table 10-5 
(above). LGP crashed in 0.21% of the cases, which makes it the most unstable 
parser in the experiment. StatCCG and APP proved to be the most stable parsers in 
the experiment. While StatCCG did not crash at all, APP terminated once. 
MINIPAR crashed 72 times altogether (i.e. for 0.009% of the sentences). SP and 
C&C were on the middle ground, terminating on 0.002 and 0.006 per cent of the 
cases. 

 
10.4.4 Conclusion 
 
Table 10-7 summarizes the findings of the robustness experiments. 

 
Table 10-7. The overall robustness of the parsers. The columns labeled “Noisy 
input” and “Degradation” show the ranking on the basis of the labeled evaluation. 
The column labeled “Rank” shows the overall ranking of the parser on the basis of 
the averages of the rankings in the three measures. 
 
 
 
 
 
 
 
 
*LGP and MINIPAR scored the same average rank. But because of its instability, which was 
much greater than that of any other parser in the experiment, it ranks after MINIPAR. 

 
C&C was the only parser in the experiment that produced coverage of less than 
100% on our test set. In spite of this, it proved to be by far the best-performing 
parser. In comparison to StatCCG, C&C performed better – especially on the 

Parser 
Noisy 
input 

Degra-
dation 

Stability  Rank 

APP 3 4 1 3 

C&C 1 2 4 2 

LGP 6 3 6   6* 

MINIPAR 4 6 5 5 

SP 5 5 3 4 

StatCCG 2 1 1 1 
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unlabeled measure. The performance of APP was on the middle ground between 
the three best and two worst parsers. It compared especially well on error levels 1 
and 2 for the labeled evaluation. However, its performance degraded drastically on 
error level 3.  
 
The performance of MINIPAR and LGP left a lot to be desired across all of the 
evaluation categories. They are both based on rule-based, manually constructed 
grammars. LGP also returned up to thousands of linkages per input sentence. All 
these observations, together with the low preciseness figures reported in the 
literature, indicate serious problems in the disambiguation model of the parsers. 
These results support the observation made in Section 5.2 about the lack of 
robustness in many rule-based parsers. APP was worse than the state-of-the-art 
parsers – with the exception of LGP. This indicates that considerable progress has 
been made in probabilistic parsing with regard to robustness. 
 

10.5 Efficiency 
 
This section reports a set of efficiency evaluations. These evaluations were carried 
out for the purpose of measuring practical efficiency of the six parsers. This kind 
of efficiency answers the question: How long does it take a parser to analyze a 
particular set of sentences on a given machine? As the experiments were run on a 
single machine configuration, a meaningful comparison of the parsers could be 
made. 
 

10.5.1 Test settings 
 
The experiments were run under Linux Fedora Core 5 on a Pentium M 1.72 GHz 
machine with 1 GB of memory. The machine was dedicated only to the parsing 
task during the experiments. A 20,000-sentence subset of the MGTS newspaper 
subcorpus was parsed by each of the parsers and the total parse time recorded. For 
parsers that did not perform POS tagging, the processing time of the external 
tagger was added to this time. 
 

10.5.2 Results and conclusion 
 
Table 10-8 and Figure 10-3 give the results of the efficiency evaluation performed 
on a 20,000-sentence test set consisting of newspaper texts. 
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Table 10-8. A comparison of running times of six parsers on newspaper data of 
20,000 sentences. The column labeled “Time complexity” shows the complexity 
of the best known algorithm for the type of grammar the parser uses.  
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Figure 10-3. Average parsing times in seconds per sentence. 
 
The parsers can be grouped into four categories in terms of their efficiency. 
MINIPAR (0.014 sec. per sentence) and C&C (0.021) are considerably faster than 
the other parsers. The speed of APP lies between that of MINIPAR and C&C and 
the group formed by LGP and SP, with an average parse time of 0.39 sec. per 
sentence. StatCCG is almost three times slower than SP. It took StatCCG almost 
two seconds on average to parse a sentence. This experiment confirms the 
observation that I made in Chapter 4, namely, that the theoretical upper bounds for 
the time complexity of parsing a certain grammar formalism have little to do with 
a parser’s practical efficiency. 
 

Parser 
Time 
(min.) 

Sec./sent. 
Time 

complexity 
APP 130.14   0.39 N/A 

C&C 6.58   0.021 n6 

LGP 214.18   0.64 n3 

MINIPAR 4.40   0.014 n3 

SP 230.31   0.69 n3 

StatCCG 657.22   1.97 n6 

Average 240.35   0.72 - 
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10.6 Subtlety 
 
This section describes the evaluation of the subtlety of the six parsers. In this 
experiment, I addressed four notions of subtlety: 1) the levels of representation in 
the parser’s output, 2) the detail on each level, 3) the level of ambiguity, and 4) the 
amount of underspecification remaining in the output. 
 

10.6.1 Test settings 
 
I determined the levels of representation in each parser’s output on the basis of the 
documentation of the system. I used both the documentation and observation of 
outputs to determine the size of the POS and syntactic tagsets, and measured the 
level of ambiguity and underspecification remaining in the parsers’ outputs. For 
this purpose I implemented a set of software tools in Java that provide statistics 
about the richness, the level of ambiguity and the amount of underspecification in 
the outputs. 
 

10.6.2 Results 
 
Table 10-9 summarizes the levels of representation and detail in the output of the 
six parsers. The amount of detail on level x (i.e. POS or syntax) of an output 
scheme s is calculated in the following way: 
 

scores,x = ( )xstagset ,log      (10-1) 

 
When considered intuitively, this equation appears to give a reasonable advantage 
to parsers that produce output that is more detailed. For example, out of the six 
parsers in this experiment APP receives the lowest score for its word-level 
annotation (0.0), StatCCG, C&C and SP achieve the highest scores (1.65). On a 
syntactic level, APP once again scores the lowest score (1.30), and StatCCG 
achieves the highest score, 3.02. 
 
A scoring scheme for the level of detail in an output scheme should give more 
credit to the richness of the syntactic description because it is a more important 
feature of a syntactic parser’s output than the richness of the word level 
description. The scheme therefore assigns a double weight to the syntactic output 
scheme in comparison to the POS scheme. The overall score of an output scheme s 
is defined in FEPa as: 
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SYNTAXs
LEVELWORDs

s score
score

socre ,
,

2
+=   (10-2) 

 
Table 10-9. A comparison of the output schemes. The two columns included 
under the label “Word level” indicate whether the word level tags are included in 
the output, and the number of tags in the POS tagset. The four columns included 
under the label “Syntactic level” indicate whether the scheme includes PS or D 
representations respectively. The columns “Type” and “No. tags” indicate whether 
the parser supports PS and D-style output schemes, and the type and number of 
tags in the syntactic description used for evaluation in the experiments. The 
column labeled “Score” shows a score for the richness of the output scheme as 
defined in Equations 10-1 and 10-2. 

Word level Syntactic level 

Parser 
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APP No 0 Yes No PS 20 1.3 6 

C&C Yes 36+9* No Yes GR 48 2.5 2 

LGP Yes 8 Yes Yes LG linkage 107 2.5 2 

MINIPAR Yes 18 No Yes D 27 2.1 5 

SP Yes 36+9* Yes Yes GR 48 2.5 2 

StatCCG (Yes)** 36+9* Yes Yes PAS 1044*** 3.8 1 

*The tagset of the PTB consist of 36 word categories and 9 tags for punctuation. *StatCCG does 
not produce POS tags, but expects a tagged input. ***As observed from the output of the parser 
for the MGTS legislation sub-corpus of over 390,000 sentences. 

 
Table 10-10 is concerned with the level of ambiguity and underspecification in the 
outputs of the parsers.  
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Table 10-10. A comparison of level of ambiguity and underspecification. The 
results are given as the average number per covered sentence, calculated over the 
same 20,000-sentence test set that was used in efficiency evaluation.  

Parser 
Underspecified 
words per sent. 

No. of analyses 
per sentence 

Rank 

APP*  0.0006  1.0 5 

C&C  0.0  1.0 1 

LGP  0.0  1.259*** 6 

MINIPAR  0.0  1.0 1 

SP*  0.0**  1.0 1 

StatCCG  0.0  1.0 1 

*The underspecification in APP and SP is marked by the tag X. **The average number of X tags 
per sentence in the PS output was 0.005. The GR output does not contain underspecified relations. 
The underspecification in the SP’s output was excluded from the evaluation because the parser 
was evaluated using the GR-style output. ***The number of analyses returned after ranking the 
linkages based on their costs. On average the parser found 50182.0 linkages per sentence. 

 

10.6.3 Conclusion 
 
Table 10-11 combines the results represented in Tables 10-9 and 10-10 to provide 
an overall subtlety ranking of the six parsers. 
 
Table 10-11. Overall subtlety ranking of the parsers. The column labeled “A&U” 
gives the ranking on the basis of ambiguity and underspecification (see Table 10-
10). 

P
ar

se
r 

D
et

ai
l 

A
&

U
 

O
ve

ra
ll 

APP 6 5 6 

C&C 2 1 2 

LGP 2 6 5 

MINIPAR 5 1 4 

SP 2 1 2 

StatCCG 1 1 1 

 
In addition to creating the kind of subtlety profile of the parsers that is given in 
Table 10-11, subtlety can also be taken into consideration directly in the 
evaluation measures. Equation 9-1 suggested a way in which these factors can be 
applied in preciseness evaluation. I have already defined in Equations 10-1 and 
10-2 how the level of detail can be measured. The factor for underspecification in 
the output of scheme o is formulated as follows: 

factoro = oscore+1     (10-3) 
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In Equation 10-3, scoreo refers to the underspecification rate for the output scheme 
o given in Table 10-10. The ambiguity factor is equal to the average number of 
analyses per sentence given in Table 10-10. Table 10-12 gives the preciseness 
evaluation of the parsers that takes the subtlety of the output schemes into 
consideration according to the above definitions. 
 
Table 10-12. The preciseness evaluation of the parsers that takes the subtlety of 
the output schemes into consideration. F-scores were obtained from Table 10-2. 
The column labeled “Detail” indicates the score for the level of detail in the 
parser’s output as defined in Table 10-10. The figures in the columns labeled 
“Ambiguity” and “Underspecification” were obtained based on Table 10-10 as 
defined above. The column labeled “Score” gives the preciseness score for the 
parser as defined in Equation 9-1.  
 
 
 
 
 
 
 
 
 
 

*The differences between the pairs APP/LGP and SP/C&C were considered too small to make a 
reliable ranking between the parsers. 

 

10.7 Overall Results and Comparison 
 
Table 10-13 shows an overall comparison of the parsers based on their average 
rankings according to the five criteria: preciseness, coverage, robustness, 
efficiency, and subtlety. 
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APP 70.7 5 1.3  1.0  1.0006 91.9   5* 

C&C 84.6 2 2.5  1.0  1.0 212.2   2* 

LGP 48.5 6 2.5  1.26  1.0 95.6   5* 

MINIPAR 83.8 2 2.1  1.0  1.0 172.5   4 

SP 85.7 1 2.5  1.0  1.0 214.9   2* 

StatCCG 84.0 2 3.8  1.0  1.0 323.0   1 
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Table 10-13. An overall comparison of the parsers. The column labeled “Rank” 
indicates the final comparative ranking of the parsers. 
 
 
 
 
 
 
 
 
 
 
FEPa allows the evaluator to adjust the comparative evaluation scheme for 
particular purposes. What follows are a few examples of how this may be done. 
One may argue that preciseness is the most important evaluation criterion for a 
parser. Quickly produced analyses that cover a wide range of sentences structures 
are of limited use if they are erroneous. In example A in Table 10-13, preciseness 
is allocated a double weight in comparison to the other criteria when calculating 
the average rankings for the parsers. Because a detailed analysis was not regarded 
as crucial for the application for which the parser was being selected, subtlety was 
not used as a factor in the evaluation. This might occur, for example, when a 
parser is intended to be used in a named entity recognizer, in which its most 
important function is to recognize the NP chunks reliably. 
 
In example B, the evaluator has determined that efficiency is not a key factor in 
the particular application for which the parser will be used. This might occur, for 
example, in a text mining system that is not used for real-time queries, but rather 
for mining information that will be used later. Instead of giving the weight one to 
all of the criteria, efficiency is allocated only one half of the weight. 
 
In example C, the NLP application for which the parser was selected was such that 
coverage and efficiency were considered to be the most important evaluation 
criteria. These two criteria are therefore given a double weight. This might 
happen, for example, when one selects a parser for an MT system, in which the 
user inputs need to be handled in real-time and the parser needs to cover as high 
proportion of sentences as possible so that it will be possible to translate the 
sentences. Table 10-14 shows the ranking of the parsers according to each of the 
comparative schemes described above. 
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LGP 5 6 6 4 5 6 

MINIPAR 4 5 5 1 4 4 

SP 2 1 4 5 2 2 

StatCCG 1 3 1 6 1 2 
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Table 10-14. Overall comparisons of the parsers that each emphasize different 
criteria. 
 
 
 
 
 
 
 
 
 
 
 

10.8. Conclusion and Future Work 
 
This section concludes with the findings obtained from the experiments (Section 
10.8.1). Section 10.8.2 considers possible directions for future work. 
 

10.8.1 Experiments and FEPa 
 
The two CCG parsers were the best performers to emerge from these comparisons. 
One could rank either of the two as top performers depending on the comparison 
scheme. The only criteria for which neither StatCCG nor C&C emerged as top 
performers was coverage. StatCCG also failed to rank either first or second in 
efficiency evaluation. The only criteria in which SP performed much worse than 
C&C and StatCCG was robustness. While one could locate the performance of 
MINIPAR in the middle on the basis of the other criteria, it proved to be the most 
efficient of all the six parsers. APP was especially compromised by its lack of 
subtlety and preciseness in comparison to the performance of the top four parsers. 
LGP failed to reach a ranking higher than fourth on any of the criteria and thus 
was ranked last in the overall ranking. 
 
In summary, one may conclude that the results of the present study indicate that 
probabilistic parsers – because of their design – tend to be more robust and to have a 
better coverage than rule-based ones as suggested by the theoretical evaluation in Part 
I of the thesis. However, the sample of parsers that I selected was not large enough to 

allow me to make a general claim. The original observation about the poor 
connection between the theoretical upper bounds of computational complexity of 
formalisms and practical efficiency was also supported by the empirical findings. 
If one excludes LGP, the evaluations also gave clear evidence that more recently 
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APP 5 2 3 3 6 5 4 5 

C&C 2 4 2 2 2 2 2 2 

LGP 5 6 6 4 5 6 6 6 

MINIPAR 4 5 5 1 4 4 5 4 

SP 2 1 4 5 2 3 3 1 

StatCCG 1 3 1 6 1 1 1 2 
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developed parsers are superior in performance to those parsers that were 
developed in the 1990s. The findings moreover confirm the observation made in 
Section 3.4.1.6 that some sentence constructions in English seem unable to fit the 
LG framework.  
 
One finding that should be made based on the experiments relates to the user 
friendliness and documentation of the parsing systems. Despite the fact that all the 
system requirements were met, two of the parsers that were intended to be 
included in this evaluation were unable to function on our machine configuration. 
While all the parsers have a set of parameters that can be adjusted, the 
accompanying documentation about their effects is in many cases insufficiently 
detailed. Some exceptions, however, exist. Such an exception in particular was the 
documentation provided for C&C. From the NLP practitioner’s point of view, the 
process of selecting an appropriate parser for a given task is complicated by the 
fact that the output format of a parser is frequently described in insufficient detail. 
It would also be helpful in many NLP applications if the parser were to indicate 
whether it could parse a sentence completely or not. It would also be ideal if a 
confidence score that indicated the reliability of the returned analysis could be 
provided.  
 
The process of parsing the test material of hundreds of thousands of sentences 
with several parsing systems was neither simple nor straightforward. To begin 
with, most of the parsers crashed at least once during the course of the 
experiments. This is obviously an unacceptable feature in any kind of computer 
software. The C&C parser, for example, terminates when it encounters a sentence 
with two spaces between words. It would be far more convenient for users if the 
parser were automatically to skip or normalize such sentences. 
 
In its first application, FEPa proved to be a useful and practical tool for empirical 
parser evaluations. It can provide a rich and layered picture of a parser’s 
performance and can compare the performances of different systems. While I was 
carrying out these experiments, I made several modifications to the framework 
proposed in paper [5].  
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10.8.2 Future work 
 
There are three general future directions for the type of experimentation described 
in this section. Firstly, the inclusion of more parsers would offer a broader view of 
the current state of the art in parsing. In particular, because of their wide use, it 
would be necessary to include an HPSG and an LFG parser in the experiments. 
Secondly, the evaluation materials could be enhanced both in terms of their size 
and quality. Thirdly, the findings of the experiments could be used for further 
developing the FEPa framework. 
 
One of my most important plans includes the performance of preciseness 
evaluations. The lack of such empirical work is the biggest deficiency in the 
evaluation reported in this chapter. The first phase of such evaluations could be 
carried out by using the PTB and PTB-derived resources such as DepBank and 
CCGBank. CCGBank is a CCG-style treebank that is derived from the PTB-II 
(Hockenmaier & Steedman 2007). If one used this method, one could evaluate PS, 
D and CCG parsers on the same data.  
 
The most obvious directions for work on coverage evaluation would include other 
text genres and even larger collections of texts. One could also pinpoint the most 
problematic types of sentence structures by applying error-mining techniques to 
the results of the experiments. Another extension of this line of research would be 
to include grammatical coverage evaluations. I am specifically interested in 
finding out how well the parsers would handle specific types of LDD 
constructions because they represent one of the greatest challenges in the way of 
extending the current capacity of the best contemporary state-of-the-art parsers.  
 
Several directions for future work also suggest themselves in robustness 
evaluation. One could collect more data for more comprehensive system 
comparisons. One could in addition extend the research to include various kinds of 
noise other than only misspellings. A future researcher might, for example, use the 
corpus of Foster and Vogel (2004) as a source for syntactically distorted 
sentences. It would also be interesting to apply error mining techniques to the 
sentences that parsers fail to analyze.  
 
The weakest part of the comparative evaluation scheme in FEPa are the factors 
represented in Equations 10-2 and 10-3; they are insufficiently motivated. More 
experiments, particularly ones carried out with the use of standard metrics, 
measures and test data, are needed for a more comprehensive definition of these 
aspects of the framework. I believe, however, that FEPa, even in its current state, 
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is quite capable of providing a great deal of illuminating and helpful insight into 
the relative strengths and weaknesses of parsers. 
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11 Conclusions and Future Work 
 
This research comprises an extensive analysis of natural language parsers and the 
relative merits and disadvantages of their respective evaluation methods. In order 
to test the validity of my theoretical assumptions, hypotheses and conclusions, I 
also developed a set of evaluation resources and tools and applied them under 
controlled experimental conditions in order to evaluate a select number of parsing 
systems. 
 
This chapter summarizes the main contributions of this dissertation (Section 11.1) 
and suggests directions for further research (Section 11.2). Four main research 
tasks were identified in Chapter 1. These I grouped into four main categories in 
order to address the following topics and issues: 1) The theoretical analysis of 
parsers, parser evaluation resources and evaluation methodology; 2) The 
development of linguistic resources for parsers and 3) a framework for parser 
evaluation; 4) The application of the developed resources, methods and tools in 
practical parser evaluations. The concerns addressed in Sections 11.1 and 11.2 are 
based on these divisions.  
 

11.1 Summary of Results 
 

11.1.1 Theoretical evaluation of current state-of-the-art parsing 
 
In Chapter 2, 3 and 4, I described the theoretical foundations on which state-of-
the-art parsers are being constructed. I noted in Chapter 2 that a high degree of 
preciseness can be achieved in the preprocessing stages. It appears that these 
figures (close to 100% in segmentation and 96-97% of correct tags in POS 
tagging) are close to the upper bound. 100% accuracy in POS tagging is not 
achievable with the current methods. Probabilistic taggers will always encounter 
training data that contain errors. The rules of a rule-based parser can rarely, if 
ever, be error-free. The only way therefore to improve the preciseness of 
preprocessing is by incorporating segmentation and tagging into the syntactic (and 
perhaps semantic) processing by permitting interaction to take place between the 
preprocessing and latter processing stages. 
 
One can characterize grammar formalisms , as I did in Chapters 3 and 4, on the 
basis of their descriptive power, computational complexity and equivalence to 
other formalisms. On the basis of this analysis I concluded that grammar 
formalisms, which in many respects constitute the foundations of parsing systems, 
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are difficult to evaluate on theoretical grounds alone. A grammar formalism is 
merely a language in which linguistic theories can be expressed. There are many 
different ways of encoding the same linguistic information, and every formalism 
contains its own advantages and disadvantages. It would be invidious to assert 
categorically that one particular grammar formalism is superior to others. It is, after 
all, the grammar theory that the grammar formalism expresses in combination with 
the properties of the formalism itself and, most importantly, with the quality of the 

grammar, that suggests how well a grammar may perform in practice. 
 
It is only possible to predicate superiority on the quality of the grammar itself, 
whether it be automatically acquired or manually constructed. It is in this sense 
that the quality of available grammars, grammar development and induction tools 
becomes a decisive factor in the choice of a grammar formalism. One of the most 
prominent developments in parsing grammars is the development of automatically 
acquired deep grammars. It has often been demonstrated that such grammars can 
outperform their hand-crafted counterparts which have been developed over 
several years or even decades. It is, however, my personal conviction that the 
possible benefits that could be obtained from a combination of manually encoded 
linguistic knowledge and the use of probabilistic information have not as yet been 
fully exploited. This line of research work might well be a precursor to future 
improvements. 
 
An NLP system developer might well find any of the available formalisms suitable 
for the task at hand. English parsers, for example, that are freely available for 
research purposes exist for PCFG and many DG formalisms (such as, for example, 
CG, XDG), LG, CCG, HPSG, and different versions of TAG. The selection should 
be guided by the intended usage of the parser. 
 
After taking expressive power, maturity of theory and the availability of resources 
into consideration, I concluded that LTAG, CCG, LFG and HPSG are currently 
the most attractive and viable grammar formalisms for a parser developer who is 
looking for a suitable formalism for a parsing system. It is their generative 
capacity and ability to handle LDDs that enable to assert that HPSG, LFG, the 
MCSGs analyzed in this work are in fact the most attractive and viable formalisms 
currently available for parser development. I would also add non-projective DGs 
into this group. XDG will offer a number of advantages once the open issues in the 
formalism have been resolved. The lack of free grammar development tools and 
parsers disfavors FDG. 
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It is a more straightforward task to determine the necessary criteria for comparing 
parsing algorithms and computational properties of formalisms: time and space 
complexity are the main factors. Even though one should keep in mind the 
distinction between the theoretical upper bound for complexity and actual 
performance, the findings with regard to search algorithms in Chapters 4 and 5 
could be distilled into the following observation: a practical parsing algorithm 
should be efficient (i.e. use minimum computational work) and robust (i.e. behave 
in a sensible way when parsing a sentence that it cannot analyze fully). 
 
From the point of view of computational properties, CG, LG, MCSGs (CCG and 
LTAG) and PCFG are among the most attractive ones available because of their 
relatively low computational complexity. Much to my surprise, however, the 
efficiency of the LTAG parser that I ran experimentally was, in fact, poor. It will 
be necessary to carry out practical evaluations on HPSG, LFG and XDG and other 
non-projective D parsers in order to verify exactly how they will behave in 
practice. The recognition problems of all these grammars have been reported to be 
intractable. 
 
The observations that I made in Chapter 5 lead me to make the following 
conclusions. Firstly, there appears to be a limit to the performance of parsers that 
use only probabilistic or rule-based approaches. How exactly to combine the two 
approaches is an attractive research proposition.  
 
Secondly, a problem in the typical sequential organization of parsing is potential 
error-propagation. When the output of a component is used as input for the next 
processing level, it may generate errors on that level and might even cause a 
failure to produce a parse. What is needed in such circumstances are more flexible 
processing architectures that allow interactions to take place between the different 
stages of processing. Intelligent ways of combining predictions from several 
sources (each of which is unreliable alone) may result in improved performances. 
This is especially important when one combines information from rule-based and 
probabilistic sources.  
 
Thirdly, apart from the fact that a successful parser relies both on syntactical 
information as well as lexical and contextual information, it is evident that 
researchers will need semantically richer lexical resources and parsing models if 
they are to improve the performance of contemporary state-of-the-art parsers. 
However, as intuitively viable as the idea of using semantic information to guide 
syntactic parsing decisions might appear to be, the incorporation of semantic 
information into syntactic parsing is anything but a straightforward task.  
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The conclusion that one might draw from these findings is that the interaction of 
the levels of linguistic knowledge and processing stages appears to offer great 
potential for improving the performance of the best contemporary parsers.  
 

11.1.2 Designing and implementing linguistic resources for parser evaluation 
 
Linguistic resources play a crucial role in parser evaluation. I analyzed and 
reviewed existing linguistic resources in Chapter 6 and considered the various 
ways in which these resources might be designed and annotated in order to render 
them useful for purposes of parser evaluation. I can summarize the results of that 
analysis in the following way.  
 
Firstly, a comprehensive evaluation experiment requires the use of a diversity of 
linguistic resources. Secondly, the annotation of evaluation resources is a 
demanding task that compels one to make a choice between a more parser-specific 
resource and the preservation of high adaptability in the comparison of parsers. 
Thirdly, the need to balance the requirements of generality and specificity create a 
tension during the process of constructing resources for parser evaluation. Most of 
the resources that one uses in parser evaluation are general in the sense that they 
are also used for other purposes. However, in order to be practically useful, an 
evaluation resource should be sufficiently specific to accomplish the main purpose 
of evaluation – which is to measure how well a parser is able syntactically to 
analyze sentences.  
 
I utilized the results of Chapter 6 in Chapter 7 to design and implement a set of 
linguistic resources that I deliberately created for the specific purpose of parser 
evaluation. I adapted the design of a treebank for Finnish so that it would be 
effective for evaluating parsers. I described, moreover, the design and 
implementation of an annotation tool, DepAnn, for D treebanks. The outstanding 
features of this treebank are the inclusion of diverse text genres, an hierarchically 
organized tagset, the use of an XML-based exchange format for encoding, and the 
fact that the annotation scheme allows multiple analyses to be saved for each 
sentence.  
 
I also described two new evaluation resources for English. These resources can be 
used for carrying out evaluations of coverage, efficiency, subtlety and robustness. 
RobSet will, moreover, be made freely available to users. 
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11.1.3 Deriving an evaluation framework 
 
In Section 9, I described, on the basis my analysis of the parser evaluation 
methods and tools described in the literature (Chapter 8), the FEPa framework for 
carrying out parser evaluations and comparisons. I initiated the experimental part 
of this research project by identifying the following five requirements for the 
design of such a framework: purpose, criteria, metrics, measures and resources. I 
then explained how each of these requirements are addressed within FEPa. Most 
importantly, I explained how parsers are evaluated by FEPa from the following 
five points of view: preciseness, coverage, efficiency, robustness and subtlety. I 
also considered ways of using the framework for comparing the strengths and 
weaknesses of parsers. 
 

11.1.4 Empirical parser evaluations 
 
In Chapter 10, I reported a series of parser evaluations in which I experimented 
with FEPa in practice. I selected six parsers that use five different grammar 
formalisms as the parsers that I wanted to evaluate. The parser that performed best 
in these experiments was C&C, which achieved the rank 1 to 3 on all the 
evaluation criteria. After taking into account the findings from Chapters 3 and 4 
about the properties of grammar formalisms, I concluded that C&C was the best 
parser in this experiment. The good performance of StatCCG confirmed my 
conclusion that CCG seems to be among the most attractive grammar formalisms 
for grammar and parser development – for English at least. 
 
These experiments also confirmed that the performance of parsers has improved 
considerably over the last decade. The best parsers from the comparative 
experiment performed in most cases better than the older parsers of the 1990s, and 
they also produced outputs that were more informative. 
 
FEPa proved its worth as a useful tool for carrying out empirical comparisons 
between various approaches to parsing. But these comparative experiments also 
revealed the number of shortcomings in the initial version of the framework. I 
accordingly implemented changes and amendments to the framework during the 
experiments – but left others for future research. 
 



 

216  

11.2 Future Work 
 
Because this dissertation reports on such a wide variety of topics and experimental 
research undertakings, it has been necessary for me to strike a balance between the 
scope of presentation (the number and variety of topics and problems) and the 
effective range of depth and detail of my approach to such topics and problems. 
Because of this, the research reported in this dissertation constitutes in many ways 
but the first steps towards making a complete set of resources and tools available, 
and using these for empirical evaluations at some time in the future. This section 
outlines several directions for future work. 
 

11.2.1 Theoretical evaluation of state-of-the-art parsing 
 
It appears to be the case that analysis of the theoretical upper bounds of the 
complexity of parsing grammar formalisms is of limited use in practice. The most 
interesting challenge presented by theoretical evaluation is to conduct more in-
depth explorations of the details of the generative capacities of the formalisms. It 
is the ability of a grammar formalism to describe natural languages that remains its 
most important property in a parsing system. 
 
The treatment of LDDs specifically represents itself as an interesting topic in this 
field. Insufficient attention has been devoted to this issue in parser evaluations 
reported in the literature. Apart from the need for theoretical evaluation, there is 
also a great need for practical evaluations that will be based on a set of test 
sentences containing different types of LDDs. 
 

11.2.2 Designing and implementing linguistic resources for parser evaluation 
 
The most ambitious future plan involves the construction of a manually checked D 
treebank. The treebank that I designed for this thesis has not yet been manually 
checked. The manual checking of parser-created analyses is beyond the scope of a 
single dissertation. The treebank is as yet too small for a comprehensive testing of 
a parser’s performance. Both the annotation tool and the treebank are sufficiently 
developed to offer adequate grounds for developing a full-scale treebank for 
Finnish. My hope is that it will be possible to establish a project that will 
undertake the construction of the treebank for Finnish on the basis of the data 
produced by this research. In the project, the annotations would be checked by 
hand and the size of the treebank extended. But because the construction of a 
manually checked D treebank requires huge resources (up to hundreds of 
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thousands of euros by present standards), it remains to be seen how the work on 
the treebank can be continued.  
 
Before a full-scale manual checking process can begin, it will be necessary to 
construct annotation guidelines that will guide the checking process and ensure 
consistent annotation. The annotation tool will be improved during the manual 
checking process by more stringent automatic consistency checks and a higher 
level of automation. In order to obtain fine-grained feedback from errors in 
parsing and morphological analysis, the sub-corpus used for testing grammatical 
coverage could be transformed into a test suite in which the sentences will be 
organized as test items and grouped into test sets. Information about the 
morphological and syntactic phenomena that occur in it would also be added to 
each test item. 
 
An obvious direction for the work on MGTS would be to include other text genres 
and even larger collections of texts. More comprehensive data could be collected 
in order to make robustness evaluation with RobSet more reliable. This work 
could also be extended in the direction of permitting kinds of noise other than 
misspellings, for example grammatical errors. 
 

11.2.3 Deriving an evaluation framework 
 
There are some details of the FEPa framework, most of them connected to the 
comparison of parsers, that need further revision. Such modifications are carried 
out on the basis of practical evaluation experiments with the framework. The only 
way to evaluate the usefulness and ease of use of the framework is by applying it 
in practice and then using the feedback that one gets to improve it. 
 
A set of tools were implemented to carry out evaluations within the framework. 
Such tools would be more convenient to use if they were combined into a single 
full-scale evaluation environment for performing evaluations by using the 
proposed framework. Such a system should be able to make use of several existing 
linguistic resources. It should also be able to provide the user with detailed 
information about all of the five aspects of the evaluation framework. The key 
properties that such a tool would provide would be: 

1. Support for several types of parsers, 
2. support for diverse linguistic resources, 
3. implementations of evaluation metrics and measures for preciseness, 

coverage, efficiency, robustness and subtlety, 
4. tools for browsing, storing and comparing results of separate test runs, and 
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5. a graphic user interface that will permit parse tree viewing and graphs for 
suppressing evaluation results in graphic form. 

 

11.1.4 Empirical parser evaluations 
 
FEPa should be used to carry out more practical parser evaluations so that a more 
comprehensive picture of the current state of the art in parsing will emerge and so 
that researchers will be able to identify the problems of particular parsers. More 
specifically, I see it as essential to include a HPSG, LFG, and FDG parser in such 
experiments in order to determine how they will stand up to a comparison with 
CCG and other parsers. Evaluating an FDG parser, for example, would provide a 
fuller picture of the state-of-the-art in rule-based parsing. Any attempt to include 
an LTAG parser in the experiments were hindered by the enormous computational 
complexity of the system which may reflect the currently immature state of LTAG 
parser development. 
 
Apart from future uses of the FEPa framework to conduct evaluations of other 
parsers, it is also necessary to clarify the role of the subtlety measure in 
comparison of systems. For example, in those cases where the same test set is not 
used for carrying out evaluations, the subtlety measure should take into account 
the degree of difficulty in parsing the test sets. 
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Appendix A: Glossary of Grammatical Terms 
 
The descriptions are based on the following sources: Trask (1993), Crysmann (2006), Van Eijck 
(2003), and Kim (2000). 

 

Term Description 

Agreement 

Agreement is a form of cross-reference between different parts of a 
sentence or phrase. Agreement occurs when one word changes its form in 
dependence on other words to which it is related. For example, “He kick” 
is incorrect, but “He kicks” is correct. 

Argument 
Predicate and argument are the two main parts of a sentence. Arguments 
can be realized as nouns, groups of nouns or sentences. See also predicate 
and predicate-argument structure. 

Argument clustering 

Also argument cluster coordination. In sentences such as “Sponsors gave 
[Harry three balls] and [Robbie some books]” the NPs denoted with 
brackets form argument clusters coordinated by a coordinating 
conjunction (“and”). 

Center-embedding 

A type of structure in which a clause is interrupted by a second clause. For 
example, in the sentence “The ball [that the attacker kicked] hit the post”, 
“that the attacker kicked” is embedded in the clause “The ball hit the 
post”. 

Chunking 

This is also called partial parsing. Instead of recognizing the internal 
structure of the phrases as one does in full parsing, only the base phrases 
(referred to as chunks), such as NPs, VPs and PPS, for example, are 
identified in chunking, even though their structure is left unidentified. 

Coordination 

Coordination refers to the combination of like or similar syntactic units 
into groups of the same category or status. The joined sentence elements 
are referred to as conjuncts. In a coordinate structure, such as “strikers and 
defenders”, conjunctions like “and” or “but” conjoin words or phrases. At 
first glance coordination might appear to be a relatively simple 
phenomenon. It is, however, notoriously difficult for linguistic theories to 
define. 

Constituent 
A part of a sentence that forms a distinct syntactic unit is referred to as a 
constituent. A phrase in a PS tree forms a constituent. 

Conjunction 
Lexical items belonging to this category are used for constructing 
coordinate structures. Examples are “but”, “and”, “or”. 

Control 

In control, a VP complement with no overt subject is interpreted as having 
an NP as subject. For example, in the sentence “The coach asked the 
attacker [PRO to score goals]”, PRO is controlled by the subject “The 
coach”. This is an example of a specific type of control called subject-

control. 

Dependent This is also called a modifier or daughter. In dependency grammars, a 
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dependency relation is defined as the relation between a head and a 
dependent. See also head. 

Ellipsis 

A construction from which an element is missing although it can be 
recovered from the context. For example, the sentence “Defenders can’t 
score goals, but attackers can”, contains an ellipsis, namely the VP “score 
goals”. 

Extraction 

Extraction occurs when a subconstituent of some constituent is missing, 
and some other constituent of the incomplete constituent represents that 
missing constituent in some way. For example, the sentence “The referee 
hated the man thati the goalkeeper sold the ball to ti:” contains left 
extraction represented by the annotation that links the pronoun “that” to its 
trace ti. 

Extended domain of 
locality 

The domain of locality specifies many of the properties of a grammar 
formalism because it defines the domain over which dependencies 
(syntactic and semantic) can be stated. For example, the domain of locality 
in CFPSG, corresponding to a single rule, is one level in a PS tree. The 
term extended domain of locality is used especially with TAGs and refers 
to the fact that the elementary trees are larger units than the rules in 
CFPSG, thus allowing an extended domain over which dependencies can 
be stated. 

Gapping 

Gapping is a type of ellipsis that occurs in conjoined sentences. In 
gapping, the main verb of a clause is missing and the coordinator is 
presented instead. For example, “John kicks the ball and George _ the 
attacker.” 

Grammatical relation 
This is also called grammatical function. It describes connections of a 
grammatical nature between parts of a sentence. The most widely accepted 
GRs include subject, predicate and object. 

Head word 

This is also called head. The syntactically central element of a constituent, 
D link or GR. Most grammar formalisms assume that there is one daughter 
which can be identified as the head among the daughters introduced by a 
rule. For example, the head of an NP is typically a noun. In DGs, a D 
relation is defined as the relation between a head and a dependent. See 
also dependent. 

Immediate 
dominance 

An immediate dominance relation holds between a mother node and its 
daughter in a parse tree if there is no other node between them. For 
example, the rule X → Y Z defines that X immediately dominates Y and Z. 

Lexical item 
This is also referred to as a lexeme. It is an abstract object that has a 
consistent meaning or function but which can vary in form. For instance, 
the lexical item BALL can be realized in the forms “ball” and “balls”. 

Linear precedence 

A relation that holds between two nodes in a parse tree in which one of the 
two is located before (i.e. precedes) the other in left to right order. For 
example, an immediate dominance rule with no linear precedence rules, X 

→ Y Z can be expanded into a structure in which the two siblings of X, Y 
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and Z, may occur in either order. After adding the linear precedence rule Y 
< X, only the expansion Y Z is allowed. 

Local ambiguity 
A type of ambiguity that occurs only when a part of a sentence is 
considered in isolation. 

Long-distance 
dependency 

A dependency in which the two elements may be separated by an arbitrary 
distance. The connection between the elements has to be defined 
recursively. LDDs occur, for example, in wh-questions such as “Whom 
did you give to ball to?”. The word “whom” serves in a sense as the NP in 
the preposition phrase (PP) “to whom”. A constituent (the filler) appears 
to be “dislocated” from its usual place (the gap). 

Predicate 
A predicate must contain a verb and can contain objects or phrases 
governed by the verb. It gives information about the arguments. 

Predicate-argument 
structure 

The predicate and argument are the two main parts of a sentence. A 
predicate-argument structure represents the hierarchical relations between 
a predicate and its arguments. The set of the relations types depends on the 
theory. For example, the following types could be recognized: Agent / 
Experiencer / Theme / Location / Goal. 

Principle 
A statement in a grammatical theory that has universal validity. For 
example, the Head Feature Principle in HPSG projects the properties of a 
head word onto headed phrases. 

Relative clause 
This is a clause that modifies an NP. For example, “The coach is watching 
the defender [the scout told him about]”. 

Right-node raising 

A construction that consists of a coordination of two sentences that lacks 
its rightmost constituent when a single further constituent appears on the 
right filling the gaps in both sentences. For example, “The goalkeeper 
passed, and the attacker kicked, the ball.” 

Self-embedding 
A phrase is self-embedding if it is embedded into another phrase of the 
same type and is there surrounded by lexical material. For example, “The 
attacker the defender the goalkeeper helped blocked stumbled.” 

Simplex sentence 
A simplex sentence consists of a single clause, and thus has one predicate 
and one subject. 

Small clause 

A small clauses is a minimal predicate structure. It lacks a finite verb. 
Small clauses usually occur within full clauses and may act as the direct 
ovject of the verb. For example, “The attacker [wearing red shoes] passed 
the ball”. 

Topicalization 
In topicalization an element of a sentence is marked as the topic. For 
example, in English topicalization is done by preposing the element. For 
instance, “[This ball] is round.” 

Tough-movement 

Movement of a direct object of a verb to appear as the subject. For 
example, the sentence “It is hard to please the coach.” changes to the form 
“The coach is hard to please.” by the tough-movement of the direct object 
“the coach”. 
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Well-formedness 
A well-formed structure is consistent with all the requirements of the 
grammar.  

Wh-item 
A lexical item that serves to ask a question. For example, “who”, “why”, 
“where”. 

Wh-movement 
A construction that consists of a wh-item that appears in a sentence or 
clause-initial position 

Wh-relative clause 
A relative clause in which the relative pronoun is of wh-type. For 
example, “The attacker [who scored five goals] was suspended.” 
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