UNIVERSITY OF JOENSUU
COMPUTER SCIENCE
DISSERTATIONS 19

Tuomo KAKKONEN

FRAMEWORK AND RESOURCES FORNATURAL LANGUAGE

PARSER EVALUATION

ACADEMIC DISSERTATION

To be presented for public criticism with the pessmn of
the Faculty of Science of the University of Joensutdall
H30, Agora building, Yliopistokatu 4, Joensuu, on
December 3th, 2007, at 12 noon.

UNIVERSITY OF JOENSUU
2007



Julkaisija Joensuun yliopisto

Tietojenkasittelytieteen ja tilastotieteendait
Publisher University of Joensuu

Department of Computer Science and Statistics

Vaihdot Joensuun yliopiston kirjasto/Vaihdot
PL 107, 80101 Joensuu
Puh. 013-251 2677, fax 013-251 2691
email: vaihdot@joensuu.fi

Exchanges Joensuu University Library/Exchanges
P.O. Box 107, FI-80101 Joensuu, FINLAND
Tel. +358-13-251 2677, fax +358-13-251 2691
email: vaihdot@joensuu.fi

Myynti Joensuun yliopiston kirjasto/Julkaisujeymti
PL 107, 80101 Joensuu
Puh. 013-251 4509, fax 013-251 2691
email: joepub@joensuu.fi

Sales Joensuu University Library/Sales of Palibns
P.O. Box 107, FI-80101 Joensuu, FINLAND
Tel. +358-13-251 4509, fax +358-13-251 2691
email: joepub@joensuu.fi

ISBN 978-952-219-058-1 (paperback)

ISSN 1796-8100 (paperback)

ISBN 978-952-219-059-8 (PDF)

ISSN 1796-8119 (PDF)

Computing Reviews (1998) Classification: 1.2.7,.B.4
Kopijyva

Joensuu 2007



Supervisors

Professor Erkki Sutinen
Department of Computer Science and Statistics
University of Joensuu, Finland

PhD Stefan Werner
Department of Linguistics
University of Joensuu, Finland

Reviewers
Associate Professor Mike Joy
Department of Computer Science
University of Warwick, Coventry, United Kingdom

PhD Krister Lindén
Department of General Linguistics
University of Helsinki, Finland

Opponent
Professor Tapio Salakoski
Department of Information Technology
University of Turku, Finland



FRAMEWORK AND RESOURCES FOR NATURAL LANGAUGE
PARSER EVALUATION

Tuomo Kakkonen

Department of Computer Science and Statistics
University of Joensuu

P.O. Box 111, FI-80101 Joensuu, FINLAND
tuomo.kakkonen@cs.joensuu.fi

University of Joensuu, Computer Science, Dissenatil9
Joensuu, 2007, 264 pages

ISBN 978-952-219-058-1 (paperback)

ISSN 1796-8100 (paperback)

ISBN 978-952-219-059-8 (PDF)

ISSN 1796-8119 (PDF)

Abstract

Because of the wide variety of contemporary prasticised in the automatic
syntactic parsing of natural languages, it has ipecmecessary to analyze and
evaluate the strengths and weaknesses of diffaggroaches. This research is all
the more necessary because there are currentlgme@-gand domain-independent
parsers that are able to analyze unrestrictedvwékt 100% precisenesg! use this
term to refer to the correctness of analyses asdifpy a parser). All these factors
create a need for methods and resources that casdoketo evaluate and compare
parsing systems. This research describes: (1) Areieal analysis of current
achievements in parsing and parser evaluationA 2amework (called=EPg) that
can be used to carry out practical parser evalusitamd comparisons. (3) A set of
new evaluation resource&iEval is a Finnish treebank under construction, and
MGTS and RobSetare parser evaluation resources in English. (4 fdsults of
experiments in which the developed evaluation fraoré& and the two resources for
English were used for evaluating a set of seleptaders.

Keywords parsing, natural language, evaluation, linguistgources
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1 Introduction

This thesis reports research into the syntactisipgrof natural languages and
evaluation of parsing systems. In this work, teghes and algorithms for parsing
have been analyzed and compared on the theorktied) and resources, methods
and tools for the practical evaluation and comparisf syntactic parsers have
been designed and implemented. natural languageis a language that has
evolved through use in a social system, and is bgdtluman beings for everyday
communication. Agrammar specifies the rules for how each sentence is
constructed from part®arsingis the process of identifying the syntactic stunet
of a given sentence. Aatural language parselis computer software that
automatically performs parsing and outputs thecttinal description of a given
character string in the context of a specific graannThe output of a parser is
called aparse and it describes the structure of a particularlyaea language
fragment.

1.1 Motivation

Because of the ubiquity of the Internet among otfamtors, the amount of
available textual information has grown explosivaty past decades. This has
resulted in an ever-increasing demand for softwlaaé can automatically process
the information contained in natural languages.tHa early days ohatural
language processingNLP), the complexity of processing natural langeswas
drastically underestimated by most researchersiiadoin that field. Although
their work was largely unsuccessful at the timeg first applications were
developed in the 1950s fanachine translatio(MT) (see, for exampld,ocke &
Booth (1955)). Later successful applications ineluslystems forinformation
extraction document summarizatipnmessage classificationand question
answering.

Parsing is not usually a goal in itself, but a paiis used as a component of NLP
and artificial intelligence (Al) systems. Education is a novel applicatioridfiéor
parsers and other NLP techniques. Parsing systeenapplied, for example, in
computer-assisted and automatic assessment ofefxeeesponses (i.e. essays)
(Hearst 2000, Kakkonen & Sutinen 2004). The abitlityprocess natural languages
plays a key role imnformation retrieval(IR) (Baeza-Yates & Ribeiro-Neto 1999).
The analysis of syntactic and semantic structigegecessary for advancing from
data retrieval (exact searching based on numernt structured data) towards
more “fuzzy” retrieval of information from textudhta.



One can get some idea of how great the current wéroa NLP applications has
become at the time of writing (August 2007) by lmakat theEuropean Union
(EU) with its 27 member states and 23 official laages (Mariani 2005, European
Union 2007). Multilingualism has become one of th&n economic, political and
cultural challenges in the EU because of the dedimember states to preserve
their languages and cultures while taking for gednthe possibility of inter-
lingual communication among the citizens of the Ebe cost of the translation of
documents and having hundreds of interpreters o ha translate between the
506 language pairs call for investigating the usHIdP systems for automating at
least part of the processes.

Evaluation plays a crucial role in NLP ammbmputational linguistics(CL).
Evaluation methods and tools are needed to allevdiévelopers and users to
assess, enhance and choose appropriate systemayskais 1998). It has become
clear that standardized evaluations and system aosgns need to be undertaken.
The contemporary interest in evaluation in the aes® community has inspired
initiatives such as th&valuation in Language and Speech Engineel(iBYSE)
project of the EU (Clark 2005), starting a bianngahference series entitled
International Conference on Language Resources Evaluation (LREC), first
held in 1998, and launching a journal entitleshguage Resources and Evaluation
in 2005 (Springer 2005).

My motivation for undertaking research into parsealuation was stimulated by
the fact that there are no genre- and domain-intibgre parsers that are able to
analyze unrestricted text with 10Q8teciseness This deficiency brought home to
me the need for linguistic resources, methods aal$ for evaluating parsers and
comparing the characteristics of parsing systembnguistic resources a set of
machine-readable language data and descriptioreseTdre several types of such
resources such as spoken and written corpora,aler&tabases, treebanks and
terminologies.Treebanksfor example, are collections of syntactically atated
sentences that serve as the “gold standard” tohwparsers’ outputs might be
compared. There are as yet no linguistic resowsc#able for parser evaluation in

! Instead of utilizing the commonly used term “acoyfal prefer to use the term “preciseness” to
refer to the correctness of analyses assigneddayser. | intentionally also avoid using the terms
“accuracy” and “precision” because of their techhiase in evaluation contextest accuracy
refers to the proportion of instances that havenlbm®rectly classified. It is therefore logical to
use the term “accuracy” to refer to the percentafeonstituents/dependencies or sentences
correctly parsed.Precision is commonly used as a measure of preciseness atioalu
“Preciseness” is a more general term that incltldeskind of evaluation that uses the accuracy or
precision as an evaluation measure. See Sectibn8.8., 9.3, 10.2 and 10.6.3 for more details.



Finnish. While linguistic resources do exist for giish, there is a need for
resources that are built for the needs of parsauation.

An evaluation methodlefines the way in which th@erformanceéof a parser may
be quantified. Arevaluation frameworkonsisting of the resources and methods
can be used by practitioners of NLP to comparesthengths and weaknesses of
diverse parsers and by parser developers to ghide work by pinpointing
problems and providing analytical information abautparser’'s performance.
There is, in addition, a lack of comprehensive eatbn tools that can facilitate
practical evaluations. Anevaluation tool is a software program that
operationalizes an evaluation method or a set aluetion methods.

1.2 Syntax and Parsing

Table 1-1 lists the seven levels of knowledge afirad languages distinguished by
(Allen 1995).

Table 1-1.Types of knowledge of language. The levels mdsveat to this work
are highlighted (Allen 1995).

Type of knowledge Function
Phonetics and phonology{ow words are related to the sounds that realigmth
Morphology How words are constructed from basic units
Syntax How words can be put together to form sentences
Semantics Meaning of words and sentences
Pragmatics How sentences are used in different situations

. How preceding sentences affect the interpretatian o
Discourse )

succeeding sentence

World knowledge General knowledge about the world that languagesysessess

Morphology is the study of word formation. The morphologipabcesses of a
natural language create completely new words odworms from a root form.
Syntaxis the linguistic study that describes how a lagguuser combines words
to form phrases and sentenc8smanticss the study of the meanings created by
words and phrases. It is the purpose of naturguage parsers to describe the
syntax of the input sentences, usually without egfgrence to semantics (Sikkel
1997). Some parsers can also perform a morphologitalysis to capture the
structure of individual words.

2 In this work, the worgberformancaefers to the quality of a parser relative to ecific criterion.



Syntactic parsing is a prerequisite for understagdpeech or written text. A
system for understanding a natural language usirmalydes the processing stages
that are illustrated in Figure 1-1.

(" Input: "Pele kicked the ball) v
v | World knowledge interpretatiqn
| Syntactic parsing | I
v (Expanded representation \
( Parse tree ¢ \
P " object: the n¢t
NP, VP
M W NP5
| N kick |-(OBJECY)

\ Pele kicked the ball )

INSTRUM. shoe

Semantic interpretation LOCATION
Internal representation v

machine translation system

Question answering,
(AGENT) kick |<(OBJECY) etc.

Figure 1-1. The stages of processing in a language understasgsiem (adapted
from Luger & Stubblefield 1998).

Figure 1-1 shows how the results of syntactic parsare combined with
information about the meaning of the words in atesece to perform semantic
interpretation for creating an internal represeatabf the meaning. An expanded
meaning representation can be created by addingtstes from a world
knowledge base. Contemporary NLP systems neither decess to the amount of
world knowledge possessed by human beings, nothasecapable of reasoning
from available knowledge as well as humans.

1.3 Perspectives on Evaluation

Before an evaluation of a computer software toal ba carried out, a set of

criteria needs to be defined. In parser evaluativese could include, for example,

correctness of the output, efficiency and usabilltye correctness of a parser can
be measured by checking the output produced bytemsy Evaluating the output

of a parser requires one to make judgments aboait gtammaticality or



“correctness” of the structural descriptions asstghy the system. The efficiency
of a parser can be measured in terms of how armpatifizes time and space. The
usability of a system can be measured by, for edanmgsking users’ opinions
about how easy or otherwise it is to use the system

Parsers can be evaluated from the point of viewlefelopers, end-users and
managers (TEMAA 1996Developerseed to be able to track the progress of the
system with which they are workingEnd-usersneed to know how different
parsers compare so that they can select a paiseistbest suited to their needs
and requirementdvianagersneed to have information on which to base decssion
about resource allocation. Although parsers aral e components of NLP
applications, the evaluation of parsing systemsnctirsolely be based on a
comparison of their performance as parts of whpstesns.

An important distinction for this research is be#weintrinsic, extrinsic, and
comparative evaluation (Sriniveet al 1998, Hirschman & Thompson 1998).
Intrinsic evaluation focuses on measuring the performanae sshgle parser and
on detecting errors in its output. Intrinsic evaioa also provides the developers
of parsers with a means to identify the changes améndments that would
improve parser performancExtrinsic evaluation means the process of evaluating
a parser when it is an embedded component of an &pigfcation. This kind of
evaluation is based on the performance of the wNalE application rather than
on a direct observation of the parser and its ed@ttime. This type of evaluation
is especially useful for end-users and managerausecit allows them to select an
appropriate parser for the task at ha@Bdmparativeevaluation means comparing
different parsers and it is useful for both endrsisand system developers alike.

This research makes use of both intrinsic and coatipe methods. Comparative
evaluation is the more complicated of the two bseadirstly, it is difficult to
make direct comparisons because parsers often iffeeedt types of output
formats, and, secondly, the comparison of diffeesnen efficiency is not
straightforward because parsers utilize differemdigpamming languages and
different platforms (Unix, Windows, Linux).

1.4 Research Tasks
Four research tasks were identified:

a) Theoretical analysis of current achievements itestéthe-art parsing and
parser evaluation;



b) Design and implementation of linguistic resourcasdvaluating parsers of
Finnish and English;

c) Derivation of a framework for parser evaluationsd a

d) Carrying out practical parser evaluations by udimg created resources,
methods and tools.

Parser evaluation, like any research, is built lb@ toundations of the earlier
research methods and findings. A researcher neetle tompletely conversant
with the theory, methods and algorithms of pardiefpre he or she can devise
new evaluation practices or undertake parser etrahsa(research tash). It is
furthermore of utmost importance to appreciate anderstand the evaluation
resources, methods and tools at his or her dispbstdre undertaking any
practical research into parser evaluation.

Since no suitable linguistic resources are avaldiolr parser evaluation for
Finnish, it is necessary first to construct suctoueces before evaluating parsers
of Finnish (research tad¥. An annotation toal for example, has to be designed
and constructed before the treebank can be createth a tool facilitates a quick
and error-free annotation process. In addition ésighing the Finnish resource,
two evaluation resources for English were consgdiets a part of this research.

Practical parser evaluations and comparisons cabheotindertaken without a
comprehensive evaluation framework and evaluatamistfor carrying out the
experiments (research tas. While several evaluation methods have been
devised and some practical evaluations undertdkese evaluations have usually
concentrated on a single item of parsers’ perfogearin order therefore to
undertake this research, | had to design an evaluitamework and implement a
set of evaluation tools.

In the final phase of the research, | carried optagram of practical evaluations
of selected parsers by using the resources, metaondstools created for this
purpose (research tadk I, moreover, compared the results of these exyens
with the findings of the tasks b andc.

1.5 Research Methods
The syntactic parsing and evaluation of parsersarisinterdisciplinary field

because it combines Clinguistics computer scienceand mathematics The
interdisciplinary nature of the work is reflectad several ways, but especially



strongly in the conduct of state-of-the-art parsiile a dissertation in computer
science obviously has to be technically anchoresearch in the field of parsing
and CL requires a firm grounding in linguistics amdamiliarity with disciplines
usually associated with the humanities. Even thotigh adoption of multiple
perspectives has increased the complexity of thlisedation, the incorporation
and fusion of two usually distinct academic fietsisknowledge has been one of
the main challenges and most important contribstmithis work.

Taska comprises a critical literature review and an gsialof the methods used in
natural language parsing. It also includes an amalyf the structure and content
of linguistic resources for evaluation, and a dation of a set of practices that
should be employed in designing and annotatinggpagaluation resources. Task
b consists of an application of the practices thasetbped to the design and
construction of new evaluation resources. On tiseshaf the findings of tasks |
also devised a set of evaluation criteria for parsed defined evaluation metrics
for each of the relevant criteria (task In addition, a set of software tools was
designed and implemented for carrying out parsafuations. Taskd has two
main aims: the testing of the developed evaluaftiamework and the evaluation
and comparison of a set of selected parsers. Fifjtebelow illustrates the
connections between the four tasks.

7

/V
I

Figure 1-2 Connections between th
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research tasks.

For the practical part of this research, namelydbasign and implementation of
the evaluation resources, methods and tools, ikedilthe taxonomy of research
methods devised by Jarvinen & Jarvinen (2001).

Researches stressing utility of innovatigns

Innovation building Innovation evaluating

Figure 1-3. Those parts of Jarvinen & Jarvinen’s (2001) taxoynaf research
methods (relating to the creation and evaluatiommbvations) that are relevant to
this research.

The methods from the taxonomy of Jarvinen & Jamvi(001) that are relevant to
purposes of this thesis are those that describaitility of innovations, namely



building and evaluating innovatior(§ee Figure 1-3 above). While the evaluation
of natural language parsers can be regarded asamationof an innovation, the
development of evaluation framework, tools, resesr@and methods can be
regarded as thduilding of an innovation. In this thesis, | have applied a
innovation building approach to building resourcesethods and tools for
evaluating innovations (research tagkandc). | have, in addition, applied the
built innovation in practice in my evaluation oftaeal language parsers (research
taskd).

The evaluation of a natural language parser carvibeed as a controlled
experiment in which as many factors as possiblelshioe under the control of the
researcher (Jarvinen & Jarvinen 2001). But Mas@8&) notes that tightness
(rigidity) of control and the richness (complexityf) reality are two properties that
need to be compromised and traded against one eanathany controlled
experimental design. As control over experimenbalditions increases, the results
of the experiment become less relevant to real diteations and thus less
applicable or generalizable. This axiom is espciatportant in the design and
construction of parser evaluation resources. Whdsources that consist of
artificially constructed test sentences may indeddw for highly controlled
experiments, experiments that use such resouredsss generally applicable and
useful than evaluations that are based on natusaetiyrring running texts.

1.6 Structure of the Thesis

The dissertation is organized as follows: PartHjolw consists of Chapters 2, 3, 4
and 5, addresses parsing technologies. Chapté&dsdhd 4 describe the current
state-of-the-art in parsing technology. Each secgods with an analysis of the
methods discussed and underlines their respecthemgths and weaknesses.
Chapter 5 contains a discussion of the issues laaltboges in parsing.

Part Il is concerned with parser evaluation resesircChapter 6 analyzes the
existing linguistic resources that are applied farser evaluation purposes.
Chapter 7 begins with the description of the dedmnthe parser evaluation

treebank for Finnish, and continues by describiregEnglish evaluation materials
that were created for this research.

Part Ill is concerned with parser evaluation methadd tools. Chapter 8 analyzes
existing methods and tools for parser evaluatiohe Teveloped evaluation

framework,FEPa is described in Chapter 9.



Part IV of the thesis analyzes the results of thesgr evaluation and concludes
with the findings. Chapter 10 compares the pard®rsapplying the FEPa

framework and the developed resources. In addttotie goal of evaluating the

selected parsers, the aim of the research is ttuaeathe FEPa framework.

Chapter 11 summarizes the key findings of this wan#l states possible directions
for future research.

The following papers and articles are publisheaieers of the themes and content
concerned with the dissertation. In each of theepgp was the main author. In
those papers with two authors, the second authed as supervisor.

[1] Kakkonen, T.: Dependency Treebanks: Methodsndiation Schemes and
Tools. Proceedings of the 15th Nordic Conferenc€aiputational Linguistics.
Joensuu, Finland, 2005.
The paper contains a survey of existing dependéresbanks and the
methodologies and tools used for constructing thEme. research reported
in this paper provided the requirements specifocatind design basis for
the DepAnnannotation tool and tHeéEval treebank.
[2] Kakkonen, T.: DepAnn - An Annotation Tool forependency Treebanks.
Proceedings of the 11th ESSLLI Student Sessiometl8th European Summer
School in Logic, Language and Information. Malagpain, 2006.
The paper introduces the DepAnn annotation togbjags its design and
provides information about its implementation.
[3] Kakkonen, T., Werner, S.: The Annotation Schdorean Evaluation Treebank
of Finnish Proceedings of the Biannual Conference of the e®pcifor
Computational Linguistics and Language Technoldgiingen, Germany, 2007.
The paper introduces the design and content oévaduation treebank of
Finnish (FiEval) and discusses the reasons whyowaridecisions were
taken.
[4] Kakkonen, T.: Developing Parser Evaluation Reses for English and
Finnish. To appear in the Proceedings of the 3rilid&onference on Human
Language Technologies. Kaunas, Lithuania, 2007.
This paper describes the linguistic resourcesltdaveloped as part of this
research. Two of these resources consist of Engégts and one of
Finnish texts. | describe the status of the resiend justify the decisions
that | made when designing them.
[5] Kakkonen, T., Sutinen, E.: Towards A Framewdok Evaluating Syntactic
Parsers. Proceedings of the 5th International CGené® on Natural Language
Processing. Turku, Finland, 2006.



This paper offers a survey of parser evaluationhoag and outlines a
framework for experimental parser evaluation. Theppsed framework
focuses on intrinsic evaluation and provides usgfidrmation for parser
developers. We also discuss ways of using the fraorlein comparative
evaluations.
[6] Kakkonen, T.: Robustness Evaluation of Two CGGPCFG and a Link
Grammar Parsers. Proceedings of the 3rd Languadedanology Conference:
Human Language Technologies as a Challenge for QtenpScience and
Linguistics. Poznan, Poland, 2007.
Robustness refers to the ability of a device toecaeyth exceptional
circumstances outside its normal range of operatiguarser is robust if it
is able to deal with phenomena outside its normagie of inputs. | carried
out a series of evaluations of state-of-the-ars@ar in order to find out
how they perform when faced with input that corgaimsspelled words. In
this paper, | also propose two measures for evaluabased on a
comparison of a parser’s output for grammaticaltrgentences and their
noisy counterparts. | used these metrics to comgp@reerformance of four
parsers and analyzed the decline in each of theeparperformance as
error levels increased.
[7] Kakkonen, T., Sutinen, E.: Coverage-based Eatadn of Generalizability of
Six Parsers. To appear in the Proceedings of thied Timternational Joint
Conference on Natural Language Processing. Hyddrahdia, 2008.
We carried out a series of evaluations of diffetgpes of parsers using texts
from several genres such as newspaper, religisnatad biomedicine. This
paper reports the findings of these experiments.

Papers [2], [5], [6] and [7] were accepted based &ull review and papers [1], [3]
and [4] based on the abstract.

Figure 1-4 illustrates the structure of the thesid the publications related to each

chapter. Table 1-2 summarizes the chapters ofhtbgis and relates each chapter
to the research tasks and the papers published.
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1. Introduction

Il Resources for evaluation

languages

I Syntactic parsing of natura

2. Preprocessing

6. Analysis of existing resourcels
and schemes ]

7. New evaluation
resources [1, 2, 3,

Syntactic analysis

3 Grammars

4 Parsing algorithmg

Evaluation methods anc
tools

5 Parsing: problems & solutions

and tool: [5]

8 Analysis of existing methods

9 FEPa — A framework fd
evaluating parsers |

IV Evaluations

10 FEPa in use [6, 7]

11 Conclusion

Figure 1-4. The structure of the dissertation and the pubboat based on the

content of each chapter.

Table 1-2.The structure of the dissertation.

Research
Part hapter Paper
a Chapte task apers
2 Preprocessing a -
| Syntactic parsing of 3 Syntactic analysis — Grammars a -
natural languages 4 Syntactic analysis — Parsing algorithms a -
5 Parsing: problems and solutions a -
Il Linguistic resourceg 6 Analysis of existing resources and schemes ap 1
for evaluation 7 New evaluation resources 1,2,8,4
Il Evaluation methodg 8 Analysis of existing methods and tools a,c 5
and tools 9 FEPa — A framework for evaluating parsers C 5
IV Evaluations 10 FEPa in use cd 6,7

11 Conclusion and future work

Although this thesis is in the field of computeresce, it assumes a familiarity
with the fundamentals of linguistics. Readers wieunfamiliar with the concepts
of morphology and syntax may care to refer to AmiderA that contains a
glossary of grammatical terms and terminology. Teetbooks of Tallerman
(1998), Katamba (1993) and Haspelmath (2002) arengnthe best sources of
further information. A reader who is already weltgaainted with parsing

11



technologies might prefer to concentrate on Partdlland IV, which cover the
main contributions of this work. However, since tHafraws together a great deal
of scattered information about different approachesparsing, it offers new
perspectives and insights into parsing researck. @ihe main challenges in the
theoretical analysis of the contemporary practicesyntactic parsers was the
heterogeneity of the concepts and notations usethdyesearchers in the field.
This work analyzes different approaches by usirplzerent set of concepts and
uniform notations.

As far as | know, this thesis represents the onillgliphed review of current best
practices in parsing and parser evaluation on ghae. Apart from conference
papers and journal articles that describe a siogknly a few evaluation schemes
or resources, this thesis is the first work on @argvaluation to deal
comprehensively with this topic by covering thematand practical evaluation as
well as evaluation tools and linguistic resources évaluation. The example
sentences in the thesis were either invented bwdligor or taken from literature
and adapted to a single genre, football.

12



| SYNTACTIC PARSING OF NATURAL LANGUAGES

2 Preprocessing

Before the syntactic analysis can be performedutinpentences must be
preprocessedFirstly, the units (sentences and words) neetheadentified by
segmentationSegmentation methods are introduced in Sectibnl@.the second
place, it is necessary to perfopart-of-speeci{POS) tagging andisambiguation
(the process of selecting the correct tag fromtakeossible tags) (Section 2.2)
and a morphological analysis (Section 2.3)syntactic analysi¢Chapters 3 and
4), the syntactic structures of each input sentemeedentified and marked. The
labels assigned to words to denote their POS, nodwgltal and syntactic roles
are calledags A tagsetis the collection of tags used for a particulaktaFigure
2-1 illustrates the sub-processes of syntactidmgrs

Input
| The attacker's responsibility is to score goals. The attackeemlly restricts his play to the... |
Segmentation
Sentences |The attacker's responsibility is to score goals. | | The attacker generally restricts.... |
Words The [attacker's] fesponsibility || is [ score | "[ goals |
dPOS tﬁglgin_g | [ The | fattacker's] [responsibility
and morphologica ; ey i3 : :
anpalysisg determiner: : noun i noun verb : ;
L.atdicle.. minative |
. v £ l /
Dis- The httacker's| [responsibility is
ambiguation e . \
determiner; : noun i noun verb i {infinitive
L.adicle...i i genitive | inominative present tense i { marker ...
i.singular_i i singular..! i3rd.person singular B ’
S1
Syntactic —
analysis Py VP
N}E’; resp;;iswbwlity i;-' 52
The attacker 's VP,
N
to WP 4
///\\\
score  NPj
goals

Figure 2-1. Segmentation, POS tagging and disambiguation, nobogical

analysis, and syntactic analysis. These processesoften interwoven. POS
tagging and morphological analysis, for examplee aypically performed
simultaneously.
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2.1 Segmentation

Segmentation, the process of identifying the tenitsy consists ogentenceand
word segmentatiarSegmentation is an essential part of preprocgssirorder to
assign structural descriptions to a sentence amavtirds in it, it is necessary first
to identify these unitsThe methods used in sentence segmentation canaifie
be applied to word segmentation.

Sentence segmentation is complicated because ddd¢hénat end-of-the-sentence
punctuation marks are ambiguous. In addition toette of sentence, a period can
denote, for instance, an abbreviation or a decpoait. An exclamation point and
a question mark may occur within parentheses otagjoa marks. Furthermore,
the use of abbreviations, dates, and so on, depmntise texgenre. The number
and type of ambiguous punctuation marks therefamy wremendously between
texts.

Example 2-1 Two sentences that illustrate period-related wsegmentation

decisions (adapted from Palmer 1994):
The game was rescheduled to Saturday 5 p.m. Suvaldg be too late.
The game was played at 5 p.m. Saturday to avoicaihe

In its simplest form, a word segmenter consisty @fla set of rules that reduces
any sequence of spaces, tabulation marks and m®s to a single space, and
considers everything between two spaces to beentoktokenis a sequence of
alphabetic characters or digits or a single notatipimeric character.

One solution to the segmentation problem is toragelar expression grammars
that set out to identify patterns of characters$ signal the way in which sentences
end (for example “period-space-capital letter”) I(Rexr 1994). More advanced

% It is simpler to segment texts in languages tisatlLatin or Cyrillic alphabets that indicate word
boundaries with spaces and punctuation marks thanim languages that use Chinese-derived
writing systems (Grefenstette & Tapanainen 1994hil&/ most published work in word
segmentation report on segmentation in Chinesg,résearch is limited to segmentation for the
Latin alphabet.

* The classification of texts in terms of domainnige register and style is a rather controversial
issue (see, for example, discussion by Lee (20819etailed analysis of these issues falls outside
of the scope of this thesis. The purpose of thieach is not to investigate the classification of
texts but rather to undertake a practical evalnatind assessment of the extent to which any
typology of texts exerts an influence on parsingfqyenance. | have therefore adopted a
simplified approach by indicating differences betwdexts by using the woigkenre One may
think of genres (in this sense) as indicating funelatal categorical differences between texts that
are revealed in sets of attributes such as doneain 4rt, science, religion, government), medium
(e.g. spoken, written), content (topic, theme) Bmpe (narrative, argumentation, etc.).
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systems also take into account the preceding atckeeding words, and make use
of lists of abbreviations and proper names. Wheey thave been properly
configured, such systems achieve an accuracy fate t 99%.

Karttunen (1996), for example, proposes a word segation approach based on
finite-state transducers(FSTs). The word segmenter is based on FSTs
accompanied by a list of multiword tokens. Yet &eotapproach is to use
extensive genre-specific word lists and name retiognroutines as well as
modules that analyze the structure of words. $AGZ systenfPalmer 1994) is
based on neural networks witlescriptor arraysthat represent the context that
surrounds punctuation marks. Such contexts are lexdsy the probability that
POS tags will precede and also succeed words. ImeéPa experiments the
system achieved a 98.5 to 99.3% accuracy with Emgeerman and French data
after an automatic training with between one huddred a few hundred training
examples.

Modifying a segmenter until it is able to cope witdw text genres and languages
can be difficult. For example, a segmenter based mrgular expression grammar
cannot be easily adapted. These special-purposenges are limited to the text
genre for which they were developed, and any attémpdapt them to different
genres or languages would be complicated. The egebarrier to accurate word
segmentation involves the recognition of words tl@anhot occur in the word lists
of the segmenter.

It is therefore far more practical to devise a nahle algorithm that can
compensate for such inadequacies rather than émpttto construct a single
exhaustive word list or a series of genre-spedigis. Without going into details
about the inner workings of such systems, one nggmve that accuracy rates of
up to 80% can be achieved with English de-segmetabed (texts in which the
spaces have been removed and word boundaries aexplitly indicated) after
training with only 4,500 sentences. Another examgpfea highly adaptable
approach is Chanod and Tapanainen’s (1996) systemvhich segmentation is
interleaved with morphological analysis.

® A finite-state machindFSM) is a model composed of a finite number eftest, transitions
between those states, and actions. In contrast ESM that has a single tape, an FST consists of
two tapes. The tapes are typically viewed as antitgpe and an output tape. The transducer
translates the contents of its input tape to itputitape.
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2.2 Part-of-Speech Tagging and Disambiguation

In POS tagging, the appropriate word class tagiieraatically assigned to each
word? The process of selecting the correct tag fromt @fspossible tags is called
POS disambiguatiofsee s Section 2.2.3). The size of tagsets vaaesiderably.
For example, the widely used POS tagsets for Hngiamely théBrown Corpus
(BC) (Francis & Kucera 1979) and tRenn TreebankPTB) (Marcuset al. 1993)
tagsets, consist of 87 and 45 tags respectivelfiniDens of the task that a POS
tagger performs are given in Definition 2-1.

Definition 2-1. POS alignment and grammatically correct POS aligmt.

Let 5=(01 05...0y), be a sentence, wheigi = 1,...n are the words. L€l = (t;
t,...t; be a sequence of POS tagsi = 1,...n. The pair ¢,T) is a POS
alignment of a sentence. Agrammatically correct POS alignmens an
alignment in which the POS tag for each word habmrrectly assigned. For
an ambiguous sentence, there exists a set of gracafha correct POS
alignments.

The task that a POS tagger performs is to findgrenmatically correct POS
alignment(s) for each sentence in the input.

Example 2-2.POS tagging result for the sentence "The attackesponsibility is
to score goals W = (The attacker’s responsibility is to scoreatg), T =
(Determiner Noun Noun Verb to Verb Noun).

The<Determiner> attaCker,SNourP f95p0n5ibi“t¥woun> iS<Verb> tc’<to> SCOr&verb> goal&Noun>-

The two basic approaches to POS taggingraleebasedand probabilistic The
earliest POS taggers were composed of a set of¢@mmstructed rules and a small
dictionary. In such cases tagging was based on wampgerties such as an initial
capital letter, suffixes and contextual informatibased on the succeeding and
preceding word. The third approactiansformation-basedagging, combines
components from both the rule-based and probabihs¢thods (Brill 1995).

® The classical set of POS classes includes thewfi: noun verb, adjective article (or
determine), preposition adverh conjunctive adverbcoordinate conjunctionand interjection
While such a set of classes is often used to tgaammar in schools, it is not adequate for a
comprehensive syntactic description but serves aslya basic set that most linguists and POS
tagging systems would use as a starting point.

16



2.2.1 Probabilistic tagging — from extended ruled®a methods to Hidden
Markov Models

In a probabilistic tagger the probabilities for P@&s for each word are
automatically learned from a training corpus. Tiebgbilistic model assigns the
most probable tag for each word in the input. Tingt forobabilistic tagger by
Stolzet al (1965) used a small dictionary and rules for tagghe most common
words, and applied probabilities derived from a oadly annotated text for words
that could not be identified by either the rulesha dictionary.

Since the development of the fundamenkiiden Markov Model(HMM)
methods during the late 1980s, HMMs have been widskd for POS tagging
(for example,Church (1988) and DeRose (1998)). In these HMM-thassgram
models, it is typical that a simplifying assumptisnmade in order to reduce the
number of probabilities to be estimated (Weischextebl 1993). Rather than
assume that the current wovg depends on all previous words and tags, one
assumes the tagdepends only on the previoosl tags, and not all the previous
tags. For example, a 3-gram model assumes thairdiability of each tag can

be approximated by its local context consistingheftags;., andt.;; P(t, |ti_2,ti_1).

The taggers by Weischedet al (1993) and Merialdo (1994) are fully HMM-
based. The probabilities can be estimated for anvHiiglgging model by using
either supervised or unsupervised learning (Wetdehet al 1993, Merialdo

1994). While training is undertaken with the usenmdnually annotated data in
supervised learningtraining data is not annotated in the caseau$upervised

learning

Maximum entropfME) (log-linear) models such adXPOS(Ratnaparkhi 1996)
and theStanford POS taggdiToutanova & Manning 2000), have been successful
in tagging. ME is a method for analyzing availaipii®rmation from a noisy set of
data in order to determine the probability disttibn. These models offer a way of
combining diverse pieces of contextual evidencg. (dae surrounding words) in
order to estimate the probability of a certain P@§ occurring in a specific
linguistic context (Ratnaparkhi 1997a). The progedused by ME modeling is to
choose the probability distributiop that has the highest entropy of all
distributions that satisfy a certain set of constsm

For instance, in MXPOS the context is typicallyidedl as the sequence of several
words and tags preceding the current wovd (Ratnaparkhi 1996, 1997a).
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Ratnaparkhi defines the probability model owex T, where H is the set of
possible word and tag contexts (referred tohesorieg, and T is the set of
permitted tags. The probability of histonytogether with tad;, p(h;,t;), is defined
as:

K f.(h.t

p(hi’ti)zﬂu_ﬂlaj ht) (2-1)

J:
In Equation 2-17 is a normalization constan{u,a,,...a,} are the model
parameters andf,.....f,} features, wheref;(h,t;)0{01}. Features encode

information that contribute to predicting the tahw. These include the tags
precedingw; and the spelling ofy;. A feature may activate (and is set to 1) on any
word or tag in the historly. Each parametesr; corresponds to a featuke These

are set in the training phase to maximize theilk&d of the training data.
2.2.2 Transformation-based methods — combining uknd probabilities

Transformation-based error-driven learning, a coration of probabilistic and
rule-based approaches, has been applied to PORda@;yill 1995). Therewrite

rules for assigning the correct tags are learned auioalgt by statistical
inference. The rules are derived fromansformation templates.Figure 2-2
illustrates how the tagger works.

| Unannotated te>1t
v

Initial state

Annotated text | | Truth |

P
Learnel —’| Rules |

Figure 2-2. Transformation-based tagging (Ramshaw & Marcu$199

The transformation rules are learned in the follayway (Figure 2-2). First, in
the initial state, words are set with an initiad tay assigning the most likely tag or
the noun tag to each word. Secondly, all the ptessiansformations are applied
to the unannotated training text, and this createsotated text Thirdly, the
tagging produced in the second phase is comparethetdruth, a manually

" A transformation contains two components: a rewritle and a triggering environment. An
example of this is: “Change the tag from IN (prefos or subordinating conjunction) to RB
(adverb) if the word two positions to the rightas’.”

18



annotated text. Finally, the transformation rulattyields the highest reduction in
tagging errors is chosen and applied to the legraorpus. The process continues
until no transformations are found that reducestter rate.

2.2.3 POS disambiguation

The complexity of the tagging problem is causedthmy fact that an ambiguous
word may have several possible tags. Words that loawe possible POS tag are
called unambiguous In the BC, for example, about 11% of the worde ar
ambiguous between two or more POS tags (Charni@)1®Words have up to

seven possible tags in the corpus. Since ambigwouds tend to be words that
occur frequently, over 40% of the word instance&saanbiguous.

POS disambiguatiorselecting the correct tag for each word, is maagpler by
the fact that the various tags for a word are goiady likely. While some taggers
try to guess a single POS tag for each word, otleage some ambiguities
unresolved. One approach to POS disambiguationglya@onstraint Grammar
(CG), is to use manually written constraints thiova for the discarding of
contextually illegitimate ones from a list of albgsible readingsfor a word
(Voutilainen & Heikkila 1993). A constraint coulthr example, remove all finite
verb readings of a wond if the immediately preceding wox.; is “to”.

2.2.4 Analysis

This section analyses the POS tagging models oradkes of their accuracy in
assigning correct tags, and considers the wayshicharcurrent best practice in
tagging might be even further improved.

The earliest, dictionary-consulting and rule-baBP&S tagging methods achieved
an accuracy of somewhat over 90 per cent, measisrte percentage of the same
tags assigned by the system and human taggers(Bl&immons 1993). The
most obvious disadvantage of rule-based POS taggetbods is the unavoidable
labor-intensiveness of rule writing. Training a Ipabilistic tagging model would
reduce the need for such efforts. Table 2-1 congptre results obtained with the
taggers discussed above.

8 A reading represents the word paired with its R@8 other morphosyntactic tags. Clearly, an
ambiguous word has more than one reading.
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Table 2-1.An overview of the results in POS tagging. Thailssare taken from
the papers cited. The same data (Beal 1988) wakinsdl experiments.

Training set
Tagger Approach Accurac
99 bp (words) y
Weischedeét al (1993) HMM 64,000/~1,000,0006.3/96.7
Merialdo (1994) HMM ~1,000,000 97.0
MXPOS (Ratnaparkhi 1996) ME ~960,000 96.4
Stanford tagger (Toutanova & Manning ME ~1,000,000 96.9
2000)
Brill (1995) Transformation, , /600,000 | 96.7/97.2
-based learning

State-of-the-art HMM taggers achieve an accuraty edaround 97% when they
have been trained with supervised learning. Unstigesd learning is useful when
no manually annotated data is available. In theegrpents of Merialdo (1994),
the accuracy dropped by roughly 10 percentage paihen unsupervised learning
was applied. Using just 100 annotated sentencesrdaring outperformed the
accuracy achieved by the unsupervised method. possible to define and
incorporate much more complex statistics in the fvdfnework if one does not
restrict oneself tm-gram sequencésBut this, as is indicated by the results above,
does not seem to boost practical performance.

Samuelsson and Voutilainen (1997) reported a cosgrawith a rule-based CG
tagger and Church/DeRose type trigram HMM-taggers BC data. The results of
the experiment are summarized in Table 2-2.

Table 2-2.The accuracy of CG and HMM taggers reported oreckfit ambiguity
levels (Samuelsson & Voutilainen 1997). Parentleskizalues are obtained by
interpolation.

Ambiguity % tags correct

(tags/word) | HMM CG
1.000 95.3
1.026 (96.3) 99.6
1.051 96.9
1.070 (97.2) 99.9

The results in Table 2-2 give an insight both itite relative accuracy of the two
approaches and the effects of unresolved ambiguitgccuracy. In addition to the
fact that CG was superior to the HMM-based taggehis experiment, the results

® The model by Toutanova and Manning, for exampieluides features that check whether all the
letters of a word are uppercase. It also checkstiméext until the preceding verb is activated
when the word contains an uppercase characteisamat at the beginning of a sentence, etc.

9 The HMM-tagger was trained with 357,000 words frive BC and tested with 55,000 words.
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show that the performance of the HMM tagger suffawasiderably when it is
trained and tested on different corpora as was dase in Samuelson &
Voutilainen’s experiment. Words unseen in the trggnphase accounted for
2.01% of the errors.

Entwisle and Powers (1998) point out that one hadé circumspect about

accepting the percentage accuracy scores for PQ@ersa reported in the

literature. When CG, for example, which is one loé tmost accurate taggers
available, was tested with a test set, it becanpargnt that 18.0% of the words
were assigned more than one tag and that 94.8%eo#vbrds had a correct tag
among the suggested tags. Thus, only 82.0% of threlsvhad been assigned a
single, correct tag.

Although the accuracy rates given above are ordicative (because not all the
experiments were performed with the same sets & RB@s and training data),
they still offer an insight into the progress madehe POS tagging and current
state-of-the-art practices in tagginghe accuracy figures for the two types of
probabilistic POS taggers -HMM and ME-based — agy wimilar. While a rule-
based tagger, CG, has the highest reported accuedeyin the literature, this is
achieved partly by assigning, in some cases, nwag bne tag per word. This of
course makes it easier to achieve a high levetaofiacy. This feature, however, may
be an advantage in those cases where a taggetr ableato decide the correct tag for
a given word. Retuning one tag that is incorrectida@ause the sentence analysis to
fail in later stages. It is difficult on the basithese results alone to state definitively
that either of these two approaches is better tiraother.

Progress in achieving greater accuracy rates magsélground to a halt in recent
years. Ratnaparkhi (1996) notes that the accurécstate-of-the-art taggers at
around 96-97% represents the upper limits of whatlme achieved, or is at least
close to it. Because manually written rules andj¢gigtraining and testing corpora
will always contain errors and inconsistenciess impossible in practice to reach
a 100% accuracy rate. Errors in POS tagging legarablems in later stages of
parsing. Such errors may in fact be the single nropbrtant source of error in

parsing (Dubey 2005). As | shall point out laterSection 5.1.1, precise POS
tagging can greatly boost the overall performarfce marser.

Near-100% POS disambiguation accuracy is achievably by taking into
account the syntactic contexts in which the wordsuo. This means that rather
than as preprocessing, POS tagging should be pegtbiparallel with syntactic
analysis.
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2.3 Morphological Analysis

Morphological processingSection 2.3.1) deals with the analysis and geitera
of word forms!* In the context of syntactic parsing, one is conedrwith the
former — with analyzing the surface form of a wart producing the output that
represents the morphological features of any giwsrd. In morphological
analysis, one recognizes the structure and morpgtualb properties of words
(Sproat 1992). A morphological analyzer(“word parser”) is needed for
automatically computing the word information (SentR.3.2).

2.3.1 Morphology and morphological processing

The morphological processasf a natural language either create word formsfro
the root form or new words. Inflectional morphologyword forms appropriate to
a particular context are formed from the root attivord (Sproat 1992). In word
formation, on the other hand, a word is transforiméadl a different word either by
derivationor bycompounding? The main difference between inflection and word-
formation is that the latter is never required pgtax, whereas the former is often
necessitated by particular syntactic contexts.amrorphological analyzer used in
a syntactic parser, the main concern is therefogartflectional morphology. This
is especially important in parsers of highly infledt languages such as Finnish or
Turkish. Table 2-3 shows examples of some words tedr morphological
analysis.

Table 2-3 Examples of morphological analyses. The firstuool gives the
original word form while the second column shows thorphological features
that are the result of the analysis.

Word form Morphologically analyzed form
players playeknoun> <plural>
kicked kiCk<verb><past tenseO I(iCked<adiective>

ru n<noun><5ingular>or
MUNcyerh> <present tense><non-3rd person sinqu >ru r‘|<verb><past perfect>

run

ball ba”<noun><singular>or ba—"<verb><present tense><non-3rd person singular>

™ n linguistics, a unit callecnorphemerefers to what is the common sense notion of alwar
morpheme is the smallest meaningful constituerd dhguistic expression (Haspelmath 2002).
For example, the word “unbeatable” consists ofédhr®rphemes: “un-“ (meaning nat “-beat-*
and “-able”. “un-“ is also a prefix, “-able” is afix.

21n derivation, derivational suffixes or prefixesjch as “-ment’, “ism”, “anti-*, and “dis-“ in
English, are added to the input word to form a weitth a different meaning that might belong to
a different POS category. In compounding, two orariexemes are combined into a compound
word.
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An approach to morphological processing that issdasn looking up full-form

dictionary entries is bound to fail because of tpheoductive nature of
morphological processes (Sproat 1992). On the @mal,hthe word lists would
eventually become too large to store and processth® other hand they would
never be complete because new words are constaitly generated.

Because most of the forms are formed according ¢oeal and regular
morphological processes, a morphological analyaer store the base forms and
compute the other forms according to the rules. Twst common type of
morphological analyzer used as a component of syatparser finds all the
possible forms of a word and lets the parser dewitieh one of them is the most
appropriate for that context.

2.3.2 The two-level model

The two-level model (TWOL model) (Koskenniemi 1984) offers a good
introduction to morphological analyzers for two seas. Firstly, the
computational mechanisms used in TWOL are commapyplied in other
morphological analyzer$.Secondly, th&KIMMO system, which is based on the
model, is one of the most successful and most widstd morphological analyzer
(Sproat 1992).

A word is represented in the TWOL model as a diréetter-to-letter
correspondence between its lexical form and itdasarform (Koskenniemi &
Church 1988). Theurface representatiors typically a phonemic description of
the word-form, like “tackled”. Théexical representationfor exampletackle+ed,
tackleyems + <past tense-IS @ description of the root and affixes of a edf a language
has phonological alternations, the two represenmtatare not identical. The task of
the TWOL rule component is to account for discrepes between these
representations.

'3 |t would be impractical even to attempt to updsieh lists — especially foagglutinative
languagessuch as Finnish and Turkish. While English mayehavimited inflectional system, its
derivational morphology is complex. One can, foraraple, derive the forms “computer”,
“computerize”, “computerization”, “computational*recomputerize” etc. from the single root
“compute”.

* The original Koskenniemi (1984) TWOL model was eleped forconcatenative morphology
in which words are formed by concatenating seriesmorphemes together. Concatenative
morphology is especially interesting, since it lie tmost common model cross-linguistically
(Sproat 1992). In agglutinative languagenflectional morphology is based wholly on
concatenation.
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The KIMMO morphological analyzehas two main components: the rules and the
lexicon (Karttunen 1983). Théexicon lists all the morphemes and specifies
morphotacticconstraints. Theules describe the phonological and orthographic
alternations of word forms. Figure 2-3 illustratd®e main components of
KIMMO, and Figure 2-4 illustrates the structuretioé lexicon in KIMMO.

RULES LEXICON
SURFACE FORM 1 £ LEXICAL FORM
tackled---->| RECOGNIZER |---> tackle+ed
¢ (tacklewverb> + <past tens)
tackled <---" GENERATOR |-~ tackle+ed

Figure 2-3. The main components and functions of the KIMMO pinaiogical
analyzer (adapted from (Antworth 1994)). The recogmapplies the rules and the
lexicon to recognize surface form input and thetpots the lexical form of the
word. The generator generates surface forms framexical forms given as the
input.

k —i —c +k
<noun:
Root d—e—f —e—n-+—d-—=-¢€+—r
lexicon <verbs <noun:
a—t—t—a—c+—k—+e+—r
<verbs <nouN:
T s
Noun suffix SROSAEIN
lexicon S
~Shlural>

Figure 2-4. Lexicon in the TWOL model. Each lexical entry isarked with
information of its POS andontinuation patternsindicating zero tox morpheme
lexicons that can be applied to the word. For exanthe continuation patterns of
the nouns “defender” and “attacker” would indicttat the search can proceed to
the continuation lexicon of noun suffixes.

The TWOL rules and the lexicon are separated ftomaprocessing components. It
is therefore a relatively straightforward matter adapt the model to new
languages because the program itself remains umduSproat 1992). While the
system was originally implemented for an analy$igianish, it was later adapted
to several languages such as English (Antworth 199drkish (Oflazer 1994),

Turkmen (Tantg et al 2006), Korean (Kimet al. 1994), and Japanese (Alam
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1983), many of which have typological propertiesteulifferent from those of
Finnish.

2.3.3 Analysis

As | have noted above, the most common interadietween the morphological
and syntactic analyzers in a parser consists of rttwephological analysis
component providing a complete list of possiblelgses for a word and the
higher-level component selecting the most apprtgriarm. It would, however,
be more desirable to have a bidirectional inteoactietween the morphological
and syntactic analysis that would allow one to theesyntactic context to guide
the analysis of complex word forms and compoundisor

A unique feature of the TWOL model compared to titeer morphological
analysis methods of that time was that it was apple to a wide range of
languages, even to ones with a nonconcatenativepholmgy, after some
modifications. Furthermore, it is relatively straifprward to modify the model for
new languages. Several augmentations and improusrhaxe been introduced to
the KIMMO analyzer. In the original system, theasihad to be coded manually.
Rule compilation is an error-prone activity thati€dor a detailed understanding
of the TWOL model and its rules (Karttunen & Begsk001). Koskenniemi
(1986) developed a rule compiler for automaticatiystructing the FSTs from the
rules.
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3 Syntactic Analysis - Grammars

The most complex task that a natural language paeseto perform is syntactic

analysis. The two main parts of the syntactic aialgomponent of a parser are
the grammar and theparsing algorithm (Pereira 1998, Zaenen & Uszkoreit
1998)* The grammar encodes the linguistic rules and psdiow each sentence
is constructed from its parts. The parsing alganitipplies the rules defined by the
grammar to a given input. Theutput schemeefines the format of the parser’s
output. Figure 3-1 summarizes the main componemdstlae structure of natural

language parsers.

Grammar || | Outputschem

v v

[ Natural language inpgmi» Parsing aIgorithré—»[Structured outp}Jt

11%

/

Figure 3-1. The main components of a parser: the grammaringaasgorithm and
output scheme.

Grammars can be characterized and compared in ditiegent ways. In Chapters
3 and 4 | use two different approaches. On the baed, grammars are
characterized in terms of their linguistic propestsuch as background, linguistic
assumptions, the way in which they classify strings grammatical or
ungrammatical, and type of analyses they offer f@ra3). On the other hand, |
also approach the classification of grammars fropracessing perspective and
include the computational complexity of the gramsnand their suitability for
computational purposes (Chapter 4).

The purpose of this chapter is not to provide ahaestive introduction to the
types of grammars (i.grammar formalismsthat have been developed, but rather
to identify and discuss the reasons why specifigesy of grammars can be
successfully applied in practical parsing systelscause of the number of
grammar formalisms that exist, it would not be flassin a work of this nature to
examine all the formalisms that are applied in ipgrslet alone the variants that

> The predominant paradigm in the study of syntaxgéserative, originating from Noam
Chomsky’'s Syntactic Structuresfirst published in 1957. In this work Chomsky reaka
distinction betweemerformancgthe process that actually determines what a speeikesay or
how an utterance is understood in a context) @mpetencéan abstract characterization of a
speaker’'s knowledge of the language). The distincthetween the grammar and the parsing
algorithm may be referred to as the distinctionMeetn Chomsky’s notions of competence and
performance. Competence refers to the set of abgtubes that express our knowledge of the
language while performance is defined in termsanf vell we actually use these rules.
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exist in grammar formalisms. | will therefore cardimyself to looking at the most
well-known formalisms that have been successfuliyliad in existing parsers and
to discussing their most interesting theoreticaltdees. The conclusions | reach
may be useful both to parser evaluators and to Ej$?em developers who are
looking for a suitable parser for their application

3.1 Structural Representation

Syntactic structures are often depicted as trepezhatructures. They are often
referred to aslependencyD) or phrase structurgPS) trees, depending on the
kind of representation format they use. While Desralescribe sentences with
dependencies between words, PS trees illustratasgbrand the relationships
between themFigure 3-2 shows examples of both a D tree anfl ade.

Dependency structure Phrase-structure
sentence

noun phrase verb phrase

determiner noun verb noun phrase
DE \PCOMP
the | goal | | the || ball |[ is | preposition noun phrase
DET .
determiner noun
the

[ the [[ goal |

Figure 3-2.Dependency and phrase structure trees for thersent@he ball is in
the goal”.

A D tree shows only the word nodes, and these iaked to one another with
directed binary relations that are called D linkee D tree of a sentence forms a
DAG that consists of a number of nodes that araleiguthe number of words in
that sentence. A PS tree by contrast shows thesaafrd sentence in the form of
the terminalsin the leaf nodes. Theonterminalsbetween the root and terminal
nodes indicate how the sentence is constructed dmmstituents

The amount of detail in parsers’ outputs variesnfrone parser to another.
Shallow parsers, in comparison to deep parsergjupm a flatter analysis that
represents only a part of the sentence structuoadp 1997). Figure 3-3 shows an
example of the differences between a shallow pamslea deep parse.
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NP WP PUNCT

"
N
DET N v

the team played Theopers teamys playedys <punct>

PRED played [the tearfNP [playedVP
PRED team
SUBJ
{SPECIFIER thei|
TENSE past

Figure 3-3. Examples of deep parse (on the left) and shallakgeg(on the right)
for the sentence “The team played.” While the sialparser has performed POS
tagging andchunkingof NPs and VPs, the deep parser has produced ple@m
parse tree and has, in addition, offered inforrmagibout the grammatical roles of
individual words (such as whether they are pred&asubjects, objects, and so
on).

In the following, | analyze the differences betwd2mand PS representations and
the consequences of different levels of detailansprs’ outputs. | also focus on
the suitability of the two representation formats dlescribing different kinds of
languages and analyze how suitable they may bepfeific NLP tasks.

The status of the two representation types, PS @nds a matter of some
controversy (Nivre 2002). While PS has been favdmgdthe transformational
syntax community since the time of Chomsky’s easlgrks, there are many
researchers who regard the D structure as the fomodamental one. But there are
other theories that describe both representatisnsimitive. A PS-tree represents
the structure of a sentence in a linear form dsagncof words, and illustrates it as
a part-whole construction (Tarvainen 1977). The etelencies between the
constituents are not distinctly shown. In conttaghis, a D tree marks the phrase
categories only implicitly. It also does not shdw word order.

D trees are better suited to representing the tsires of languages that have a
relatively free word ordef® Because such languages possess a rich morphology,
their word order is freer to express syntactic fioms. Another advantage of D
trees is that they offer a straightforward inteefdoetween syntactic and semantic
representation (Covington 2001). D trees can captouch of thepredicate-
argument structuréPAS) which is often needed in practical NLP agtliens.
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The PS representation is especially useful for esging languages with very
limited variations in word order (Covington 1996)eer variations often produce
discontinuous constituentthat are split up and that are therefore linked by
overlapping edges. Structures of this kind can egueblems in PS tre&sFigure
3-4 illustrates just such a case.

/‘5\
VP NP
Adj NP N
~
Adj Y, Adv N
ultima Cumaei venit iam carminis  aetas
last Cumean has-come  now song age

Figure 3-4. An example of word order-related problems in atfe® (Covington
1990).

The current debate about the relative merits ofhand PS trees emphasizes
integration and cooperation (Dahl 1980, Schnei®8). While some elements of
PS representation are better for handling certalenpmena (such as
coordinatior), D relations permit free word order. One shougb aonsider that a
D tree that specifies word order can be convertader certain conditions, into an
equivalent PS tree and vice versa (Covington 1998,& Palmer 2001, Nivre
2002).

The reason for selecting either shallow or deeggssing must be based on the
NLP application to which the parser will be put (B& King 2002). Whereas
dialogue and MT systems, for example, need in-dspiitactic analysis, a more
shallow analysis may be quite adequate for IR, agEssunderstanding and
information extraction systems (Oepeh al 2000). One of the advantages of
shallow parsing, in comparison to deep syntacticsipg, is that it can be
performed more quickly (Grishman 1995). It is alsibten easier to modify a
shallow parser than it is to modify a deep syntaptirser. But deep parsing can

'8 | anguages such as Russian, Latin and Korean pexteibsive variations in word order. On the
other end of the scale there are languages suEhgish, Chinese and French. Finnish, German
and Japanese, among others, fall somewhere bethesntwo extremes.

" Many proposals, includingssambling rules(e.g. Ross (1967)) anB/LP formalism(Gazdaret

al. 1985) and its modification by Uszkoreit (1987)védeen made in order to accommodate
discontinuous constituents and other word ordetedl phenomena into the PS framework. None
of them has been completely successful.
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provide better generalizations across semantitioak® and capture paraphrasing
relations between syntactic structufeBecause of the richness of the information
that they produce, deep parsing models can aleo eftimates about how reliable
their analyses might be (Oepen al. 2000). This information can be used for
avoiding erroneous output and for ranking analyses.

3.2 Basic Concepts and Formal Properties of Grammar

3.2.1 Basic concepts

Any language consists of strings that are represeas segments of symbols of a
given alphabet. We can define this formally in tbiéowing way:

Definition 3-1. Symbol, terminal and alphabet.
A symbolis a distinguishable character, such as “a”, “b”"“@’. Any
permissible sequence of symbols is callgdraninal (also referred to as a
word). A finite, nonempty se} of terminals is called aalphabet

Definition 3-2. String and sets of strings.
Let )’ be an alphabet. A finite sequence of syml&rfx; X,...x,), n=0,
x0Y is called astring in alphabef.. Thelength|S| of string S is. The
empty stringis the sequence of length O; written > * is the set of all
strings inY.. In addition,> "= >*- { £}.

Definition 3-3. Language and sentence.
Let > be an alphabet. Any subsktof >* is called alanguage over
alphabeb . Sequence =(a; a,...a,), whereg; OLOi1<i<n, nONis called
asentencen languagd..

A language follows the rules of a given grammar endepresented by using a
particular grammar formalism.

Definition 3-4. Grammar, lexicon, rules.
A grammarG is a description of a languafie A grammarG consists of a
lexicon and rulesA lexicon is a structure defines the terminals in a
languageRulesdescribe how the terminals combine into largeitiest

'8 For example, the structure of a main clause isétme whether the verb is “to succeed” or “to
fire”.
% For instance, “X tackles Y”, “Y was tackled by XY, who tackled X".
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Definition 3-5. Language generated by a grammar, derivation, gedioah and
ungrammatical strings.
Let L(G) denote that grammag generatesanguagel. The process of
grammar rule applications is referred todesivation L(G) is the set of
sentences that can lkerived by the grammarG. The sentences that
grammar G generates are referred tgrasnmatical The sentences that are
not generated by G are referred taiagrammatical

Definition 3-6. Grammar formalism and grammatical theory.
A grammar formalismis a language used for expressing grammars. A
grammatical theoryis the set of statements expressed in a grammar
formalism.

The recognition problem is connected to the quesfia given string is in a given
language. The parsing problem is concerned withkihes of structures that are
assigned to a given string.

Definition 3-7. Recognition problem and parsing problem (Ristad3200vre
2005).
Therecognition problem(RP) is characterized by the question “Is a given
string in a given language or not?”. Tparsing problemanswers the
question: “What structural descriptions are assigmga given grammar to
a given string?” The parsing problem is tied to tberresponding
recognition problem; only strings In(G) are assigned an analysis in the
parsing process. Most parsing algorithms in fabtesthe recognition and
parsing problem simultaneously.

Definition 3-8. Fixed language and universal recognition probldRistad

1986).
A language may be characterized in terms of algtlaenmars that generate
it. This is referred to as tHeced language RPIt can be stated as follows:
“Is the stringSin a languagé&?” Another way to characterize a language is
by a particular grammar that generates it. Thiseerred to as the
universal RP(URP), and can be stated as “Is the st@& g a given
grammarG?” The URP is connected to a specified grammar,thod, is
more closely connected to the parsing problem.

Example 3-1.Let a grammar formalism consist of a set of terisina set of

nonterminals and a set of rules. The nontermingdstlze “building blocks” that
allow rules to combine terminals and nonterminate larger entities. Lef be a
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terminal alphabetN a nonterminal alphabet aftla set of rules. The@G=(, N,
R) is a grammar expressed in the grammar formalism:
2 ={x vy}
N = {S}
S - xSy
{S - &

There are two terminalss andy, in the grammar. The nonterminal alphabet
consists of the start symb8I The ruleR state that can be rewritten asSy or as

an empty string. Grammas generates the languadgG) ={x”y”}, nO N. To
generate a string with this grammar, we begin lith symbolS successively
rewriting it according to one of the rulBsuntil we cannot rewrite any longer. One
string can be derived from another by choosingnaite rule whose left-hand side
(denoted withn) matches a sequence in that string and by regdabat sequence
with the right-hand side of the rule (denoted wgh For example, the string
“xxyy can be derived by the gramm& by applying the ruleS-xSy as
S-xSy-xxSyyand finally the ruleS-¢ as xxSyy-xxyy. Thus, the string is
grammatical. The stringyyyX cannot be derived by G and is ungrammatical.

3.2.2 Context-free phrase structure grammars andrtsformational grammars

The grammar formalisms abntext-free phrase structuggammars(CFPSG) and
transformational grammargl Gs) form the theoretical basis of several foismas
used in modern parsing syster®irase structure grammai$SGs), originating
from the works of Bloomfield (1933) and Chomsky %929 1965), are designed to
study the structure of phrases. A CFPSG is a spagge of PS grammar.

Definition 3-9. Context-free phrase structure grammar.
A context-free phrase structure grammiara 4-tuple G = (N, P, S)
where
1. Nis afinite set ohonterminal symbols
2. Y is afinite set oferminal symbols>’'n N =0.
3. P :{a - BlaO N,,BD(ZDN)*} is a finite set oproduction rules
4

SON is a distinguished symbol called thentencesymbol.

For example, the rul8 — NP VPstates that a sentence is a type of phrase that ca
be composed of aoun phrase(NP) and averb phrase(VP). The rules of a
CFPSG state how to replace a nonterminal withoytraference to the context in
which a nonterminal is located (Charniak & McDertd85). Aphrase structure
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rule (PS rule) specifies two relationgfmmediate dominancélD) between a
mother ¢ dominate{}) andlinear precedencéLP) relation among the daughters
(the order of the symbols ¢¥) (Gazdart al 1985)2

In contrast to surface-oriented grammatical forem$ such as CFPSG, TGs
assume at least two separate but related leveigntdctic representation. Just like
CFPSGs, a TG specifies the permissible sentenca$anfguage by using PS rules
(Chomsky 1965, Charniak & McDermott 1985). PS ridedd adeep structure
which is then modified byransformational ruledo producea surface structure
Deep structures are able to capture underlyingasiities and differences between
surface structures. TG is multistratal formalism. A multistratal grammar
formalism employs representations in which thecstme of a sentence consists of
two or more representations, particularly represt@ms which are described in a
uniform way.

3.3 Grammar Formalisms for Parsing

This section introduces the types of techniqueshbgbilistic, lexicalized and
transition networks) used by grammar formalismsc(iga 3.3.1) and a set of
grammar formalisms applied in modern parsing systé®ections 3.3.2 to 3.3.6).

3.3.1 Probabilistic, lexicalized and transition neork models

In probabilistic grammar formalisma probability is associated with each rule.
For exampleprobabilistic context-free grammai®CFGs) can be characterized
as CFPSGs that assign to each production the pilitpadf its use. A PCFG
(Booth & Thompson 1973) is a 4-tuple G = ®l, P, S) like a CFPSG (Definition
3-9), except that each rule khis associated with a probability in whiehwill be
expanded t@.

20 PS rules are of the—pB kind. The symbols listed off are obligatory unless they are in
parentheses and must occur in the order listed.
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Definition 3-10. Productions in probabilistic context-free phraseuctre
grammar.
1. P={o -~ BaON,0(X0ON)*},
2. There is a probability functionp: P—[0,1] such that for each
alON,Y p(a N ,6’|a)=1.

Example 3-2.PCFG rules and their probabilities.

roP p(r)
SSNPVP 0.7
S-VP 0.3
NP—N 0.6
NP>NPP 04
VP—V 05

VP—V NP 0.5
PP-P NP 1.0

Lexical information has a fundamental role in det@ing the properties of a
syntactic structurd.exicalized grammarsontain a small set of grammar rules and
a large lexicon (Miyaet al 2003, Joshi & Schabes 1997). Let us consider the
effects of lexicalization by looking at the phrd$ke green banana” (Charniak
1993). Since “banana”’ is not a noun that occursy w&ten, a probabilistic
grammar without lexical sensitivity would add a Iquwobability to the word
“banana” by using the rule—banana But the rule itself has no knowledge of the
actual context in which the substitution of arto the word “banana” is taking
place. Because of this, more frequently occurriagns, such as “year” or “day”,
would be assigned higher probabilities despiteféioe that, in the given context,
“banana” is clearly the more likely choice.

Each rule in a lexicalized grammar is associateth van anchor word. For
examplea lexicalized CFPSG is a 4-tuple G = (&, P, S) just like a CFPSG in
Definition 3-9 except that each productionfns associated with an ancher

Definition 3-11. Production rules in a lexicalized context-freegsa structure
grammar.
P={o - BaON,B0(XZ0ON)*a(X0N)*}, whereais a distinguished word

in the lexicon, that is referred to as the anchor.
A straightforward way of constructing a lexicalizgchmmar is to take a CFPSG

and make many copies of each rule — one for evesgiple anchor word in each
phrase (Schabes al 1988, Nederhof & Satta 1994).

35



Example 3-3.A lexicalized context-free phrase structure gramma

NP - ball VP - kick
NP - ball PP VP- kick NP
NP — defender VP- run

NP - defender PP VB run NP
PP - from NP

Most grammar formalisms introduced in what folloaug of a lexicalized type.
DGs (which are discussed in Section 3.3.4) arexarerme case of lexicalization
since they are based purely on lexical dependencies

A transition network grammadoes not consist of rules, but rather of a set of
FSMs, each of which comprises a collection of stated arcs connecting the
states (Bolc 1983). Each network corresponds tangles nonterminal in the
grammar. The labels in the arcs indicate the temmsymbol that allows a
transition to the next state. A sentence is accdeftg a transition network
grammar if there is a path connecting the staté stéth a final state. Aecursive
transition networkis a nondeterministic finite-state automatoAugmented
transition networkgATNSs), first introduced by Woods (1970), are ediens to
the recursive model and have been used for desgripgiammars and parsing,
especially in the Al community (Charniak & McDerm@®85). Figure 3-5 shows
an example of a simple ATN grammar.

NP VP <COnJuCt|On> S n.n' n?u, npn

<det> <noun> "who" VP

Figure 3-5 A simple ATN grammar with rules for Ss, NPs andsBolc 1983).
A VP can, for example, consist of a verb followadam empty string or an NP.

A major advantage of the transition network modedrahe usual CFPSG model

is its ability to merge the common parts of CF sul@/oods 1970). Because this
allows for the removal of redundancy, it makes {peater efficiency. ATN
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grammars are, however, hard to debug, maintain extend because of their
graph-like structure (Carroll 1993). Magerman (19pdints out that the use of
ATNSs encourages ad hoc system designs and thde#ds to application-specific
models. It is for these reasons that ATN grammsesat used in modern parsing
systems.

3.3.2 Unification grammars

Unification grammars (UGs), which are also known asonstraint-based
grammars, were specifically developed to overcohee groblems that CFPSGs
encounter when representing fine-grained grammatictormation such as
agreementand subcategorizatiorf{Carpenter 1989). This section introduces three
of the best-known UGs, namel@eneralized Phrase Structure Gramn{@PSG)
(Gazdaret al 1985),Head-driven Phrase Structure Gramm&PSG) (Pollard &
Sag 1987, 1994) anbexical Functional Gramma(LFG) (Kaplan & Bresnan
1982). UGs are able to model more complex linguiptienomena than CFGs.
These formalisms describe linguistic objects byng&eature structuresonsisting
of features and associated values that encode atel@rels of linguistic
information (e.g. morphological, syntactic, sema@nin a uniform way.

Example 3-4 A feature structure represented asatribute-value matriXxAVM)
for the word “his”.

major NP
number SING
person 3RD

case OBJ

As the name suggests, the processnification matching and combining feature
structures, plays a central role in UG spite of this, unification can only be
regarded as a solution, as an operation used iariddgns to resolve the
constraintsset by the grammar (Pollard 1996). Unificatiortamsequently not in
itself a grammatical theory; instead, it is a meusm for instantiating diverse

L In unification, two pieces of partial informaticare put together to form a larger piece of
information. For example, léd={<major, NP>, <number, SING>}B={<major, NP>, <person,
3RD>} and C={<major, NP>, <number, PLU>}. Then the unificatiaf A andB (denoted with
ALCB) is {<major, NP>, <number, SING>,<person, 3RD>}dathe unificationsACC and

B C C are undefined because of the clash with regatidetwalue for the featureumber Another
important operation used in UGs is tlisjunction denoted withC . For example, ACB means
that some linguistic objeatis described by eithek or B, but whether it is eitheh or B, remains
indiscernible (Pollard & Sag 1987).

37



grammatical theories (Joshi 1987). Figure 3-6 shioms unifications are used in
deriving a sentence structure.

cat:DET
a
L\gr : [num: SING]}

{cat: NP}[cat: VP}
[cat:S] =

agr:1 |agr:1 cat: N
player
agr: [num: SING]

[cat: DET}{cat: N}
[catNP] -

agr:1 agr:1 uns {cat:VP -‘
agr: [nurr : SING]
A player runs
cat: N cat: VP
[cat: DET]
agr:[num:SING] agr:[num:SING]
cat: NP
agr:[num:SING]
[cat:S]

Figure 3-6. Derivation in unification grammars. The rules gieen on the left-
hand side and the lexicon on the right. In thew@ion at the bottom, the arrows
indicate the way in which the words and phrasefyunio larger entities.

3.3.2.1 GPSG and HPSG

Before the advent of GPSG during the first halthef 1980s (Gazdat al 1985),
theories of syntax and semantics were developearatghy with little interaction.
The work that was done on GPSG was undertakenthétintention of producing
an integrated theory of the two levels. That regmésd one of the first attempts to
compensate for the inadequacies of CFPSGs withpplyiag transformations
(Warner 1996). Instead of transformations, GPSGs U8 rules which can
themselves be generatedrbgtarules?

Because the development of HPSG has been so coemsieély influenced by
GPSG, it may rightly be regarded as its successorHPSG there are no
derivations that transform one grammatical striectato another; instead, parallel
representations are mutually constrained by thengrar. HPSGs have been

2 Metarules take as an input grammar rules thatmgite input pattern, and they then output a
new rule according to their output patterns. Intely, metarules have the same role in GPSG as
transformations have in TGs.
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applied to a wide range of languages suclEaglish (Copestake & Flickinger
2000), Japanese (Siegel 2000), and German (Mulléagper 2000).

An HPSG consists of grammarinciples grammar rules and lexical entries, and
all these are represented as feature structurdar@P& Sag 1987, Cooper 1996).
Collections of information about phonological, sgtic and semantic constraints
are calledsigns and signs represent either a word (a lexical)sigra phrase (a
phrasal sign) An HPSG can be defined as follows:

Definition 3-12. Head-driven Phrase Structure Grammar (Pollard & 5287).
A Head-driven Phrase Structure Grammardefined as
P C.CPunC(LC..CL,CRLC...CR,)

where R...P, areuniversal principlecommon to all languages,.f...P.m are
language-specific principles,;L.L, are the lexical signs of a language, and
R;...Rq are its grammar rules.

Definition 3-12 implies that a linguistic objectlbegs to the language generated
by the grammar if it satisfies all the universatl danguage-specific principles of
that language, and that this either instantiates ohthe lexical signs of the
language or one of its grammar rules.

The lexicon in HPSG is rich and organized on thesaf the notion of types of
word (Kim 2000, Cooper 1996).The rules are expressed agll-formedness
constraints on the feature structure descriptions @e represented as partially
specified phrasal signs. Along with the rules, ¢hare principles that define and
therefore limit the signs that may be construede@snging to a language. The
well-formedness of a sign is verified by comparitng feature structure of a
specific rule or principle to the feature structesgressing the sign. Checking is
performed through unification.

3.3.2.2LFG
LFG combines various features from TGs and ATN essing, and has been

applied to a variety of languages includiggglish, French, German, Japanese,
Chinese, Norwegian, Spanish, and Urdu (Baittal 2002, Oeperet al 2004,

3 The information about a sign is stored in a feastructure, and is encoded as an AVM (Pollard
& Sag 1987). Phrasal signs join lexical signs s#atences.

24 Multiple inheritance hierarchies are used to redvedundancy and to allow generalizations
across classes of words.
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O'Donovanet al 2005, Burkeet al. 2004b, Dipper 2003). Figure 3-7 gives an
example of a LFG parse.

N \.fP:} AAAAAA > PRED Liverpool
ey SUBJINUM  sg

il e
NNP i AUX VBG * PERS 3
“y| PRED be

a‘g.!_iverpoqf ..... TENSE pres
PERS sg
...... NUM 3

3 PRED play
XCOM
PARTICIPLE pres

Figure 3-7.This example shows the correspondence of elemetigebn a C and
F-structure for the sentence “Liverpool is playing”

Figure 3-7 illustrates how LFG assigns two typestoficture to input sentences.
These are theonstituent structuréC-structure), which is derived by CFPSG rules
and it is represented as a PS tree, anfutingional F-structure, which is produced
by ATN operations and consists giammatical relation§GRS) represented as an
AVM (Bresnan 2001 An distinguishing feature in LFG isstructural
correspondence While one describes sentences with different nijetbee
languages and representations, it is essentia &ble to correlate such structures.

3.3.3 Tree-adjoining grammars

Tree-adjoining GrammarTAG), which was first introduced by Joski al
(1975), manipulates trees as elementary objectéerBnt versions of TAGs have
been implemented in English (XTAG Research Grou@8]9Chinese (Bikel &
Chiang 2000), French (Abeillé 1988), German (Neum2003), Arabic (Habash
& Rambow 2004), Korean (Haat al 2000) and Hindi (CDAG 2006).

% The two representations manifest the fact thdewifit types of dependencies exist among the
parts of a sentence, and that these dependenciebeclest expressed using different formal
structures (Kaplan 1989).
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Definition 3-13. Tree-adjoining Grammar.
A Tree-adjoining Grammais a 5-tuple TAG = (N}, I, A, S) where
1. Nis afinite set of nonterminal symbols;n = =0 ;
2. Y is afinite set of terminal symbols;
3. lis afinite set of finitenitial trees
4. Ais a finite set of finitauxiliary trees,and
5. SON is a distinguished symbol called thentencesymbol.

The set of initial tree$ and the set of auxiliary trees are referred to as the
elementary tree¢Joshi & Schabes 1997, Ha al. 2000). The initial trees are
minimal linguistic structures that contain the sture of simple phrases (e gPs)
and that do not have recursive structures. Auyilitaees may contain recursion
and represent constituents that are adjuncts 1o bactures (such as adverbials).
Sentences are derived by buildidegrived treedrom initial and auxiliary trees by
the composition operatiorsdjoining and substitution Figure 3-8 illustrates an
adjoining operation.

5
A B C_—,
s NRL P
- L_ = ”'7/ \\
7N\ TN
MNP L WP WP TTTT — A WV
- AN AN | PN
., kY R
W MNP L WPt has A" ME L
kicked has kicked

Figure 3-8. Adjoining operation. TreeA andB are adjoined to form tre@. The
dotted arrow indicates the location to which treis Bdjoined.

The basic model has been extended in many wayPbgxample, lexicalization
(Lexicalized TAG(LTAG) (Schabeset al 1988)), unification-based processing
(Feature-based LTAG(Vijay-Shanker & Joshi 1991)), and probabilities
(Probabilistic LTAG(PLTAG) (Resnik 1992, Schabes 1992)).

3.3.4 Dependency grammars
Dependency grammard®Gs) identify the relations that connect wordsetich

other. A fundamental notion in DGs is the relatibatween ahead and a
dependent
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Definition 3-14. Dependency relation (adapted from Robison 1970).
Let E be a finite set of sentence elements. DR is arpidapendency
relation that ranges over the elemdet® RJ ExXE. Let ,e,,XJE. Let

<ey, 6>LIDR denote thag, is dependent 0e,. &; is referred to as theead
If DR holds for <, x>...<g, x>, alle E, i 0{1..k} are dependent on

A head may have any number of dependents, which reagithermodifiers or
complementsThe grammar rules specify the dependents thdt baad can take
(e.g. adjectives depend on nouns and not on vdrbsfer to the DG formalisms,
as defined by Hays (1964) and Gaifman (1965)¢lassical DG (CDGs). The
properties of CDGs can be formally defined as feio

Definition 3-15. Classical dependency grammar (adapted from Hal@84j
and Gaifman (1965)).
A dependency grammés a 4-tuple DG = (&, R, F) where
1. Cis afinite set ofexical categories
2. 2'is afinite set oferminal symbols
3. Fis an assignment functiof: >, - C.
4. R is a finite set ofrules over the lexical categorie€ that define
dependency relatior3R. The rules are of the form:
1. x(q,...,*,..,c,) denotes that;...q.0C are dependent ori]C. l.e.
* indicates the position of head] C in the sequence,...c,dC,
2. X(*) denotes that[1C is a leaf node, and
3. *(x) denotes that[JC is the sentence root node.

In CDGs the D relations form trees that are acyeli@ have a single root
(Robinson 1970). Moreover, only one head per depaind allowed.

Example 3-5.A simple dependency grammar.
DG =(C,2, R, F)

C={V, N, DET} F("kicks”)=V

> ={"kicks”, “ball”", “attacker”, “the} F(“ball”)=N

R={*(V), V(N, *, N), N(DET, *), N(*), DET(*)} F(“at tacker”)=N
F(“the”)=DET

Figure 3-9 illustrates an analysis using the gramshawn in Example 3-5.
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DET . DET

Tﬁe attécker kicks tHe béll

Figure 3-9.DG analysis for the sentence “The attacker kiblkesttall”.

Several modifications and extensions to CDGs hasenbintroduced. These
include, for example,Constraint Grammar (CG), Functional Dependency

Grammar(FDG) andExtensible Dependency Gramm&DG). Standard PS trees
and the analyses produced by CDGs @gective this means that branches do
not cross when the terminal nodes are projected ta input string (Neuhaus &

Broker 1997). It has, however, been acknowledgedrngnDG syntacticians that

certain natural language phenomena requme-projectiveanalyses (Rambow

1994). Such structures are frequently encounteredamguages that allow a
relatively free word order. In languages with gtneord order, moreover, non-

projective trees occur, for example right-node raisingstructures.

3.3.4.1 CG and FDG

CG is a DG formalism that was originally proposed Karlsson (1990).
Implementations of CG exist in, for exampkenglish, Danish, French, German,
Swedish, Finnish, Estonian, and Portuguese (Af@tsd 2002, Bick 2003, Bick
et al 2005, Lingsoft 2006). Instead of having rulest thafine correct sentence
structure, CG appliesconstraints for eliminating word readings that are
inconsistent with the context. These manually fdated constraints act as partial
LP rules. They may contain both rule-like facts @anobabilistic tendencies.

CG was designed not as grammatical theory but danguage-independent
parsing framework. It is a descriptive, computagityroriented model. CG makes
no claims about being able to explain linguisti@pbmena. The most important
aim of CG is to provide reliable and shallow rathen highly informative but
faulty parsing.

Many of the ideas in FDG are derived from CG (Tapaen & Jarvinen 1997,
Tapanainen 1999). FDGs have been implemented ididgBng-innish, French,
Spanish, German, and Swedish (Tapanainen 1999,ilsfoeh 2001, Connexor
2006). In FDG, D links between syntactic labelsnfopartial trees — usually
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around a verb to which the other words are link€dble 3-1 illustrates an
example of a FDG parse.

Table 3-1 An FDG analysis for the sentence “Liverpool iayphg.” The analysis
gives the location of the word, the original woodrh, base form and syntactic and
morphological tags.

Index | Word Lemma Syntactic* Morphological
1 Liverpool Liverpool subj:>2 @SUBJ %NH N NOM SG
2 Is be v-ch:>3 @+FAUXV %AUX V PRES SG3
3 playing play main:>0 @+FMAINV %VA ING
4

*The dependencies are represented as the pair &-Halad, separated by “:>”. For example,
according to the analysis, the word “Liverpool’c@snnected to the word “is” with a D link of the
type subject(subj). KEY: v-ch = verb chain (auxiliaries + makerb), main = main verb. The
functional tags are denoted by @. KEY: +FAUXV =it@nauxiliary predicator. +FMAINV =
finite main predicator. Surface syntactic tagsadenoted by %. KEY: NH = nominal head, AUX
= auxiliary verb or particle, VA = main verb in active verb chain.

3.3.4.2 XDG

XDG is a new DG formalism that defines two orthogorbut mutually
constraining structures that explain the ID and d¢dhstraints of the words
respectively (Debusmaret al 2004b). The analyses in XDG armiltigraphsthat
consist of an arbitrary number of D graphs caliiishensions Each dimension
represents a different aspect of language (syntafitnction, PAS, etc.)
(Debusmann & Smolka 2006). XDGs have been impleeteim English and
German, and have been applied to a smaller exbeAtdbic, Czech and Dutch
(Debusmanret al (2004a, 2004b), Bojar 2005). An XDG consistslmhensions
principles, and a lexicon. XDG may be formally defil as follows:

Definition 3-16. Extensible Dependency Grammar (adapted from Debusma
et al 2004b)
An Extensible Dependency Grammara 3-tuple XDG = (D, Pri, Lex), where
1. D is a finite set of dimensiond, i=1,...n of the formd=(Lab, Fea,
Val, Pry), where
a. Labis a set of edge labels,
b. Feais a set of features,
c. Valis a set of feature values, and
d. Prigqis a set of one-dimensional principles.
2. Priis a set of multi-dimensional principles.
3. Lexis the lexicon consisting of a set of lexical exgr
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The well-formedness conditions of an analysis drecked by the interaction of
the principles and the lexicon. As a DG formalistG is lexicalized, and most
of the information is specified in the lexical eas. XDG moreover provides a
lexical abstraction mechanism for the purpose aluceng redundancy in the
lexicon. Principles specify how words interact anow graphs on different
dimensions relate to one another (Debusmatral 2004b). The lexicalized
valency principle for example, states that all nodes on the dinoensimust
satisfy their specifications for incoming and outgp edges. Figure 3-10
illustrates an XDG parse.

every player should like him evry playel  should like him

Figure 3-10 An example XDG analysis for the sentence “Evegy@r should
like him” (adapted form Debusmanat al 2004a). The analysis has two
dimensions: the graph on the left-hand side repteshe syntactic structure and
the graph on the right-hand side the semantictstreof the sentence.

3.3.5 Link Grammar

Link Grammar(LG) is closely related to DG. So far, it has begplied only to
English and German (Sleator & Temperley 1993, Kiib898). The lexicon in LG
consists of entries that state tieking requirementf one or more words, and
these are expressed in termgofnectorsA parse in LG is referred to &skage
and it consists of a set of undirected links thatrnect the words in a sentence. A
sentence may have several linkages. Figure 3-¥sgua example LG lexicon and
linkage.
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a player Liverpool joined
the referet Evertor

a player joined  Liverpool

Figure 3-11. A Link Grammar lexicon (top) and linkage (bottogadapted from
(Sleator & Temperley 1993)). The words “player” afrdferee”, for example,
require aro or d connector to their left, or amconnector to their right.

Instead of requiring two connectors to be identhsafiore they can be connected,
LG allows one to enunciatenatching rules(Sleator & Temperley 1993). In
addition, one can use raulti-connectorto connect to more than one link. This
mechanism allows any number of adjectives, for gdamto attach to a single
noun.

3.3.6 Combinatory Categorial Grammar

In Categorial GrammargCatG), which originate from the work of Bar-Hillel
(1953), the lexicon carries the main responsibiligr defining syntactic
knowledge (Steedman 2000). CatGs define a finiteo$eprimitive categories
(such as N, NP, VP, S) that combine by means oftiom application rules to
create more complex structures. Unlike other gramfioranalisms, CatGs do not
define a set of rules for combining words. It ithea the definitions in the lexicon
that determine how words can combine with eachrothe

Because CatC in its pure form is not adequate éscbing natural languages,
several extensions have been added to the basmevark. Combinatory

Categorial Gramma(CCG), an extension well suited to parsing, oag@s in the

work of Steedman (1985a). CCG is in essence a\h&osyntactic and semantic
types (Steedman 1999). While wide-coverage paiSiags exist only for English
(see for example, Hockenmaier 2003, Villavicenc#®97), CCG has also been
successfully applied to Dutch, Japanese, KoreanTamklish to a lesser extent
(Steedman 1985b, Komagata 1999, €hal 2002, Bozsahin 2002, Cakici 2005).
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A CCG consists of the lexicon and the combinateigs (Steedman 2000, Clark
2002, Clarket al 2002a, Hockenmaier & Steedman 2007). The lexiedmch
pairs words with lexical categories, defines masiguage-specific aspects of a
CCG. Each item in the lexicon is associated witle on morecategoriesthat
define their syntactic behavior by describing tloastituents with which it can
combine and the result of the possible combina@®G categories are defined in
Definition 3-17.

Definition 3-17. Categories in Combinatory Categorial Grammar (asthpbom
Vijay-Shanker & Weir 1994).
Let N be the set ohonterminals(also referred to agtomic categoriesn
the context of CCG). The set of categor@sl) over the alphabéti is the
smallest set for which the following conditions ¢hol
1. NOC(N)

2. If c1,6, OC(N) then €i/cy), (ci\c) OC(N).

S N, NP, and PP are examples o&tomic categoriescomposed of a single
nonterminal. Theomplex categorieare of the formX/Y or Y\X whereX is the
result category and is the argument category. For examp{éy states that the
category needs to combine with a categérgn the right to fornrX. A CCG is
defined in Definition 3-18 below.

Definition 3-18. Combinatory Categorial Grammar (adapted from Vijay-
Shanker & Weir 1994).

A Combinatory Categorial Grammas a 5-tuple G = (N, f, R, S) where

1 Nis afinite set ohonterminal symbols

2 J'is a finite set oferminal symbols

3 f: 2>C(N) is a function that maps each elemengato finite subsets

of C(N).
4 Ris afinite set oEombinatory rules
5 SON is a distinguished symbol called thentencesymbol.

The lexicon consists @I andf. The most basic combinatory rules are ftirevard
and backwardapplication (see Definition 3-19 below). A derivation in a CCG
involves the use of the backward and forward appbo and other combinatory
rules such aBunctional applicatiorandcompositiort®

%6 Other combinatory rules, such fisward and backward compositiof?B and <B) forward
type-raising(>T) andbackward crossed substitutignS) exist for dealing with coordination and
extraction.
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Definition 3-19. Forward and backward application in Combinatorye@arial
Grammar (Hockenmaier & Steedman 2007).
Let f anda be terminals and X/Y and X\Y complex categories.
1. A forward applicationis of the form: XIYt Y:a— X:fa
2. A backward applications of the form:  Ya X\Y:f — X:fa

Example 3-6.CCG forward and backward applications. A categsmgccordingly
connected to its neighbors using forward (>) anckbard (<) applications. The
categories, for example, of the word “likes” indeedhat it can combine with an
NP to form a structure of the category S\NP.

Forward application
(S\NP)/INP NP —  S\NP
likes football —. _--likes football

-
.

| Backward application
NP S\NP — S
He likes football—> He likes football

3.4 Analysis

Very little research or rational analysis has bdenused on the relative
weaknesses and advantages of grammar formalisras aldne on the question
about which theoretical approaches may be bestecsutb computational

applications. As Carnie (2002) points out: “If yask this question at any major
syntax conference you are likely to get lynched.bs¥linguists have a strong
prejudicial bias in favor of the particular framewdhat they themselves utilize
while, at the same time, are actively borrowingasl@nd techniques from one
another.

While | shall now analyze grammar formalisms forguag, | shall make no
attempt to rank the theories concerned. Any suassdication would be difficult,
if not impossible, to make, for two reasons. Fystvhile some theories provide a
good account of some syntactic phenomena, otheridsedo equally well for
other syntactic phenomena. What criteria would ose to decide that some
linguistic phenomena might be more important thdhes? Secondly, some
theoretical approaches are more highly developad tithers. Besides, the only
purely objective grounds for evaluating a gramnatiteory would be on the
basis of how well it models the workings of langeag the human mind and
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brain. But there is no known method by which onaldoreliably test such
modeling capabilities.

Instead of attempting to rank them, | will compé#ne formalisms by describing the
similarities and differences between them, the waywhich each formalism is able
to model natural language phenomena, and how veeh dormalism is suited to
parsing.Firstly, | will identify the most important chartaeistics of each of the
formalisms (Section 3.4.1). Secondly, | will compahe formalisms by using
several dimensions: the number of representatiatas{Section 3.4.2), generative
capacity (Section 3.4.3), and the treatmenbog-distance dependenci@sDDs)
(Section 3.4.4). Section 3.4.5 introduces the gramdevelopment methods that
are available for the grammar formalisms under iciemation.

3.4.1 Outstanding characteristics of the formalisms

This section underlines the outstanding featuret@igrammar formalisms under
consideration and compares the most closely coeddotmalisms to each other.

3.4.1.1 CFPSG and TGs

As | have already noted above, CFPSGs are ingseffiigi powerful for describing
natural languages because they are not lexicalaed they do not use
probabilistic modeling. It is for this reason thia¢y are not used in state-of-the-art
parsing. “Chomskyan” grammars, such as TG and dscehdants, such as
Minimalist Program (Chomsky 1995), have been a predominant influence
linguistics for a long time. Chomsky’s theoriesfact form the foundations on
which many other theories of grammar have beern.Bddwever, transformations
are not used in computationally-oriented grammamé&disms because of their
computational complexity. The main problem withrgraars of this type is their
tendency to force a parser to destroy existinguiistic structures. Pollard’s (1996)
principle ofnondestructivenesstates:

“Grammars should not make reference to operationg fhat destroy

existing linguistic structure.”

3.4.1.2 PCFG
PCFG is the most widely used probabilistic gramrmamalism. While PCFG
models lack the power of models that are sensitvea wider range of

dependencies, they nevertheless have the advaritagéng simple (Resnik 1992,
Charniak 1993, Charniak 1996). Even so, the inféionaconveyed in PCFGs is
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not sufficiently rich fully to describe natural lguages. In the first place, PCFGs
model probabilities in a CF wayln the second place, the original PCFG model is
not lexicalized. This renders it incapable of caijpiy certain kinds of hierarchical
information. Lexicalized PCFGs, like most existipgobabilistic grammars, do
make use of lexical information.

3.4.1.3 UGs

Pollard (1996) makes the following comments abbet ‘TChomskyan” approach
to grammar:
“There used to be an influential point of view whideld that the
formalism within which grammatical theory was forated had to be
highly constrained. This in turn was supposed tostain the set of
possible grammars....”

What is evident in Pollard’s arguments against ploimt of view is that instead of
the formalism itself setting constraints on thegigle grammars, it is rather the
grammars themselves that should impose the comstraBecause of their
algebraic characterization, UGs offer, among othenefits, an opportunity to
provide well-defined semantic representations. &g become the most widely
used formalisms for computational grammars. Aceaydb Oeperet al (2000),
HPSG and LFG are the predominant UG formalismpé&vsing.

Unlike many other UGs, GPSG emphasizes the PScorgonent rather than a

rich lexicon (Carnie 2002). One of the distinctifeatures of HPSG is its head-

driven nature: words are structured and rich innmiation, and certain key words,

lexical heads, have an important role to play enghocessing of the structures that
contain them (Raaijmakers 1993). The syntacticgmates in HPSG are similar to

those in GPSG in the sense that they are compégure structures. Despite their
close relations, there are several differencesdmtHPSG and GPSG. Firstly, the
categories in HPSG are more complex (Borsley 198érondly, HPSG makes

more specific claims about language universals thaes GPSG (Carnie 2002).

Because of its precise mathematical modeling, HR&&been found to be highly

useful in computational applications.

Like HPSG, LFG differs from GPSG by making more gpe claims about
language universals and variation. Both LFG and GIR&orporate the principle

2 A PCFG, for example, will consider the probabilidf expanding an NP to be independent of
where in the parse tree the NP is located. Thignagson is false.
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of strong lexicalism which implies that most of the information emmdyin
constructing sentence representations is associatéld individual words;
relatively simple rules and principles govern hdwv information in lexical entries
combines when the words are united into phraseg &aVasow, forthcoming
article). In contrast to what happens in LFG andPS6, where the rules
determine the relative order of elements, the P&in GPSG and HPSG set only
the ID relations. The order is defined by languapgeeific LP constraints.

3.4.1.4 TAGs

In contrast to what happens in most grammar fosmad| a derived tree in TAG
does not include any information about how it waestructed (Joshi & Schabes
1997). Hence, an additional representation, cahedierivation tree is used for
representing the information on the trees and pgegations used in a derivation.

TAG enables one to state dependencies between wbdiees (Joshi & Schabes
1997). This is in contrast to most other grammam@disms in which the
dependencies are defined between the elementsrafea This allows for an
extendeddomain of localityin which to state linguistic dependencies.

An interesting feature of TAG is the way in whichi$ able to capture the
recursiveness of language structures (Kroch & J&8SRi7). In TAGs, local co-
occurrence restrictions are stated in the elemgnt@es. The more complex
structures are composed by means of adjunctionsahdtitution operations that
are constrained by local constraints, which, amoather things, set
subcategorization constraints for the trees to drefl. The idea is that the
expression of local co-occurrence relations shdwddfactored apart from the
expressions of recursion and unbounded syntacpierdiencies.

3.4.1.5DGs
In addition to being suitable for the analysisariduages with relatively free word
orders, DGs are attractive because they offer baepbssibility of mapping D

trees onto semantic representations (i.e. PAS) favdo & Lesmo 2000).

The syntactic representation of CG is based onratenspecified and relatively
shallow® D description (Tapanainen & Jarvinen 1997). Initald to this, CG

%8 Due to the shallowness of representation, for @tarthe objects of infinitives and participle
are indicated with the same tag.
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always attaches an analysis to a sentence, evetsifll-formed. A CG cannot
therefore be used for accepting or rejecting sesterBut it is this very simplistic
approach that permits CG to be an efficient pargiagework.

Let us consider NPs as an examplaioflerspecificatiorin CG. While the heads
of NPs are marked with functional labels in CG, plagent (NP) is not indicated:

Example 3-7.The fragment “fat player’s wife” would get thelfmiing analysis:

"<fat>"
"fat” A ABS @AN>
"<player's>"
"player” N GEN SG @GN>
"<wife>”
The function tag@ AN> in the word “fat” indicates that the head of therd/is a
nominal in the right-hand context. The head, howeigenot specified. Thus there
is no need to tackle the syntactically undecidaohdiguity between the analyses

that the one who is fat is either the player orplager’s wife.

The main differences between the two otherwise lammfiormalisms may be
summarized as follows (Tapanainen & Jarvinen 19RW¥yinen & Tapanainen
1998): Firstly, the FDG analyses contain more tedainformation than CG
structures. The additional power of the framewdekrs from the mechanism that
allows it to specify links between word readingsc&ndly, whereas the CG rules
typically represent the head and dependent impliegihd ambiguously, FDG
makes the relation explicit by declaring the head the dependents. Thirdly, the
FDG framework has a mechanism for handling cootdina Fourthly, an
advantage of FDG over CG is the way in which itlsl@ath ambiguity?®

The most interesting feature in XDG is that it camels multi-layered linguistic
description with a DG formalism (Debusmaeh al 2004b). While XDG has
many desirable characteristics, it is a relativedyv grammar formalism and needs
to be developed further. Debusmann and Smolka (2@0ét out two main
weaknesses in the framework: Firstly, there iseasp practical parsing algorithm
for XDG. Secondly, work still needs to be donehe precise formalization of the
framework, particularly on the syntax-semanticeifsce.

29 In the experiments by Tapanainen and Jarvinen7)19DG left only 3.2 to 3.3 per cent of
words with more than one morphosyntactic labellevtiie number for the CG parser was 11.3 to
13.7 per cent.
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3.416LG

While LGs are in many ways similar to DGs, there several differences that can
be identified. The main differences are as follo{@3:Links in LG are undirected.
(2) Links may form cycles. (3) It contains no naotiof the root word. In addition
to this, LG analyses are projective and CF.

There are some inherent problems in the LG framkew®Oertain constructions,
such as non-referential use of “it” and “there”darertain types of questions and
comparatives are problematic for LG (Sleator & Tenhgy 1993). Sleator and
Temperley (1993) reach the following conclusion: ef@in constructs in
grammatical English are simply unnatural in ounfeavork.” While Laffertyet al
(1992) have described a probabilistic version of B8llins (1999) claims that the
probabilistic model is flawed.

3.4.1.7 CCG

The main advantage of CCG over other formalisniis iseatment o€oordination
and extraction (Lombardo & Lesmo 1998b). Following Montague’s 149
principle of compositionalityevery syntactic derivation in a CatG correspateds
a semantic interpretation, and the two represemstare constructed together.
Because it is a CatG, CCG follows this principl@eTconsequence of this is that
CCG has a transparent syntax-semantics interfageolem in CCG is that there
may be several derivations, all of which lead itihe same derived structure
(Clark & Curran 2004a). This property is referrecaspurious ambiguity

3.4.2 The number of strata

A distinction can be made between multi- and maateit formalisms. In contrast
to TG and other multistratal grammar formalisms@nostrataformalism uses a
single level of representation for the syntactiticure, and recognizes no more
abstract level (Trask 1993). Most of the formalistescribed in this work, GPSG,
HPSG, TAGs, CG and FDG, for example, are clearlyhostratal; they use one
type of structure to describe syntax.

One of the features of the monostratal approackthas it makes processing
efficient because single linguistic representatiares not manipulated on several
steps (strata). But it is true that monostratalrappghes, such as HPSG, often give
precedence to the syntactic structure, and thisgatés the other levels of
description to a secondary role (Debusmastnal 2004b). This makes it
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potentially more difficult to modularize the grammavhen the syntactic part of
the grammar is changed, the semantics componeno teschanged as well.

While C- and F-structures in LFG are two distinefpresentations, LFG is
monostratal in the sense that there are no multigtgesentations of a single
structure (Cahill 2004); LFG has two syntactic esamtation levels, C- and
F-structure, each of which is monostratal; an asialpf a single clause cannot
consist of multiple strata of C-structure or F-stare. A major advantage of the
C/E-structure distinction in LFG is that it enablese to take into consideration
the fact that while languages may differ with resp@® surface representations
(such asvord order), they may encode the same or simile® P@ahill 2004)°

XDG may be positioned between the monostratal (dRSG) and multistratal
(e.g. TG) extremes. While linguistic analyses aigidéd into multistratal
representations, the principles interact betwegeatasto constrain all dimensions
simultaneously. Debusmanet al. (2004b) claim that, in comparison to LFG,
XDG places a lighter burden on the interfaces betwtibe stratd: Because of the
freer interaction between the dimensions, filtercan be done earlier in XDG.
Furthermore, the constraints in XDG are not retddo operating on adjacent
strata, but are allowed to access all dimensiodsadirdirections.

3.4.3 Formal power and equivalencies

The ability of a grammar to generate languagesleasribed in Definition 3-5, is
called itsweak generative capacityvGC) (Miller 1999, Joshi 2003b). In contrast
to this, the strong generative capacit{SGC) defines the set of structural
descriptions generated by a grammar. WGC is oftad dor locating a grammar
in a hierarchy of formal grammars. Chomsky’s (198@)ry of grammars offers a
tool for studying differences in their formal powei he hierarchy consists of four
levels, numbered from O to 3 and calleshular, context-free(CF), context-
sensitiveandunrestricted The level of restriction grows gradually from &0 to
level 332 Figure 3-12 depicts the hierarchy.

%0 While the same proposition expressed in diffetanguages may have substantially dissimilar
C-structures, it may be associated with similatrbesure representations. This property is useful
in, for example, MT systems.

%1 The mapping between C- and F-structures is speaifil has to be adapted to new structures in
order to handle different word order, for exam@emnilar modifications in XDG could ideally be
achieved simply by modifying the grammar (Debusmetral. 2004b).

%2 Each level is moreover a subset of the less diatls. The restrictions are cumulative — the
rules of a type 3 grammar also obey the restristimn types 0, 1 and 2. A regular grammar, for
example, is a special kind of CFG.
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1 Contex-sensitivt

0 Unrestricted

Figure 3-12.Chomsky’s hierarchy of grammars with four levekgular, context-
free, context-sensitive and unrestricted.

Context-sensitive grammaf£SGs) andcontext-free grammar¢CFGs) are the
two most relevant classes of grammars for parstagnian & Johnson 2002,
Winograd 1983). As shown in Table 3-2, in a CS, tight-hand side of a rule
defines the context in which a nonterminal can é&gaced with the right-hand
side. In contrast, CFGs do not take into considmrathe context in which the
nonterminal on the right-hand side occurs.

Table 3-2. The levels of Chomsky’s hierarchy of grammars madévant to
natural language parsing (Chomsky 1959, Winogra@B)1 9 andp refer to the
left- and right-hand side of the rules.

Grammar Rules

Le- Restric- Language
Class Form ]

vel tions

B consist ot with Any language whose sentences can be
Context-

. recognized by a deterministic computationial
1 . a single symbol |a| < |ﬂ| . .
sensitive machine using an amount of storage
expanded . .
proportional to the length of the input.
Context o consists of a Includes languages that involve embedding
2 free single nontermind|l |a| =1 |such ag"vc” but notab"c" or WW, whereW is
symbol. an arbitrary string of terminal symbols.

It is difficult to define a grammar that generagegiven natural language. On the
one hand, a grammar has to have enough generativergo handle all possible
sentence constructions in the language. On the btel, the generative capacity
has to be constrained in order to make predictiabsut the structure of a
language (Feinstein & Winter 2006). Because of rtheiany favorable
characteristics, CFGs are often used by parsintesys There are, however,
constructions in natural languages that cannot désxribed by CFGs (Shieber
1985a). Languages of the typ®'a" cannot be described by CFGs because there
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is no way in which to formulate the fact that thira specific number a's at the
end of the string. Such constructions exist, foaregle, in Swiss German and
Dutch. An example of a English sentence with depanis that are beyond
capabilities of CFGs is “Jamie, Steven and Hareyaadefender, a midfielder, and
an attacker, respectively”. Such distinctions éallrules that are sensitive to the
context. However, CSGs are actually more poweHahtis needed for describing
natural languages.

While mildly context-sensitive grammaf8MCSGs) are slightly more powerful
than CFGs, they are less powerful than CSGs (J@88Ba, Joshi & Schabes
1997). MCGSs are powerful enough to model natwadjllages while remaining
efficiently parsable. For example, a commonly agplclass of MCGSs, level-2
MCSGs, are able to capture up to 4 counting depene® (includesL, =
{a"b"c"d"|n = 1}, but notLs = {a"b"c"d"e"|n = 1} (Castafio 2003).

Formal equivalences between grammar formalisms lmardescribed with the
notions ofweakandstrong equivalence

Definition 3-20. Weak and strong equivalence (Miller & Chomsky 396
Miller 1999)
1. Two grammars, Gand G, areweakly equivalenif and only if they
generate the same set of strings, i.e. iff J(EL(G,).
2. Two grammars, Gand G, arestrongly equivalentf and only if they
are weakly equivalent and if they assign the saeteo$ structural
descriptions for each sentengan L(G,) and L(G).

GPSG, CatG, LG and projective D&are weakly equivalent to CFGs (Joshi
2003a, 2003b, Gaifman 1965). While they can geadhs same set of languages,
they do not assign the same description to theeseas of these languages. Since
they have CF power, these formalisms are not paverfough for fully modeling
natural languages. Infante-Lopez and de Rijke (R6@&e shown that PCFGs can
define a set of trees that cannot be derived frakasrof any CFG. From the
perspective of formal language theory, probabdittbus are fundamental, and
they add power to PCFGs.

% |f a CFG is restricted so that one word in eactapd is designated its head and the phrase has
no name or designation apart from the designatfoitschead, a DG and the CFG are strongly
equivalent (Covington 2001).
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TAG, CCG,Linear Indexed GrammgiLIG) (Gazdar 1988), andead Grammars
(Pollard 1984), are all level-2 MCSGs and are tiuesmkly equivalent (Vijay-
Shanker & Weir 1994). Kuhlmann and Nivre (2006)alé® the class amildly
non-projective D structureswvhich, they claim, are rich enough to account for
naturally occurring syntactic constructions as wesl sufficiently restricted to
enable efficient parsing. In a similar vein, Ylirdyand Nyk&nen (2004) have
proposed a family of DGs that belong to the cld9dGSGs.

When Joshi (1985) compared the generative capaafi€&PSG, TAG and LFG,
he came to the conclusion firstly that TAG is mpawverful than GPSG and,
secondly, that LFGs are context-sensitive and thush more powerful than the
two other formalisms. In HPSG the formalism its#des not set constraints on the
power of a grammar (Rambow 1994). But the full powkthe formalism is not
necessarily used. | am not aware of any researahhioh the weak generative
capacity of a specific HPSG has been investigated.

CG possesses a formal power that is less than dhategular languages
(Tapanainen 1999). It is well known that projecti&s are not a powerful
enough formalism for fully describing natural laages. This means that there is
a need for non-projective DGs. But there is vetyeliresearch about the formal
power of non-projective DGs. While Tapanainen (1998 example, shows that
FDG is more powerful than CFGs, he does not forteuthe exact generative
capacity of the formalism. XDG is similar to HPS&Ga sense that the formalism
itself does not constrain the generative capadiy grammar (Debusmann 2003).
Debusmann (2006) notes that XDGs are at leastwsnpd as MCSGs. Table 3-3
summarizes the above discussion.
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Table 3-3 The grammar formalism discussed in this work jmaed on the basis
of their formal powers.

Level of grammar Formalisms
Less than regular CG
CFPSG
GPSG
Context-free CDG
LG
Probabilistic LG
More than context-free, but less than mildly PCFG
context-sensitive FDG?*
Mildly context-sensitive TAG, LTAG, PLTAG, CCG
Context-sensitive LFG
TG
Unrestricted HPSG
XDG

*While Tapanainen (1999) shows that FDG is more gréwl than CFGs, he does not formulate
the exact generative capacity of the formalism.

3.4.4 Long-distance dependencies

Long-distance dependenci@sDDs) are problematic for any theory of grammar
because one needs to use non-local information whenanalyzes the structures
that contain them — linguistic structures cannatagts be interpreted locally in the

places where they are encountered. Table 3-4rditest how LDDs can arise out

of phenomena such as extraction and coordination.

Table 3-4 Examples of long-distance dependencies.

Cause Type Example
Extraction Whe-relative clause| This is the player [whothe coach despises [4] ]
Tough-movement The coachis hard to please [.4.]

Sentential gapping Harry played football and Robbie [..;]tennis.

Coordination
nat Right-node raising Harry passed [..;]Jand Robbie headed the hall

It was the existence of LDDs that motivated redeans to develop TGs. LDDs are
handled in TGs by the transformations. LDDs areeddencies on the level of
PAS (Vijay-Shanker 1989). The consequence of thihat CFPSG and the basic
PCFG model, for example, are unable to handle LB&suse it is difficult, if not
impossible, to state dependencies of that kind farmalism that uses only PS-
style syntactic representation. However, PCFGsahdr probabilistic grammars
can be augmented with LDD handling mechanisms.il@0(L997), for example,
adds a probabilistic model for wh-movements toltasic PCFG parsing model.
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GPSG and HPSG treat LDDs in a similar way — by meaainfeature-passing. In
HPSG signs are divided into two parts: one defiaeal information and the other
is used for handling LDDs (Pollard & Sag 1994). WHocal features are unified
locally, non-local features pass their specificatio larger phrases (Bounes al
2001).

In LFG, LDDs are treated by means of foactional uncertaintymechanism that

allows one to state the constraints on LDDs inrkestires (Kaplan & Maxwell

1988). Joshi and Vijay-Shanker (1989) demonstratedirect correspondence
between the functional uncertainty in LFG and eletay trees in TAGs. The
elementary trees in TAG provide artended domain of localithat allows them

to localize the predicate-argument dependencieg Mmandling of LDDs is

therefore accomplished by the formalism itself. hlasnd Vijay-Shanker also
enunciated a corollary to this finding by demortstiathat the handling of LDDs
can be accomplished by means of MCSGs.

Coordination is regarded as a particularly difftgpthenomenon to handle in DG
formalisms (Lombardo & Lesmo 1998b). Hudson (1996), example, suggests
that a PS-style model is needed to describe coatidm in DGs. Lomardo and
Lesmo (1998b), among others, have proposed frankswor dealing with LDDs

within a DG framework. FDG handles coordination dhaining the coordinated
elements (Jarvinen & Tapanainen 1998). In contasither D links in an FDG

analysis, links that mark coordination do not imalyD relation but rather a
functional equivalence. It is this treatment of iwhoation that gives FDGs the

ability to cope withgapping— another phenomenon that is regarded as a serious

problem for DGs. The treatment of LDDs in XDG iscansequence of the
modularity of the formalisms. The control and nagsiconstructions, questions,
topicalization andrelative clausesfor example, are dependent on the way in
which the dimensions are connected, and they doneed to be specified
explicitly. XDG, however, is able not to handle odioation structures with
ellipses(Debusmann 2006).

Because LG is CF and produces projective analytsissnot well suited to LDDs.
The handling of coordination is achieved by a spdgipe of connector callefet

connectorsthat represent an ordered sequence of ordinaryectors and that
allow “and” lists to be correctly handled (Sleat&r Temperley 1993). This
approach has only been applied to “and” coordimatiByysaloet al. (2006)

however argue that LG’s approach to coordinatiomgares favorably to FDG’s
chaining method. They claim that the LG approacmase expressive. While LG
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coordination structures can be transformed intonth@ structures, the opposite is
not possible.

While spurious ambiguity and the extra derivatitimst are caused by it increases
the complexity of CCG parsing, it enables elegardlyses of coordination and
extraction (Steedman 2000). Hockenmaier (2003) gseg@ a model that captures
LDDs by expressing word-word dependencies of the&sPAhe model allows
multiple dependencies between a word and its congexwell as dependencies
that arise through control, right node raising attter LDD constructions.

3.4.5 Grammar development

The labor-intensiveness of grammar building is deeat both on the formalism

and on the availability of grammar development so&8ince most of the current
grammar formalisms used in parsing are lexicalizébgs sets some specific

requirements for grammar development. Is usualkefdcalization to give rise to a

loss of generality in the grammar (Pedersen 20005 G, for example, resolves

this complication bytexical rulesthat allow for the application of a single rule to
similar lexical items.

3.4.5.1 Manual grammar development

The manual construction of a wide-coverage granpnasupposes many years of
skilled human labor on the part of someone who geses a great deal of expert
knowledge and experience in this field of the giboe* This kind of work also
requires intensive collaboration between theorklioguists and grammar writers
(Oepenet al 2000). Over and above these requirements, iecgessary to utilize

* In an LTAG, for example, the variations on a basintential form (for instanagh-movemet
have to be implemented as additional elementaegtre

% Since manual grammar development is such an ambitindertaking, it should rely on the
techniques and design principles that are alreamy un software engineering (Dipper 2003).
Such principles includenodularity (this means that a grammar code should be dividtd
modules for easier development and maintenance)mddules in a grammar assemble pieces of
code that are functionally related. For instanbe, tivo representation levels of LFG (C- and F-
structure) are separated into modules. Like so#waojects, a grammar development project
needs to be carefully documented. Large partsisfdbcumentation typically consist of highly
detailed code-level documentation. Another typfealture is the large number of links between
the parts of documentation. Because the contenthefdependent modules is required for
understating the functionality of the parent moditlés necessary to make the documentation of
the dependent modules easily accessible.
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engineering skills to resolve technical problém@ne of the major problems in
manual grammar writing is to ensure consistencyédet al 2004).

Because grammar building is such an expensive pspamly a few hand-crafted
deep grammars have achieved sufficient coveragarse large collections of free
text (Burkeet al. 2004a). It is the stated aim of projects sucR@$ram (Butt et
al. 2002) to lower the intrinsic development costlxed in this process by using
common tools and methods on several research whege such grammars are
being developed for multiple languages.

Grammar development environmerage software systems that offer grammar
writers several tools that have the capacity topsfsntheir work (Carroll 1993).
Such tools support incremental input, grammar rglitbrowsing and searching
the grammar. They also offer analytical tools faynitoring interactions between
different parts of the grammar and for debuggingudg-tracing.LKB for HPSG
(Copestake & Flickinger 2000)Grammar Writer's Workbench(Kaplan &
Maxwell 1993) and XLE (Buttet al 2002) for LFG, andXDG Grammar
Development Kit (Debusmannet al 2004a), are all examples of such
environments.

3.4.5.2 Grammar induction

Automatic grammar inductiors based on a treebank. The linguistic intuitien i
externalized into the annotations of the treebamik @ grammar explaining the
annotations is then learned automatically fromtteebank (Miyacet al 2004).
Figure 3-13 illustrates the idea of grammar indarcti

=]

MNP WP
N S - NPVP
pron v NP NP — pron
AN VP — v NP
He kicks det n NP — detr
the ball

Figure 3-13.Learning an unlexicalized grammar from a treebdihle rules on the
right-hand side of the figure can be deduced frioenttee on the left-hand side.

% The scaling of a rich UG beyond small text fragteen unrestricted text is, for example, both

time-consuming and expensive (Cahill 2004). One natge, for example, that the LInGO HPSG

for English contains 100,000 lines of source c&¥elexical and 37 PS rules, and around 6,000
lexical entries (Oepen & Callmeier 2000).
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While it is relatively easy to compose the rulesléxicalized grammars, the sheer
number of lexical entries presupposes that suchska will be extremely labor-
intensive (Miyaet al. 2003). There have been a few attempts in receaisyt®
develop methods that will allow for the automatengration of lexical entries. It
is also possible to extract both the rules anddhkion of a lexicalized grammar
from a treebanK. At its best, automatic grammar induction is fasd aheap and it
produces grammars with a wide coverage (Cahill 20Bdrkeet al. (2004b), for
example, estimate that it took them less than thezeon months to automatically
induce a Chinese LFG.

The analyses provided by such grammars are oftere reballow than those
provided by their hand-crafted counterparts. The&oraatic induction of deep
grammars, however, is currently being actively aesleed. Efforts in this field
have yielded promising results, and have producachmars that perform equally
well or better than hand-crafted grammars. Gramimduction has been recently
applied to HPSG (Miyaet al (2003, 2004), to LFG (Burket al 2004a, 2004b,
Donovanet al 2005), and to CCG (Hockenmaier & Steedman 208R)three
methods have been applied to English and several tdanguages. They all work
by first converting a set of syntactically analyzezhtences into HPSG, LFG or
CCG formats respectively. Grammar induction metha@sthen applied to these
converted structures. The method devised by Msfaal differs from the other
two methods in that the rules are written manuaiig only the lexical entries are
learned automatically. Table 3-5 outlines a congueriof these methods.

3" Neumann (2003), for example, shows that LTAGshmsuccessfully learned from treebanks.
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Table 3-5 Comparing HPSG, LFG and CCG acquisition methdubsdd on a
lecture by Van Genabith (2006)). The same treebaak used in all these
experiments. While the treebank structures are eded in a conversion-based
approach without the addition of any new informatioew information is added
in an annotation-based approach. Tree binarizatefars to the process of
transforming the syntactic trees so that they walhtain only constituents with
two daughters. The size of the grammar and traoslatoverage refer to the
English grammars obtained from the PTB. Translatioverage is the percentage
of the PTB structures that were successfully caredeinto the target formalism.
LFG CCG HPSG
Conversion (with

Annotation/conversion -based  Annotation Conversion* .
some annotation
Preprocessing by tree
P .. _g y No Yes Yes
binarization
Preprocessing by cleaning up
the treebank and correcting No Yes** Yes

errors

Manual editing of the Some editing of | Some editing of

. . None extracted lexical entries &
acquired rules/lexicon .
categories rules
3,262 rules; 1,286 12 schemas;
Grammar size 50,000 rules lexical categories 1,942 lexical
44,210 word types categories
Translation coverage (%) 99.8 99.4 95.1

English, German,| English, German,
Spanish, Chiness Turkish

*For example, inserting a noun level into NPs amélging multiword expressions. **POS
tagging & bracketing errors.

Languages English, Japanese

3.5 Summary of Findings

Figure 3-14 and Tables 3-6 and 3-7 summarize the wlzaracteristics of the
grammar formalisms surveyed in this chapter anddlaions between them.
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Table 3-6 A summary of the grammar formalism analyzed abdlg€Y: Fin =
Finnish; Rus = Russian; Swe = Swedish; Tur = TimkKiéor = Norwegian.

= Languages
n
8 3 [ElEskEs LDD N
c (S[BE[GI2sk|2SIL S otes
F| £ GEREEEREEE Ot
S et D
L? O N 71 ol (] 8) <C
Rather simple
Czech, Rus, | No treatment of models. Es eF::iaII
G |PCFG| 1 [x|x|x|x|x|x|x|x|x]| Latin + severa| LDDs in the basic| . - =9P Y
suitable for grammar
others model . .
induction
Replaced by HPSG
GPSG 1 |x|x|x - SLASH-features p. .y
in parsing
Nor, Korean, | SLASH-features, Descendant of
8 HPSG| 1 |x[x|x|x[x|x|x|[x| |Greek + several non-local features GPSG,
others in signs nonderivational
Nor, Urdu, Tur Functional Assigns two types df
LFG | 1|x|X]|X]|X X|X . g ty_p
+ several others  uncertainty representations
Derivation trees. UG
. ..|Extended domain lexicalized and
2 TAGs| 1 |x|x|x x|x| Korean, Hindi . e .
[ locality probabilistic versions
exist
Fin, Swe, Nor, Not powerful -
. P .| Underspecified and
CG | 1|x|x|x|x]|x Danish + | enough for treating
shallow analyses
several otherg LDDs
Coordination and| Descendant of CG
8 FDG | 1|x|x|x]|x Fin, Swe gapping as chaing  non-projective
of words analyses
No treatment of | Some details of the
XDG [M|x[x X X Czech coordination with| formalism are not
ellipsis completed
L In many ways simila
LG |[1]|x[x - And-coordination yway
to DGs
Tur, Korean, Strong on
Y . . Follows from the L
©| CCG| 1{x X|X Irish Gaelic, . - coordination and
O ) spurious ambiguity )
Tzotzil extraction
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( Unification)

Feature-based
LTAG

Figure 3-14 An overview to the grammar formalisms discussedhis chapter.
The grammars shaded with gray boxes are lexicalidZadarrow between two
formalisms indicates that the formalism at the begig of the arrow has
influenced the development of the formalism atehd of the arrow.
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Table 3-7 A summary of the grammar formalisms. The row ‘@lepment
environment” indicates whether there are publislgiable grammar development
environments for the formalism. Two plusses indicdiat there are several tools
(more than two) available. The row “grammar indoieti indicates whether a
grammar induction method supporting the formalisas fbeen reported in the
literature. KEY: U = unrestricted; CS= context-géme; M = mildly context-
sensitive; R = regular. “>* and “<" indicate whethte formalisms have a formal
power that is greater than or less than the powereogiven grammar class.

)
Q Olo 0} o
D [ | D olo|Qz|o oo .| @
a ORI 12 I|SIR|a|Q|lalal@|8]|0
LIFIRIG|ER|F|S|Z|o|C|E|x |7 |8]|©
o
Probabilistic | - | - [+ | -|-|-]| - -]| +| -+ - - - - + -
Lexicalized R R + + + + + +
Unification - -] - + - -1+ - - - - - - N R
Generative
. CF| U |>CFICFlU [CSSM|M|M|[CF| <RPCF*| U | CF| CF| M
capacity
Developmentenv+ | - | - |++|++|{++[ + [ + | - | - - - + - - T
Qrammar ol lel ol el el belel o o] - + I P
induction

*Eisner (1996a, 1996b), for example, has proposembapilistic DG models. **While
Samuelssomt al. (1996) represented a method for automatically@nth CGs, the performance
of the resultant induced grammars was found todpenfferior to that of manually constructed
ones. **Tapanainen (1999) shows that FDG can desdcCF languages and structures of the type
a'n"c" that are not describable by CFGs. He does notgetery formulate the exact generative
capacity. **** Fong and Wu (1995) experimented wjtfobabilistic LG induction.

3.6 Conclusion

In conclusion, | make general observations (somelath have been discussed
by Backofenet al. (1996)) about overall trends in the developmenipaising
grammar formalisms on the basis of the analysis.

While DGs and CatGs, for example, have always Hegicalized theories, the
trend towards lexicalization is also strong in othHermalisms such as the
“Chomskyan” grammars, TAG and PCFG. Lexicalizatmeates a rich lexicon
and diminishes the amount of the rules; more syictand semantic information
is coded in the lexicon and there are fewer rutas ¢ontain less information. This
increased complexity of the lexicon necessitateditatal mechanisms with
which to organize the lexicon and keep it free fromdlundancy. Hierarchical
structuring and inheritance are therefore beingenfoequently used to organize
the grammar and the lexicon. This approach is ugmdexample, in HPSG.
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Inheritance allows for the building of more complemd specialized categories
from more basic ones. Feature structure represemtadbas also become
increasingly popular in formalisms other than UGs;h as DGs and TAG.

In contrast to the earlier models, many of theentrgrammar formalisms, such as
XDG, HPSG and LFG, tend to integrate several legélsguistic knowledge into
one formalism. The developers focus accordinglyirdagrating the analyses of
various phenomena into one coherent theory, andyfamalisms have moved
from construction-specific rules towards general Emguage-specific principles.
This trend is visible, for example, in HPSG. Mangdarn grammar formalisms
permit discontinuous constituents and a free wad®io Non-projective DGs are
an extreme example of this trend.

PCFG parsers have arguably been applied to mogedages than parsers based on
any other grammar formalism. This is probably beeatlney are relatively simple
and easy to implement: only a treebank is needeth fwhich to learn the
grammar. The most intensively developed grammandisms for parsing at the
moment appear to be based on LFG, HPSG and CCGs lan@ HPSGs have
been implemented for a wide variety of languagelser& also are grammar
development environments available for these fasmed. There are specifically
multiple options available for LFG and HPSG develap An important trend in
grammar development is the rise of automatic indaanethods, and research has
been active in this field in recent years— espbcianong the LFG, HPSG and
CCG research communities.

In addition to CCG and the two UG formalisms (HP&@ LFG), a considerable
amount of work has been done in the DG framewagegeially on XDG, CG and
FDG. While XDG may be rated the best for havingngrear development and
induction tools available, some aspects (such astiatment of coordination
(Debusmann 2006)) of this new formalism still néede further developed.

A grammar formalism is merely a language in whittguistic theories can be
expressed. The use of a specific formalism doestimerefore guarantee good
parsing results. It is the quality of the gramntself that is the key factor. It seems
to be the case that the selection of a grammardism for a parser depends
mostly on the following factors: the personal prefees of the user, the
availability or otherwise of resources, the qualitythe tools available for the
formalism, and the needs set by the NLP system hiclwthe parser is to be
applied.
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4 Syntactic Analysis — Parsing Algorithms

The parsing algorithm is the component of a patsgrapplies the grammar to the
input sentences to construct parse trees. Pardgmyithms are usually not
designed for individual grammars, but for classésg@mmmars. This chapter
provides an overview on fundamental search strasegbection 4.1), parsing
algorithms (Section 4.2) and approaches to par@iizg probabilistic, lexicalized
and finite-state approaches) (Section 4.3). It alzalyzes how these are applied in
parsing specific grammar formalisms (Section 43gction 4.5 considers the
computational properties of the formalisms intraetiign Chapter 3. Section 4.6
concludes the discussion on grammar formalisms g@ha3) and their
computational properties (Chapter 4).

4.1 Introduction

One may consider the problem of how to define $eatgorithms from several
different points of view (Hellwig 2002, Pulman 1998ne may therefore describe
parsing algorithms in terms of the direction in @hhthe structure is built (whether
top-down(Yngve 1959) oottom-up(Glennie 1960)), or the way in which the
search is executed (eithiereadth-firstor depth-firsy, or in terms of the direction
in which the input words are processed (frefirto-right or right-to-left).

Top-down algorithnt begin at the root of the parse tree and procesd fop to
the bottom by trying to add nodes in accordancé whe rules of the grammar
(Pulman 1993, Hellwig 2002). The bottom-up approatdrts from the words
themselves and builds up the parse tree until dbe of the tree is reachédBut
neither of these two strategies alone adequatglloegs the constraints set by the
grammar and the inpuBottom-up parsing with top-down filteringtpmbines the
two methods by operating from bottom to top, but d&yplying top-down
constraints to guide the search.

Depth-first searching always proceeds from thectima of the left-most symbol
until a terminal is reached, thereby pursuing glsimerivation at a time (Carroll
1993). In the breadth-first strategy, symbols a@cessed in the order in which
they were created. This means that all the dedmatare pursued simultaneously.

% This approach is sometimes aptly callegpectation driverbecauseit makes use of the
derivation rules from left to right, thereby “pretihg” which units will occur in the input string.
¥InD parsing, a top-down approach proceeds frarhthad to the dependent. But in a bottom-up
algorithm, the order is the opposite.
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The depth-first method is usually a preferable beeause memory usage is a
problem in the case of a breadth-first search.

When anon-deterministicparsing algorithm finds itself in a situation irhieh
several grammar rules are simultaneously applicibln analysis point, it needs
to choose one rule and then apply it. If the ph#t it selects later turns out to be
false, the algorithm backtracks to the startinghpand tries another rule (Dutoit
1997). This kind of procedure can generate a gieat of inefficient parsing.
Since adeterministicalgorithm never backtracks, it is able to prodtieeparse in
linear time the upper bound for the time required is projpowi to the sizen of
the input, denoted by @)

In left-to-right parsing, the rules of a grammar are always precesm the left-
most daughter of the rule toward the right (Pulri883, Carroll 2005). A right-
to-left strategy is much rarer in parsdsdand parsingis a bidirectional approach
in which analysis begins from a certain positiortha sentence called tlgand,
before it proceeds in both directions.head-driven parsingthe head of each rule
is taken as the starting point (Kay 1989, Nede&a@atta 1994). The essence of
this approach is that there is a distinguished negnthe head, in each rule which
is first recognized. The motivation is to startnfrdhe elements within the input
string that carry the most syntactic content.

The number of possible parses for a sentence may @xponentially as the
length of a sentence grows. Two representationntqaks, charts and chart
packing, can be applied to avoid the exponentialvgn of the size of the parse
forest. This will result in an increase in parsefficiency. Chartsare the basis of
many parsing algorithms (Sikkel & Nijholt 1997, @&l 2005). The chart is used
for storing completed items that need no furthescpssing. In a chart parser,
complete sub-parses are saved. This obviates tilealie searching of sub-parses
that have already been found (Pulman 1993). Theotisechart also enables one
to return a fragmented analysis based on the sidgepaecorded in the chart if the
algorithm fails to produce a complete parse. l@eover sometimes possible to
combine a complete parse from fragments in thet¢h&vhile apassive chart
records only complete constituents, autive chartrecords information about the
stages in the application of the rules (Carroll%00

0 Mellish (1989), for example, applies a strategywinich a bottom-up parser is run over the
input. If it fails to produce a complete parsepp-tlown parser is run over the chart created by the
bottom-up parsing in order to hypothesize possiblaplete parses.
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Although chart parsing makes processing more efficiit nevertheless requires
exponential time and space to assign parses toterse with an exponential
number of possible parses (Pulman 1993). A solutmrthis problem is the
application ofchart packing Instead of representirgyl analyses in the chart and
thus undertaking redundant work, sub-parses tipaeseniocal ambiguitycan be
merged and treated as one node (Tomita 198&yure 4-1 provides an example
of chart packing.

NV DNUPDN P D N NVDN PDN P DN
| saw a player in the field with a telesct | saw a player in the field with a telesct

Figure 4-1 An example of chart packing. The unpacked strectsi on the left-
hand side and the packed one is on the right (eddppm (Tomita 1987)). The
example on the left illustrates a basic chart pansth a set of parses with sub-
parse sharing. The parse tree on the right confzacked nodes represented as
boxes.

4.2 Parsing Algorithms

This chapter introduces the most fundamental parsitgorithms that were
originally developed for parsing CFPSGs (Sectich}.and two commonly used
techniques for increasing speed, namely supertggamd CF filtering (Section
4.2.2).

4.2.1 Fundamental algorithms
A common strategy for developing a parsing algamitfor classes of grammars

that are more powerful than CFGs is to generalifZF& algorithm to the more
powerful class (Van Noord 1994). Even though a neimbf CFPSG parsing

“! Tomita uses the terarse foresfor structures containing a set of trees represehy using
packed nodes.
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algorithms were developed already in the 1960s1&Y®s, most of them are still
in use, although modified to cope with newer gramfoemalisms.

The Cocke-Younger-KasaniCYK) (Kasami, 1965, Younger 1967) algorithm is a
bottom-up method that uses a passive chart. Tleitddm requires a CFG in the
Chomsky-normal formmn which every rule must rewrite a nonterminaher as a
single terminal or as two nontermin&4d he Earley algorithm(Earley 1970) is a
parallel, top-down, left-to-right procedure thatssa passive chart. One of the
most significant contributions of the Earley algom is that it is more generally
applicable than, for example CYK, in the sense #hidwough it can process CFGs
at least as efficiently as earlier algorithms, @ed not require the grammar to
belong to a specific class.

LR(k) parsing is a bottom-up parsing technique that is basedshdft-reduce
processing! While an Earley parser constructs sets of posgitductions on the
run by following all the possible partial derivaig) an LR parser has access to a
pre-computed list of possible derivations (Stold&é95). Because much of the
work takes place in the preprocessing phase, thdtris a relatively simple run-
time parsing. Several modifications of the LR(kyaithm have been devised.
These include Tomita’s (198 Generalized LRwhich is a non-deterministic LR
algorithm that uses local ambiguity packing andadtke-first searchLook-ahead
LR (LALR) is a refinement of the technique for consting the LR parse tables.
Head-inward parsingcombines a head-driven approach with LR processing
(Bouma & Van Noord 1993, Nederhof & Satta 1994).

A left-corner(LC) algorithm will consider a grammar rule onfithe current input
word can serve as the LC of some derivation froat tale (Matsumotcet al
1983, Moore 2004). The LC relation is usually prepded by the parsing
algorithm and indexed so that any pair of symbas be checked in constant
time.

“2 Although CFGs can usually be automatically coraainto Chomsky-normal form, the size of
the grammar may grow exponentially in the conversinaking parsing inefficient.

*3 The algorithm’s name derives from the fact thateiads the input fronteft to right and
produces &ightmost derivation. Thé refers to the number of look ahead symbols thatused

in making parsing decisions. Typicallyis 1, and hence LR refers to a LR(1) parser. AfO)R
parser makes decisions based on stack contentsRAr) uses, in addition, the next token on the
input.

“*In a shift-reduce parser either of the two actisnperformed: ahift action consumes a word
from the input string and pushes it onto the stédckeduceaction applies a grammar rule. Shift-
reduction results in efficiency because it can ylalacisions. For example, a word that has
ambiguous POS tags can be shifted onto the paas& sihd the final categorization will be
delayed until a reduction involving the word is read
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Example 4-1 Left-corner of a parse tree. The word “saw” witle label V form
the left-corners of the tree.

isaw’a playe

Head-corner(HC) parsing can be considered as a generalizatidcC parsing
(Sikkel & Op den Akker 1993, Bouma & Van Noord 1998 is also closely
connected to head-driven parsing. While an LC pgysgcesses a parse tree from
left to right, HC parsing begins from the heads. &lldws for parsing with more
powerful grammars than LC parsing.

4.2.2 Supertagging and CF filtering

The basic parsing algorithms discussed above haga hdapted in several ways
so that they can contribute to more efficient anduaate parsing systems. This
section introduces two such adaptations: supemgggand CF filtering.
Supertagging is a technique for reducing the cost of parsixgcldized grammars
(Srinivas & Joshi 1994, 1999). It was first intreéd for LTAG and has later been
applied to several other formalisms. Instead ofgagsg POS tags, supertagging
assigns more informative supertags to each woahimput sentence. In LTAG,
each supertag corresponds to an elementary treger Alupertagging, the
remaining step of determining the actual syntagttiacture of an input sentence is
rather trivial. It is also possible to return adn@ented analysis consisting of
supertags in a case where a full parse cannot béuped. Supertagging also
decreases the number of elementary trees thatsaignad to each word, thereby
increasing efficiency.

CF filtering is a technique for increasing the spe€UG parsing (Torisawat al
2000, Matsuzaki 2007). CF filtering first parsesiaput sentence by means of a
CFG that approximates the UG, and only subsequenttythe original grammar.
For example, in the parser created by Torisatval (2000), a CFG is extracted
from an HPSG and is used in the first stage of ipgrsThe CFG typically
generates a large set of possible parse treeseTthess are eliminated in the
second stage by the HPSG. The use of CF filteriagye® the algorithm more

“ Srinivas and Joshi (1999) claim that supertagigirfglmost parsing”. The syntactic information
provided by supertags is so rich that there is @olye structural ambiguity left and the parse is
almost entirely determined by the supertags.
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efficient if one compares it to the use of an HP&@Gne because it avoids
unnecessary unification by eliminating impossibédese trees.

4.3 Probabilistic, Lexicalized and Finite-state Pasging

While non-probabilistic algorithms (such as thossatibed in Section 4.2.1)

regard parsing as the recursive application of gexdhined rewrite rules,

probabilistic parsing (Section 4.3.1) approaches froblem by means of

automatically discovering the disambiguation créefor the decisions made
during the parsing process. Because many of thargea formalisms applied in

parsing are lexicalized, lexicalized parsing (Sectti4.3.2) has become
increasingly important. Probabilistic and lexicalizparsing are often combined.
Finite-state machines have been used for many MERstsuch as segmentation
and morphological analysis. Section 4.3.2 introduaediscussion on how FSMs
can be applied in parsing.

4.3.1 Probabilistic parsing

In addition to defining the probabilities for pagssend thus finding out the most
probable analyses, probabilistic information canused for speeding up the
parsing process by ordering the search space (Meaget 994, Collins 2003). The
goal here is to identify the best parse more guickhile simultaneously not
undermining the quality of the produced resultguFe 4-2 shows the idea of
probabilistic parsing.

Training | probabilistic | PA'SIN9 | parsing | ... . Output
model algorithm : :

Figure 4-2. The components of a probabilistic parser. The sangpihsists of
sentences in language It usually consists of annotated sentences obddirom a
treebank. The probabilistic model defines possibialyses for sentences in
languageL. The parsing algorithm defines the analyses fer sbntences of a
given text inL, relative to the parsing model.

There are three phases in the development of apildtic parsing model. In the
parametrizationphase, the method for defining the probabilitiearmalyses has to
be decided (Hockenmaier 2003). In tHheaining phase, the probability
distributions have to be instantiated with a samptenally, a method for
measuring the quality of a particular model hasb® chosen. Themodel
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evaluationis typically carried out in the following way. Treample is split into
three sets: a training set, a development setfiaattest set. The parameters of
the model are estimated on tiraining set tuned on thedevelopment setnd
tested on théinal test setwhich contains unseen data.

A probabilistic parsing algorithm assigns probdieiti p(z|s) to each parse of the
sentences and returns the most probable parse, i.e. thetlmtemaximizeg(z|s)
(Charniak 1996):

p(7s)

P(s)=arg max—~ ol argmax p(7z,s) (4-1)

The probability models that estimapér|s) directly are referred asonditional
(Hockenmaier 2003). In such models the probablidg to be defined for every
sentence in the language. This makes them diffitulapply in practice. By
contrast, the assumption generative models that a parse tree is generated by a
probabilistic process and that the probability loé pparse can be expressed in
terms of the individual steps of the process.

In addition to defining the probabilities for passé is possible to use probabilistic
information for speeding up the parsing processolgering and pruning the
search space. The purpose of this is to enablalgjogithm to find the best parse
more quickly while at the same time not comprongsihe quality of the results
that are produced. It is possible to select thetnposbable derivation of a
sentence, for example, Miterbi optimization(Viterbi 1967). The idea here is to
eliminate the sub-derivations with low probabiltieottom up. One can also use a
beam searclstrategy, in which only the bestpartial parses are being tracked, for
pruning the chart edge®est-first parsing methods consider the most likely
constituents first (Caraballo & Charniak 1998). Asbfirst probabilistic chart
parser attempts to find the most likely parsesduireg constituents to the chart in
the order in which they are most likely to app&ea icorrect parse.

There are several ways to boost the performanagpobbabilistic parser. oting
methods such as those devised by Henderson and BrillQ)19®&edictions from
several parsers are combined. Henderson and Rrillexample, compared two
models: parse hybridizationwhich considers each constituent in isolation, and
parser switchingin which one parse is selected for the whole sesten

Data-oriented parsing(DOP) is anextreme type of probabilistic parsirthat

applies a treebank directly as a probabilistic gream(Bod 1998, Boet al. 2003).
DOP operates by deconstructing the representatt@isre given for training into
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fragments and then reconstructing those piecearfatyzing new sentences. An
input sentence is parsed by combining treebankresedtby means of aode
substitution operationwhich closely resembles that of TAGs.

The probabilistic parsing approaches that wereoéhiced above have much in
common. They all begin with a relatively small knedge of the language and
gather statistics from the training corpus. Prolstld parsing models can be
compared for example on the basis of the scopkeo$tatistical dependencies that
they use. While most state-of-the-art probabilipiézsers are based on models of
word-word dependencies, DOP takes into accourdgltaérvable fragments in the
training data.

4.3.2 Lexicalized parsing

Most state-of-the-art parsers use lexicalized gramformalisms. Lexicalized
parsing approaches have therefore been a topic id¢ wterest during the
previous decade. The most obvious implication leié&calized approach is the use
of bottom-up parsing. It makes sense to start dagch process from the words
themselves to obtain lexical information in thetfistage of the parsing.

A major processing advantage of lexicalized gransnoaer non-lexicalized ones
is that there is no need to search the grammarvdsoke: it only needs to search
the grammatical information indexed by each ofwleeds. A consequence of this
IS that increasing the size of a grammar does mcoessarily slow down the
processing — provided that the increase in sizeaised by the addition of new
words rather than increased lexical ambiguity.

Probabilistic and lexicalized approaches are ofimbined. To a non-lexicalized
probabilistic parser, an input sentence is reallgt ja list of POS tags and
nonterminal nodes. The main advantage of non-léxah parsers is that the small
terminal alphabet makes model training easier asd prone to data sparseness
(Dubey 2005). The consequence of this is that eeidomputational efficiency
nor smoothing are critical issues in non-lexicalizaobabilistic parsing. It has
however been evident from the time of the earl@sbabilistic parsers such as
those of Magerman (1994), that lexicalizing thebyatalistic model typically helps
one to obtain more precise models.
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4.3.3 Finite-state parsing

Syntactic structures in FS parsing are modeled gritiph representations (Oflazer
2003). FSM parsing techniques are based on thdibgibf a larger system from
smaller FSMs by combining and transforming those using intersection,
composition, determinization, and minimization altfons (Ginteret al 2006).

The following several approaches have been devidee: FS parsingombines a
set of FSMs to a single FSM (Yli-Jyrd 2004b). Imuast to thisextended FS
approaches use FS devices as basic componentem@ihes them in such a way
that the FS nature of the whole system is not rsacidg preserved (Oflazer 2003,
Roche 1997). Another commonly used approach isdate arFS approximation
of the original grammar. CFGs, for example, can approximated with FS
grammars, which are then processed by methods ateatefficient for such
grammars.

The applicability of FS parsing to natural languades been questioned for
example by Chomsky (1957). He argued that becaaseal languages are non-
regular, they cannot be modeled by FS machinerg @rhis arguments was that
unboundedself-embeddingstructures require unbounded memory. But recent
studies have suggested that there is an absofute dn center-embeddingnd
self-embedding. An FS approach would consequemitieed be applicable to
natural languages (Yli-Jyrd 2004a, Karlsson 2008irJyra (2005) claims that
while non-FS frameworks are useful for modelinge tkecality and co-occurrence
constraints, FS grammars are at their best whey dne used to approximate
computationally expensive formalisms. FS methodshalso been found to be
especially useful for shallow parsing.

4.4 Examples of Grammar Formalism-specific Algorithms

This section introduces techniques that are appheparsing specific grammar
formalisms, and it offers examples of parsersliese formalisms.

4.4.1 Parsing PCFGs
Head-driven statistical parsin¢gCollins 1996) extends the basic PCFG model by
lexicalization. Collins has extended this origifidmework by introducing what

are generally known as the Collins Models 1, 2 8n(Collins (1997, 2003)).
Model 1 is the baseline generative model basedoliifs 1996). Model 2 makes
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a distinction between complements and adjuncts had parameters that
correspond directly to the probability distributsonver subcategorization frames
for head-words. Model 3 adds a probabilistic treattmof a type of LDD, wh-
movement.

Another well-known example of the use of a lexiwatl PCFG is the parser by
Charniak (1996, 1997, 2000). Like Collins, Charnisles the Markov process for
rule generation. This approach is based on an M&em&harniak’s model uses a
richer set of features than Collins’s models.

4.4.2 Parsing UGs

Two basic UG parsing approaches can be distingdishe pure unification
parsing such as that of Shieber’s (1985b) chart parsiggrihm, there is no CF
backbone. The parsing is based purely on featufieations. In the case of dG
with a CF backbonethe parsing is driven by the backbone, and th@agpiate
unifications are carried out (for example, Car(@B93)).

Any parsing strategy that is valid for CFGs is alsdid for UGs. Bottom-up
parsing is a more attractive approach for UGs thaop-down one because of its
lexical element-driven nature (Bouma & Van Noord939 Oepen & Carroll
2000). Most of the recent work on UG parsing hasrdfore concentrated on
purely bottom-up techniques. The efficiency of #iocation-based parser depends
to a great extent on the efficiency of the unifizatoperatiort® There are two
crucial decisions that need to be made: the wayuthification operation is
implemented and the way in which the unificatiors tamed (Placeway 2002).

4.4.3 Parsing TAGs

Constructing a derivation in TAG and LTAG requirtte following two steps.
Firstly, each word in the input sentence is asslgaeset of trees. Secondly, the
trees are combined to produce a derivation fromclwha parse tree can be
constructed (Sarkar 2002). Some parsers, such aa® tbf Joshi and Schabes
(1997), use TAGs directly. Other parsers, suchhase of Vijay-Shanker and
Weir (1993) and Schabes and Shieber (1994), tramsfoTAG into an equivalent
linear indexed grammaand use that for parsing.

46 Roughly 90 per cent of the CPU time in parsingemwhusing a large-scale UG, is spent on
feature structure unifications (Maloef al 2000).
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Supertagging (Section 4.2.2) was originally introeld for TAGs, and it has
proved to be a successful approach. LTAG parsingupertagging involves the
following two steps. Firstly, an appropriate setsopertags is selected for each
word in the input (Srinivast al. 1996). Secondly, the parser uses simple heuristic
rules to link the supertags in an appropriate veggroduce complete parses.

4.4.4 Parsing DGs

D trees contain one node per word, and the taskDfparser is to connect these
nodes. A wide variety of techniques have been agpb D parsing. Some parsers,
such as the ones of Lombardo & Lesmo (1998a) asdeEi(1996a), use dynamic
programming algorithms similar to those applied @+Gs. Others regard parsing
as a constraint satisfaction problem.

In contrast to most other formalisms which are @drs aconstructiveway by
building structural descriptions out of elementdnpcks according to a rule
system, CG and FDG follow amlimination approach (Voutilainen & Heikkila
1993, Voutilainen 1994). The analysis is basedisambiguation by constraints.
Non-projective DGs have been successfully parsedyysobabilistic data-driven
methods, for example, by McDonadtial (2005) and Nivreet al (2004).

XDGs have been parsed by axiomatizing valid D gsdph finite set constraints.
In this approach parsing is reduced finite set constraint programming
(Debusmanret al 20044a, Duchier 1999). In contrast to the genezadpproach in
which parses are build up by combining smaller poesstraint programming sets
global well-formedness conditions for the sentestcactures.

4.4.5 Parsing LG

Sleator and Temperley (1993) use a dynamic progiagalgorithm for building

up LG linkages. A major efficiency increase is afa by post-processing that
deletes connectors that cannot form linkages. @robt al (1995) proposed a
modification that allows for parsing spoken langeidganscripts. The algorithm
usesnull linksto allow connections between any pair of adjagents, regardless
of their definitions in the lexicon. In a recentkpGinteret al. (2006) applied FS

parsing to LGs. They concluded that while LGs canparsed by FSMs, this

47 CG parsing proceeds as follows. Firstly, all polssPOS and morphological tags (i.e. readings)
are provided for each word in the sentence (Vaotla & Heikkila 1993). Secondly, the
constraints eliminate tags that are inconsistetit thie context.
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approach is inefficient in practice because ofdbmputation of the intermediate
results.

4.4.6 Parsing CCG

Because CCG derivations are binary trees, stantfead parsing techniques can
be applied. The main challenge in CCG parsing i& Ho control spurious
ambiguity. Spurious ambiguity is caused by the props of CCGs, which allows
the generation of an exponential number of dewvestifor a constituent.

In her search for a suitable probabilistic parsirgmework for CCGs,
Hockenmaier (2003) considered Charniak’s (1999))irt30 (1997), Goodman’s
(1997) PCFG models, and the DOP models of Bod (1¥8 found that those of
Collins (1997) and Goodman (1997) were best suitethe purpose. She also
proposed a model that captures LDDs by expressimgl-word dependencies of
the PAS. This model allows multiple dependenciesvbéen a word and its
context, including dependencies that arise throzagitrol, right node raising and
other LDD constructions. Another probabilistic apgeh to CCG parsing is
introduced in Clarket al. (2002) and in Clark and Curran (2004a). The main
difference between these and Hockenmaier's passéhat instead of being a
generative model, Clark and Curran (2004a) apmgralitional probability model
similar to that of Collins (1996). Clark and Curradso use a ME-based
supertagger prior to parsing.

4.5 Computational Complexity of Parsing

The structure of the search space of a parsingritdgo is defined by the
grammar. The properties of the grammar and thergpedgorithm together define
the computational complexity of a parser. The caiapenal complexity of an
algorithm describes the rate at which it consurimas aind space (Ristad 2003). It
is characterized as the order of the growth ofrection in the size of the input,
typically by means of the upper bound of the reseuequirements.

4.5.1 Efficiently parsable formalisms
Let n be the number of words in a sentence. The contglekiparsing CFGs with
dynamic programming approaches, such as thosertdyEand CYK, remains in

O(n®) in the general case, but are more efficient \sfikcific types of grammars.
The Earley algorithm, for example, has the time plexity n? for certain types of
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grammars. Table 4-1 sets out worst-case time aadespomplexity figures for
certain parsing algorithm - grammar formalism p&mswhich a polynomial time
algorithm is known.

Table 4-1 The worst-case time and space complexities fgorahms parsing a
specific grammar formalisms reported in literatufde data is compiled from
Carroll (1993), Covington (1990), Dia al (2002), Eisner (1996a), Grinbeeg
al. (1995), Joshi (1998), Kipps (1989), Lomardo aresrho (1998a), Perrault
(1984), Satta (1994), Schabes and Joshi (1988kst(1995), Sikkel and Op den
Akker (1993), Tapanainen (1999), Yoshinagfaal (2003), Van Noord (1994),
and Vijay-Shanker and Weir (1993).

Algorithm Formalism Time Space

CFG i n’

Earley PCFG 'Z n;

TAG n n

CDG i -
CFG i

PCFG i -

CYK Level-2 MCSGs h n'

CDG i -

LR CFG i n’

LC TAG n° -

CFG m n’

He TAG n -
Elimination (Tapanainen 1999) CG i
Sleator & Temperley (1993) LG n°
Grinberg et al. (1995) Probabilistic LG A

There are, apart from the length of an input sex@emwther factors that affect
computational complexity. Sarkat al (2000), for example, point out that, for
fully lexicalized grammargsuch as LTAG, the sentence length is not the anly,
even the dominant, factor affecting parsing compjexThey describe how
syntactic lexical ambiguity and clausal complexdtigo indicate complexity. A
word typically selects more than one syntactic citne. Thissyntactic lexical
ambiguityis a better indicator of parsing complexity in L&GAhan the sentence
length. Theclausal complexityof a sentence indicates the number of clauses it
contains. As it increases, the number of decisalmsut how to link the clauses
with one another increases accordingly.

B A grammar in which each lexical item is associatelbast one syntactic structure.
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4.5.2 Intractable problems

The problems in the classB¥-completeNP-hardandEXPPOLYare intractable
Ristad (1985, 1986). It is widely believed — altgbut has not been proved — that
no fast methods of solution can ever be foundHesé problems. The recognition
problems of some of the grammar formalisms analyzetis work belong to the
intractable classes (Table 4-2).

Table 4-2 The complexities of recognition problems of trargmar formalisms
in intractable classes.

Type | Formalism URP Source
GPSG EXPPOLY-hard/NP-completg* Ristad (1985, 1986)
; Kepser and Moénnich (2003) &
uG HPSG Undecidable/NP-complete**
' P Trautwein (1995)
LFG NP-complete Bartoet al (1987)
DG Non-projective DG NP-complete Neuhaus and Broker (1997)
XDG NP-hard Debusmann & Smolka (2006)

*Depending on the version usedTrautwein (1995) showed that when certain resimits are set
on a HPSG, the complexity of URP is NP-complete.

While the theoretical upper bounds of the CF fiftgrapproaches to LTAG and
HPSG (Torisawaet al 2000, Oouchid&t al 2004) remain in the same class as
their non-filtering counterparts, experiments shdvat the practical parsing
efficiency often is much better.

4.5.3 Analysis

There are some important points to note aboutithe ¢complexity figures. Firstly,
the worst-case complexities are not directly ustfukvaluating the practical time
complexities of parsing algorithms (Joshi 1998).@wsvington (1990) points out,
the worst-case parsing complexities rarely mategalCovington (2001) claims
that human language does not use unconstrainechgggrand that human beings
do not use sentences that would put any reasopaldeng algorithm into a worst-
case situation.

There are, however, no theoretical average caseltseavailable for most
algorithms and formalisms; all we have are ones #ie based on empirical
experiments. Tapanainen (1999), for example, apmabed the average
complexity of CG parsing as ©(og n). Average-case complexities can in some
cases be improved. The average-case complexitypdd parser, for example, can
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be reduced by placing an arbitrary limit on the maxn distance between the
current word and the potential head and dependamtiigtion 1990). Although
the limit will reduce the complexity significantlovington claims that it will not
affect the correctness of the parser because neassikd order inversions and the
wide separation of constituents are very rare driflaen in natural languages.

Secondly, parsing algorithms are often claimed & drammar formalisms-
independent. This may often be true in the sereetiiey can be used for parsing
many different types of grammars. The grammar fdisma however, typically
exerts an enormous influence on the efficiency hed parsing algorithm. An
algorithm that works best for one grammar formalisialy be the most inefficient
for some other formalism. Sarkat al (2000), for example, assert that the
theoretical upper bound did not exert any significaffect on performance in
LTAG parsing, but that the dominant factor wasléhacal ambiguity?

Thirdly, complexity results are only partly relevdar probabilistic parsers since
such parsers are usually not based on a grammaathetr on statistical inference
from treebank annotations (Nivre 2006). While tkeeagnition problem of non-
projective DGs is NP-complete, for example, thebpimlistic non-projective D

parser by McDonalét al (2005) has the time complexity 18).

Moore (2000) and Van Noord (1997) have reportedctma efficiency
evaluations using different pairs of grammars dgdrghms. One cannot directly
compare the conclusions that they draw because rdneythe tests on different
machines and grammars. Not only that but Moore @2@&ed English test data
and Van Noord used (1997) Dutch test data. One neayrtheless draw some
conclusions from these experiments. In both expamis) LR performed worst on
average while LC was more efficient than the Eadkgprithm in most cases. The
experiments also emphasize the fact that while ipgralgorithms are most
commonly designed to be general, their performamages considerably in
accordance with the grammar. The grammar alsotaftbe relative space usages
of the algorithms.

In order to arrive at a practical point of viewtbe space complexity of parsing,
let us consider an example. A feature structurédlay a parser using the LinGO
HPSG grammar contains on average 300 internal n@egenet al 2000), and

each node is approximately 80 bytes in size. Thesgpaexecutes over 4,000

9 The number of possible lexical entries for the savord in a sentence.
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unifications per sentence on average. The total ongnprocessing therefore
corresponds to almost 100 MBs.

The complexity figures given above do not includerpmological analysis, which
is also a complex task. Bartoet al. (1987) demonstrated that the TWOL
morphological analysis (both recognition and geti@nq is NP-hard. This is
caused by backtracking in processing both the ¢exiand the TWOL rules.
Fortunately, as Koskenniemi and Church (1988) poutf the worst-case behavior
rarely, if ever, materializes witinatural languages. Koskenniemi and Church
argue along similar lines to those argued by Cdweingdabove) when they note
that the exponential behavior does not occur ictpgral applications since natural
languages avoid using constructions that coul@éngny worst-case behavior.

It may therefore be concluded that it is diffictdtstate anything on the practical
efficiency of a parser on the basis of only theotk&cal computational
complexities of the grammar and the algorithm. @is® needs to bear in mind
that there is no analytical technique that allome @dequately to characterize
grammar complexity in a particular setting and tedict the most efficient
parsing strategy on the basis of a given grammar.

Moreover, one may state that research on efficiamparsing has two main goals.
The first is to identify linguistically significardubclasses of grammars with low
theoretical complexity, and the second is to findrspng approaches and
algorithms that are efficient in practice. On tlasis of the findings above priority
should be given to the latter goal. These findiaggphasize the need for finding
an empirical means of comparing different approaciied identifying the best
ones for a given parsing problem.

4.6 Conclusion

This section analyzes the algorithms and technithegsare applied in parsing the
grammar formalisms surveyed in Chapter 3. Tablgpde®ides an overview of the
techniques used in parsing the grammar formalisemsesented in Section 3.
While this table is not exhaustive, it neverthelesrs a comprehensive view of
approaches that are applied in the parsing of eathe formalisms. Since many
of the algorithms shown in the table are lexicalizexicalized parsing is not
represented in a separate section in order to alupticating items.
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Table 4-3.Summary of parsing approaches and algorithms egppdi the grammar
formalisms analyzed in Chapter 3.

| PCFG| UGs | TAGs | DGs | LGs | cCCG
Fundamental algorithms
Schabes &
Earley Stolcke Shieber | Joshi (1988)| Lombardo & i i
(1995) (1985b) Nederhof |Lesmo (1996
(1999)
Vijay- Eisner
CYK Ney (1991) q'asifu(él?az Shanker& (1996a),.Lee i Hockenmaier
al. (2004) Weir (1993),| & Choi (2003)
' Chiang (2000) (1997)
. Briscoe & Sch__abes &| Yamada & S .
Shift- Carroll Carroll Vijay- Matsumoto i Villavicencio
reduce /LR (1993) (1993) Shanker |(2003), Nivre (1997)
(1990) et al (2004)
Manning & Diazet al
LC Carpenter | Haas (1989 (2002) ) - - -
(1997)
Van Noord
HC : V"’gg’\é‘;‘)’rd (1994), Sarkd - : i
(2000)
CF filtering and supertagging
. Poller &
Torisawaet Becker
CF fitering| - al. (2000), | (199g), : : .
Matsuzakiet .
al. (2007) Oouchideet
al. (2004)
Ninomiyaet
Super- ) al. (2006), | Srinivas & | Fothet al i c%?&k&(zcol?r%r
tagging Matsuzakiet| Joshi (1999)  (2006) (2004b)
al. (2007)
Parsing approaches
Pure i i i Koskenniem i i
7 (1990)
2. Extend i i Roche (1997, Oflazer i i
it ' - 1999) (2003)
& Mohri & o .
® [ aoprox| Necermor | R || eve Jonesall
(2001) '
Charniak Eisner
Genera(1996, 2000 Cahill - 1996a), | Laffertyet | Hockenmaier
tive ( Colins | (2004) |Chiang (2000 Di(eneset)al al, (193532) (2003)
(1997, 2003 (2003)
Clarket al
Condi-| Johnson (2002), Clark
| tional (2001) i i i i & Curran
S (2004a)
& ME Charniak | Ninomiyaet i Chenget al i Clark & Currar]
5 (2000) al. (2006) (2005) (2004a)
© | Inside-| Goodman Bgscoe”& Lee & Choi | Laffertyet
outside|  (1996) (gg%) ; (1997) | al. (1992) ;
Bodet al
pop | ©Goodman | (2003), Neumann i i i
(1996) Neumann (1998)
(2002)
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| have used two criterigxpressivenessndcomputational efficiengyto compare
grammar formalisms for parsing. While the gramnmamfalism of a parser needs
to be sufficiently expressive for describing thadaage that is being parsed, the
formalism needs to be simultaneously parsable withreasonable timeframe. |
have represented the results of the analysis ite#a4.

Table 4-4 A summary of the analysis in this chapter.

Formal . Efficiency, O()
. Expressiveness _ —
Ism Parsing Recognition
CFG CF ° P
CF n
PCFG >CF n P
GPSG CF - NP-complete, EXPPOLY
uG HPSG Unrestricted - Undecidable/ NP-complete
LFG Context-sensitive - NP-complete
TAG MCSG n’ n’
TAG PLTAG MCSG n° -
LTAG MCSG n° -
CG <Regular - -
DG FDG >CF - NP-complete*
XDG Unrestricted - NP-hard
3
LG LG CF nd
Prob LG CF n -
CatC CCG MCSG n’ -

*While there is no proof of the time complexity BDG recognition, Neuhaus and Broker (1997)
have showed that the recognition of non-projeciis NP-complete. Thus the time complexity
of FDG recoghnition is at least NP-complete.

If one takes into consideration the tradeoff betwegpressiveness and efficiency,
then one may judge MCSGs to be the most attraciass of grammars. While
they are powerful enough for describing naturagjleages, they remain parsable in
polynomial time even in the worst case. But, asenalready noted above, the
theoretical upper bounds for parsing and the reiiognof a certain grammar
formalism may have a little effect on parsing e#ficy in practice. Practical
evaluations are needed for determining the effoyreof an algorithm/formalism
pair. Such evaluations are provided in Chapter 10.
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5 Parsing: Problems and Solutions

This chapter introduces the problems that syntagticsers have to face and
describes solutions to these problems (Section 5.0l close the chapter in
Section 5.2 by comparing the two main parsing apgres — rule-based and
probabilistic.

5.1 Problems in Parsing and Their Solutions

At the time of writing (2007), no domain- and geimdependent natural language
parser capable of producing error-free parses d@mning text has ever been
devised. The following factors make it difficult parse unrestricted text (Leeeh
al. 1996, Briscoe 1998):

1. Ambiguity is an inherent property of all naturah¢mages, and it affects
parsers on the level of lexicon and grammar. Listjtiexpressions taken
out of context are ambiguous and incomplete. Pgusisentence often thus
results in more than one analysis for the inputesere.

2. Sentences in free text are often long and conteiersl clauses and
phrases. This causes the number of possible asalyee grow
exponentially.

3. Because parsers have no world knowledge, they lawvely solely on
whatever information they can derive from linguagtiles.

4. ltis necessary for a grammar with a broad cowasfag be extensive. This
makes it difficult to achieve consistency in théesuand lexicon.

Apart from ambiguity (Section 5.1.1), both undergetion and overgeneration
(Section 5.1.2) cause problems for parsdrelergenerationefers to a situation in
which no analysis is generated for a grammaticalesee Overgeneratiormeans
that a parser will produce parses for ungrammatseaitences. Other parsing
issues covered in this chapter include the proldédealing with ill-formed input
(Section 5.1.3), the role of semantic information syntactic parsing (Section
5.1.4), the problem of defining the relation betwethe grammar, and the
processing component (Section 5.1.5).

A grammar has broad coverage if it's able to poeda parse for a high proportion of input
sentences representing several different text genre
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5.1.1 Ambiguity

While human beings have the ability to resolve muosdes of ambiguity, the

disambiguation of even a simple case of ambigudp be problematic for a

parser. This is made even more problematic by a&lce that types of ambiguity

combine in complex ways. Parsers tend to run imbblpms when they analyze

long sentences because the probability that théyemgounter more than one case
of ambiguity increases in proportion to the lengtithe sentence being parsed.

POS ambiguityis a particular problem in lexicalized grammarsdiese a parser
using such a grammar selects multiple structuneedoh POS analysis assigned to
a word (Srinivaset al 1995). Dalrymple (2006), in one of the very feigqes of
research undertaken in this area, reported onftaetef POS tagging and POS
ambiguity on a parser’s performance. Dalrymple'st teet contained a total of
2,105 sentences. The sentences were assigned #23 pa average. 29.5% of the
2,105 sentences had parses whose POS tag sequeeceddentical. These
sentences had 7.2 parses on average. Dalrympléudedcfrom these results that
accurate POS tagging would not help to disambigubhtse 29.5% of the
sentences— but that it would help with the rema@nif.5%. Dalrymple estimated
the degree of overall ambiguity reduction that dobé obtained if the tagging
were to be performed by a “perfect tagger” prodgdime correct tag sequence for
each sentence. The results indicated that 45-50%heofpotential parses for a
sentence could be ruled out by choosing the cotagcsequence.

Structural ambiguityoriginates from a grammar assigning more thanaoraysis
to a sentence. Two distinct types of structural igomby can be identified. A
globally ambiguousentence can be interpreted, as a whole, in rharedne way.
A local ambiguityaffects only a part of a sentence (Gazdar & Melli989). A
particular type of ambiguity occurs in so calgaiden pathsentences. While such
sentences may be correct from a grammatical pdiniew, they can easily be
misunderstood. Even a human language processor migrgsolve and fail to
analyze grammatical garden path sentences. Thisopienon is typically caused
by local ambiguities (Crain & Steedman 1985).
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Example 5-1.Globally ambiguous sentence A can be interpresedasitically in
at least four different ways. The most probabledigg is that a female avoids
balls flying overhead by ducking. The other intetations involve odd scenarios
featuring a bird being constructed and a womamdyiAlthough the locally
ambiguous sentence B is not ambiguous as a wifolee ithree last words are
examined in isolation, one can come up with therprietation that Liverpool sold
Everton — even though the sentence as a whole mesmake such proposition.
Sentence C is a garden path sentence.

A) Flying balls made her duck.
B) The company that bought Liverpool sold Everton.
C) The referee who whistles tunes the whistle.

Structural ambiguity has multiple causes (Jurai&kiylartin 2000). Coordination
ambiguity is caused by a situation in which different setspbrases can be
conjoined. The phrase “accurate shots and crosdes”,example, can be
interpreted so that “accurate” modifies either tshar “shots and crossésin
attachment ambiguitya constituent can be attached to more than caeeph a
sentence. Resolving attachment ambiguities coyreetjuires the use of several
sources of information. In the sentence “The coaalv the player with the
telescope”, we have an example of a common typat@ichment ambiguity,
namely prepositional phrasgPP) attachment ambiguity (Collins 1999)This
sentence may be analyzed in at least two possillgs w the PP “with the
telescope” modifies either “coach” or “saw”, andstleads to the analyses shown
in Figure 5-1.

s S
T T
_____————_ 'a___k ______———— - .
NP P NP P
T~ T N —— N
The coach saw MNP PP The coach saw MNP
L e I
,/r x,‘\ ./'_,,- \\ e ’_/’ a-.,___\
the player with MNP the player PP
T PN
— ~ — .
the telescope with NP

the telescope

Figure 5-1. Two parse trees for the ambiguous sentence “Tlaelhcsaw the
player with the telescope.”

Disambiguationis the process of resolving ambiguities (Earley@9Winograd
1983, Srinivaset al 1995, Nivre 2006). A parser has to choose theecbione

*1 The number of possible analyses for a senten¢eR#®s follows the Catalan number (Church &
Patil 1982). A sentence with three embedded PRPgxXample, produces a total of five possible
parses, while a sentence with seven PPs produotsl af 469 possible parses.
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from a set of possible parses for a sentence. Toereseveral different ways of
dealing with ambiguity in syntactic parsing. Thesfiand most straightforward
approach is to let the parser look for all the gmegarses that are derivable from
the grammar and then choose the correct one. Tdendepproach is simply to
return the first parse that is found. In such apraach the search ought to be
guided towards identifying the most plausible parfest. The third approach
involves designing a grammar so that it returns amaysis for any grammatical
sentence. The ambiguity of a grammar can be redd@ieedxample, by tailoring it
to a specific text genre.

The fourth approach involves performing POS disguaiion prior to syntactic
analysis so that the number of potential parsesulsstantially reduced. This
approach is especially important with lexicalize@rgmars. The fifth approach
involvestree filtering This reduces the set of possible parse treedifoynating
parses that cannot lead into a valid analysis @n ldasis of their structural
properties. Such filtering may be based eitherwdesror probabilities. The sixth
approach is an elimination approach such as CG-&xl (which was discussed in
Chapters 3 and 4). It integrates parsing and digarabon. Finally, semantic
information can be integrated into the processyoitactic disambiguation (see
Section 5.1.4).

5.1.2 Under- and overgeneration

In addition to genuine cases of ambiguity suchhasé discussed above (in which
the grammarshould assign several plausible analyses to a senteaaggammar
may assign analyses that are never encounterebeilahguage being parsed
(Nivre 2006). This problem is referred to as overgation (or grammar leakage).
In undergeneration, which is the opposite phenoméamvergeneration, a parser
is not able to analyze a sentence which belongegdanguage. This is usually
caused by a gap in the coverage of the grammaurd-ig-2 illustrates the two
concepts.
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Undergeneration Overgeneration

LG) .
is well Liverpool playing

Liverpool is playing well

Figure 5-2. Under- and overgeneration (adapted from Dornent@8y).L is the
language being parsed, an(G) is the language generated by the gram@df a
parserP fails, for example, to analyze the sentence “Lpoail is playing well”, it
is undergenerating. If P produces an analysisHersentence “is well Liverpool
playing”, it is overgenerating.

The concepts of under- and overgeneration areyigbtinected to the dilemma of
coverage and the fuzziness of grammaticality. Argnar that is rich enough to
cover a natural language, including rare sentermwestouctions, often fails to

distinguish natural from unnatural interpretatio@n the other hand, a grammar
that is restricted enough to exclude all ungrameaasentences typically fails to
accommodate all the grammatical ones.

5.1.3 lll-formed input

Parsers are often presented with texts that comtaors. While processing user
inputs a parser may therefore encounter misspeltgds, incorrect cases, missing
or extra words, or dialect variations (Foster 2008)anscriptions ofspoken
language texts are especially likely to containhsaoors and complications. A
parser’s ability to produce an error-free or onllightly altered output from input
sentences containing errors, is referred tmhsstnessA robust parser is able to
provide as complete and correct analysis of thetisentence as it is capable of
doing under the circumstances.

Probabilistic approaches to parsing are inhereotiyst because they consider all
possible analyses of a sentence and usually prap@sese for any given input.
Robustness can be added to a rule-based parsewénak ways (Nivre, 2006,
Menzel, 1995). The first way is by relaxing the swaints of the grammar in such
a way that a sentence outside the language gedeogtehe grammar can be
assigned a complete analysis. The second way igeltyng a parser to try to
recover as much structure as possible from the-feetied fragments of an
analysis when a complete analysis cannot be peeriithe third way is by
identifying a number of common mistakes and inttggathem into the grammar
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in anticipation of such errors occurring in texthiis method is limited to few
predictable high-frequency kinds of errors suclt@smon spelling mistakes and
high-frequency errors of word order.

5.1.4 The role of semantic information

A purely syntactic approach to language assumesttisaa collection of syntactic
expressions (Gazdat al 1985). However, the reason why natural languagest
at all is that human beings associate meanings \liise expressions.
Psycholinguistic research has shown that the hubram processes language
incrementally by using information extracted froraveral different levels of
language (Pollard 1996). The human brain continyougegrates information
about syntax with semantic, pragmatic and world Wedge, and even with
probabilistic data. Human beings are consequent#yl endowed with highly
developed skills to process natural languages. Hneycapable, for example, of
understanding ill-formed sentences — even when twyain several types of
errors simultaneously (Menzel 1995). But parsingteays encounter serious
problems when they are confronted even with a silkgid of distortion. This is
partly attributable to the fact that most parsefg solely on syntactic information
to guide the parsing process.

Many linguists are of the opinion that meaning atdicture are, in principle,
independent of one another. Tesniere (1959), famgte, claims that while
syntactic structure follows from semantic structuhe contrary case is not valid.
Chomsky (1957) presented the following, now widdlgown, examples to
emphasize that syntax is autonomous of semantigsn Ehough both sentences
are perfectly grammatical, their meanings are nusisal.

Colorless ideas sleep furiously.

Golf plays John.

Models that are based on autonomy assume thateberigtion of a linguistic
expression must refer to only one level of repreg@n, namely syntax. If one
follows autonomy rules, one might claim that theigigation of a meaning should
not determine the grammaticality of a sentencé&SREG (Gazdaet al 1985), for
example, semantics is not allowed to act as a pogiectic filter; nor is it allowed
to interact with syntactic parsing decisions. Ihdae argued that although the
sentence “Colorless ideas sleep furiously”, for regke, is not semantically
coherent, it is nevertheless perfectly grammatit@his statement is false” is
another example of a grammatical sentence thatpsssible to make sense of.
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The autonomy of syntax does not mean that it exisisolation. Syntax cannot be
reduced to semantics (Abney 1996). In contrastutoreomy, some theories of
syntax are based on the assumption that no levgrashmatical knowledge is
privileged with respect to others and that no leselerived from any other — even
though the levels mutually constrain one another.

The notion ofplausibility refers to assessment of the sense of a partisetdence
based on a general human understanding of the WOrlin & Steedman 1985).
Crain and Steedman suggest the following methodbfonulating the principle of
plausibility:
“If a reading is more plausible in terms eithergeheral knowledge about
the world, or of specific knowledge about the undecof discourse, then,
other things being equal, it will be favored oveedhat is not”.

Crain and Steedman state that in a case where ithareonflict between general
and specific knowledge, the latter must take prened. But the use of plausibility
constraints of this type in syntactic parsing carpboblematic because the reason
why natural languages have syntax at all is preblynaecause real-life events
frequently contradict the expectations stated lmh sionstraints.

Using semantic knowledge to guide syntactic parsdegisions is not as
straightforward a choice as it might intuitivelypsgar to be. One option that is
applied by CCG is to follow Montague’s (1974)le-to-rule approach to the
syntax-semantics interface. This principle statkat teach syntactic rule is
associated with a semantic rule that determinesrbaning of that part of the
sentence whose form the syntactic rule speciffemné accepts this point of view,
semantic information can be used for filtering sytic structures (Gazdat al
1985).

The rule-to-rule approach is an example afeak interactionrmodel in which a

parser builds syntactic structures which, in tuare checked by the semantic
component that selects the ones that are semaynttalisible (Crain & Steedman

1985, Gorrell 1995, Allen 1995). A parser could, égample, create all the parses
that are syntactically correct according to thengrear and use selectional
restrictions to discard semantically ill-formed sn&/eak interaction is the model
employed by most practical parsing systems that sgseantics as part of the
parsing process. In contrast to thstong interactionmakes use of semantic
information to guide initial syntactic parsing dgons. If one’s purpose is to

generate semantic representations, the most ragppabach one could use would
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be to throw out the syntax completely and build @etic structures directly. In
such systems, both grammatical and semantic inftowméa stored in the lexicon.

A successful example of the use of semantic inftionain parsing is PP and
relative clause attachment disambiguation (Chardif®3). As | have already
noted above, some attachment decisions are impegsibmake purely on the
basis of syntactic information. One approach ismtark a corpus of text with
semantic tags and to train a probabilistic modelhendata. One may then use the
probabilistic model for the semantic role taggirighee PP clauses, and this in turn
will act as a guide to making the correct attachingeisions. Another example of
a successful application of computational semanscghe Minimal Recursion
Semantic{MRS) framework, which is suitable for parsing wlGs (Copestake
et al 2003). MRS has been applied, for example, to agligh-Norwegian MT
system that parses Norwegian by using an LFG parsgigenerates English with
an HPSG (Oepeet al.2004).

5.1.5 Grammar/parser interface

There is no evidence of two physically separateraleassemblies in the human
language processor, i.e. one that stores gramrtes and another that is an active
device for accessing grammar-rules in the coursesafperation (Crain & Fodor
1985). From a psycholinguistic point of view, suzhdivision represents only a
manner of speaking or a method of dividing up congmts for purposes of
theoretical convenience. Practical parsing systemgertheless are required to
deal with such a divisiofi.

Obviously the more ambiguous a grammar is, the nppoblems and work it
causes for the parsing algorithm. In addition tes,ta grammar may cause
problems for the parser lmpncentrating structural complexigt certain points in
word strings. For example, in multiple center-endezt sentences such as “The
attacker that the defender tackled kicked the p#iié density of nonterminals in

*2The connectionisapproach to parsing, or the use of artificial aénetworks, aims at simulating
the mental processing of human sentence parsingéRart & McClelland 1986, Nakagawa &
Mori 1988). Schnelle and Doust (1992), for exampi@ye proposed a neural network structure
that implements the Earley algorithm. Connectiopatsing is different from other approaches to
parsing because it is intrinsically non-modulae grammar and search procedure are interwoven.
In addition to having an orientation towards maoagglthe mental processes of human sentence
parsing, a further advantage of the connectiopipt@ach is that it allows one to use semantic and
contextual information alongside syntactic inforimatin a uniform manner (Rumelhart &
McClelland 1986, Nakagawa & Mori 1988). Neverthslethe successes of such parsers in
practice have thus far been modest, and it istfat teason | have not dealt with them in this
research.
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relation to words is high. The third possible seuof complications is thiormat
and organizationof the grammar itself. The syntactical informatiomy be
represented in a way that is not well suited to nlature and sequence of the
computations of the parsing algorithm.

As already noted in Chapter 3, TGs offer a notariemample of the difficulties
that a grammar can cause for the processing compaofie parser. There seems
to be no way in which a parser can directly useTiGerules: what is required is a
reshuffling of the information encoding. By conttablGs, for example, treat
parsing as a relatively straightforward processchSa process is based on a
grammar that contains rules which can be direqgiiyliad to word strings. In the
purest form of UG parsing, no other filters or doaisits or any other devices are
applied.

5.2 Rule-based vs. Probabilistic Parsing

The debate in the CL and NLP communities over the-based (or symbolic) vs.
probabilistic (or machine learning) approacheslieen going on since generative
grammars first appeared in the 1950s (Klavans &nfike$996)> Research into
probabilistic and corpus-based methods was disgedrdy Chomsky’s (1957)
observations (Geman & Johnson 2002). The reseaashpredicated on TGs and
other rule-based approaches. However, as | havednaetbove, TGs are
computationally expensive. Many researchers werasemuently drawn to
developing grammar formalisms in which the surfataeicture is generated
directly without any separate deep structure orsfiamations.

The following drawback can be identified in theerllased approach to parsing
(Srinivaset al. 1998, Geman & Johnson 2002, Nivre 2006): Firstig toverage
of such grammars is incomplete because of the Jebensiveness of manual
grammar construction and because of an inadequaterstanding of the syntactic
constructions that occur in natural languages. &#gp hand-constructed
grammars are prone to generate spurious ambiguitiesses that are accepted by
the grammar syntactically, but which are semarijicahomalous. Thirdly, the
performance of a rule-based grammar may suffer fthenlack of text genre-
specific knowledge. In order to minimize this prain, some parsers with a rule-
based grammar use a heuristical disambiguation coer that has been trained

*3 In parsing, the termgrammar-drivenand data-drivenare also used (Nivre 2006). The rule-
based approach is sometimes called “deep”, by wath® contrast to “shallow” processing
methods (Oepemet al 2002). This distinction is actually not sustaileabVith state-of-the-art
methods it is possible to acquire deep grammarstaaitically.
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on genre-specific texts. Finally, rule-based appinea are typically not as robust
as probabilistic approaches.

The success of probabilistic approaches in speemtognition led some
researchers to apply the methods to other NLP egmins (Geman & Johnson
2002). The probabilistic approach has been appla&dexample, to POS tagging.
Some researchers even went so far as to annouate"lthguists need not
participate" in the development of a probabiligiarser (Magerman 1994). Most
probabilistic systems are so designed that evemytisentence is assigned at least
one analysis — a move that largely eliminates theblpm of robustness.
Disambiguation may nevertheless become a sevebdepndbecause the improved
robustness often causes massive overgeneratiohough smoothing may be
useful in some casé$,automatically induced grammars are usually amhiguo
and often overgenerate (Manning & Carpenter 199@¢. overgeneration problem
in probabilistic parsing is nevertheless compermkstie— at least to some extent —
by disambiguation and parse ranking mechanismshé grobabilistic model
(Nivre 2006).

The binary decisions of grammaticality vs. ungramoadity of rule-based
grammars are replaced in probabilistic grammar$ \piriobability distributions.
Instead of describing ill-formed structures as isgble, probabilistic approaches
assign them a low probability. In addition to thpspbabilistic approaches offer a
means of distinguishing more plausible interpretei from less plausible ones.
The lack of genre-specific knowledge is also ofteproblem for probabilistic
parsers. Statistically induced grammars are traméth a specific treebank.
Consequently their performance may become worsenwhey are exposed to
texts from a different domain than the treebank haised for training (Clegg &
Shepherd 2005}t is, however, less demanding to modify a probstidl parser than
a rule-based parser to a new genre provided thedimng material (i.e. treebank)
representing texts from that new genre is availdblsuch a resource does not exist,
the opposite of what was stated in the previouseser may be true due to the high
costs of developing treebank§able 5-1 compares rule-based and probabilistic
methods in respect of several key properties.

> The training data, for example, allows a componadn to be modified by four adjectives, but
not by a simple noun. Thus the training data mighte the phrase “quick, skilled, long, stylish
midfield player”, but not “quick, skilled, long, yish midfielder”. Smoothing would allow for

analyzing the latter sentence. These added rutegrdikely to appear in the maximum probability
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Table 5-1.Comparison of rule-based and probabilistic apgdreado parsing.

Cost of
Level of
grammar |Grammar | Robustness detail Coverage
development
Costly to develo More easil . Has not been broad
y v Perhaps v Often higher .
because of the broken by ney . enough for practica
Rule-based complexity of more input or b than in applications until
.p y' intuitive P y probabilistic bp
rule interactions user errors recently
. : Typically broader
Low if a suitable Often lower ypieay
_ ., | Perhaps less Often more . coverage when
Probabilistic| treebank exists, =~ than in rule-
. . intuitive robust compared to rule-
Otherwise high based based

Table 5-1 shows that while the probabilistic apphes tend to be more robust in
comparison to rule-based ones, their grammar nekyitduitive clarity (Kapur &
Clark 1996). The development of a grammar for &-hdsed system is, on the
other hand, usually very expensive. This is alse tfor the development of
probabilistic parsers if a suitable treebank is awtilable. The probabilistic
approaches have been proven to offer a broad enmmgrage for practical NLP
applications. This has not been the case untilntgcavith many of the rule-based
approaches, such as HPSG (Oegieal 2002).

It appears to be the case that the research corymuas reached a consensus
about combining the two approaches (see, for exampPepenet al 2002,
Klavans & Resnik 1996, and Foth & Mengel 2006). Tdwmbination of the
advantages of both the rule-based and probabileghigroaches would enable
compact descriptions and robustness while keepieggrammar development
costs low. One may also note that there appeatsetan upper limit for the
performance of parsers that use a single approach.

The two basic approaches in combining informatiamf probabilistic and rule-
based sources is either to allow the probabil=timponent to choose from among
the results returned by the rule-based componentp aestrict the number of
possibilities for the next processing level by, &xample, using a probabilistic
POS disambiguator before rule-based parsing. Foth engel (2006), for
example, use a hybrid parsing architecture thatbtoes information from more
than two sources that are both probabilistic ametbased. Their system is a rule-
based D parser that contains probabilistic predicatomponents. In their

parse. While smoothing consequently allows someecbiparses to be generated, the adding of
unseen rules with low probabilities is unlikelyitoprove performance to any great extent.
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experiments in parsing German, Foth and Mengel wabée to increase
performance by several percentage points overlleebased baseline system.
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Il LINGUISTIC RESOURCES FOR EVALUATION

6 Analysis of Existing Resources and Schemes

Evaluation of the correctness of a parser’s ouigpgenerally done by comparing
the system output to correct human-constructecctsires. Thesgold standard
parses are obtained from limguistic resource Section 6.1 analyzes existing
linguistic resources and their suitability for pargvaluation.

Linguistic annotation (hereafter referred toaasotatior) refers to the notations
applied to language data that describes its infaomaontent. The annotation in a
treebank, for example, includes at least POS tag$ syntactic tags. An
annotation schemeefers to the specification of a set of practiecesed for
annotation in a particular linguistic resource. éatoding schemdefines the way
in which the annotated data is represented. Ibwaith introduce the annotation and
encoding schemes used in existing linguistic ressiand analyze their suitability
for parser evaluation in Section 6.2.

Section 6.3 offers an analysis of existing depengéreebanks (D treebanks). The
results of this analysis are used in Chapter 7hasbisis for the design of a
treebank for Finnish.

6.1 Evaluation Resources

The most commonly used linguistic resources fosg@aevaluation are treebanks,
which are collections of syntactically annotatechtsaces. These syntactically
annotated corpora consist of sentences which haeee assigned parse trees with
at least syntactic and morphosyntactic annotatimeebanks are described in
Section 6.1.1Test suitesre collections of annotated test items that agarozed

in terms of specific linguistic phenomena (Sectoh.2). One may describe them
as treebanks that have been tailored for evalughiamposes because all the
sentences in them have been annotated with synmiaébrmation that elucidates

the syntactic phenomena they contain. Section 6deS8cribes a corpus of

ungrammatical sentences. | conclude the finding3eiction 6.1.4.

6.1.1 Treebanks

Treebanks have several applications in linguisti@ls,and NLP (Abeillé 2003).
Linguists use them, among other things, to gatleeroboratory or contradictory
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evidence for supporting or disproving an hypothesitheory. Psycholinguists can
use treebanks for counting the frequency of specKinds of sentence
constructions. Applications in NLP include the depenent and evaluation of text
classification, parsing and MT systems.

The best-known examples of a treebank with PS atioatare théenn Treebank
(PTB) for English (Marcugt al 1993) and its successor PTB-Il (Maraetsal.
1994). The PTB and PTB-Il are the most widely usestbanks for training
probabilistic parsers and are extensively use@vVatuating all types of parsers for
English. The standard method for training and eataittg a probabilistic parser is
to use sections 02-21 of thWall Street Journa(WSJ) dataset of the PTB for
training the parsing model, and sections 23 an@&®4he test and development
sets, respectively (Ringget al 2004). This will enable an English parser to be
evaluated with approximately 2,400 gold standantteseces from a prestigious
financial newspaper written in American English.

The SUSANNE corpus (Sampson 1995) is another Rbdre that is frequently
used in parser evaluation. It consists of a suf@gebut of the total of 500 texts) of
the BC. The texts represent four different genrgeess reportage,

biography/memoirs, technical/scholarly and advesifiotion. The size of the

SUSANNE, approximately 7,000 sentences, meansttisahnot be reliably used
to train probabilistic parsers. It is neverthelessuseful resource for parser
evaluation.

6.1.2 Test suites

Test suites consist of artificially constructiest itemgBalkanet al. 1994). They
are collections of examples with both syntactic cdation and additional
information that can be utilized for controlled tteg and evaluation.
Ungrammatical items are usually also included. Ténsables researchers to test
whether or not parsers have the ability to haniH®nmed input. The test items
are usually artificially constructed so that thepnmin either a single
morphological or syntactic phenomenon or a commnabf phenomena. The
systematicity of a test suite is designed to oleviahy kind of uncontrolled
interaction between phenomena. Some of the bestskriest suites are thBest
Suites for Natural Language ProcessifiiNLP) (Lehmanret al 1996) and the
Hewlett-Packard Test Sui{€lickingeret al 1987).

The purpose of TSNLP is to evaluate parsers animgex checkers. It consists of
test items for three languages: English, French@adnan (Balkaret al. 1994).
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The test suite itself is stored in a relationalbflase from where test items can be
retrieved by making use of several criteria. Eae$t item is marked with the
information about the phenomenon for which it testd other phenomena in the
item, that are not designed for testing. Some itanesnevertheless specifically
designed to contain co-occurrences of phenomelfarithed test items are also
included. In the TSNLP framework, the ability tonki#e specific grammatical
phenomena is measured in terms of classes of stigyphenomena. Summary
reports can be created, and the progress of ansystenitored by comparing
successive reports over a period of time.

A summary report is a table in which each row cmstanformation about a
particular grammatical phenomenon (Oepen & Flickm$998). The results are
reported in terms of the percentage of items thathbeen covered, and they are
recorded separately for grammatical and ungramadatest items. Thus, for
example, if the coverage of grammatical and ungratimal test items in the
agreementphenomenon is 59% and 14% respectively, this méanshat the
parser is not covering this particular phenomendegaately (it is rejecting 41%
of the grammatical items), and (2) that it is ats@rgenerating (it is accepting
14% of the ungrammatical test items).

6.1.3 A corpus of ungrammatical sentences

Foster and Vogel (2004) reported a 20,000-wordr@ppl,000 sentences) corpus
of naturally occurring, ungrammatical English seets. Such a resource is useful
for evaluating a parser’s ability to analyze noisgut. The corpus was collected
from several resources that included newspapensails- and student writings.
The error types in the corpus include incorrect dvforms, extraneous words,
omitted words, and composite errors (errors that lma fixed by applying more
than one correction operation). For each sentetiee,corpus offers parallel
correct and ungrammatical versions that are idahticmeaning. The assumption
is that the parse for an ungrammatical sentenceldl® as close as possible to
the parse for its grammatical counterpart so tisatue meaning is expressed. In a
case where a particular erroneous sentence caorteei®d in more than one way,
all possible corrected versions are included in twepus of grammatical
sentences. The corpus is not annotated with maoogieal or syntactic
information.
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6.1.4 Analysis

In this section, | shall compare the different typef linguistic resources
(treebanks and test suites) and analyze theirksltiyafor parser evaluation. The
discussion about treebanks and test suites indpsc@.1.4.1 and 6.1.4.2 will be
limited to the two most commonly used PS treeband test suites for English
respectively.

6.1.4.1 Treebanks

It may be argued that the standard method of usieg®TB in evaluation makes
the current parsing practices appear in a ratherdsy light. It does this because
there are certain properties of the PTB that maliesipg easy (Manning &
Carpenter 1997). Even non-lexicalized and CF ambrem (such as non-
lexicalized PCFG parsers) work well when it conegarsing the PTB. The main
reason why this happens is that the trees in tHe &€ quite flat. The less detall
there is in the structures, and the fewer bradketse are, the easier it is to assign
structures correctly. As Manning and Carpenter gsit out, the analyses
assigned to certain kinds of sentence structudesnot give enough advantage to a
parser that can analyze them correctly. Since th® B often used as the only
evaluation resource in the development of a patkerg is a concern about the
extent to which the parser will adapt to other d&teversity of data is the major
advantage that the SUSANNE corpus has over the MitBle section 23 of the
PTB that is often employed in evaluation is composelely of WSJ sentencés,
the SUSANNE contains texts from several genres.

6.1.4.2 Test suites

The main difference between the older generatiortest suites, such as the
Hewlett Packard test suite (Flickinget al. 1987) and the TSNLP introduced
above, is that, in the latter, the test items aoeiged into sets that define classes
of linguistic phenomena. This enables evaluatorsawy out a more controlled
kind of testing because they can adjust the graityile their needs (Oepen &
Flickinger 1998). In more recent test suites spetiantion has also been paid to
the systematicity of the phenomena covered. Ortaetleficiencies in TSNLP is
that it does not have a mechanism that permitsatitemated replacement of
lexical items (Oepen & Flickinger 1998). If theredoa test item contains words

% For example, the adjunction structures of the iR [NPthe ball [PPin [NP the field]].
% Lin (2003) mistakenly claims that PTB consistsyonfl WSJ data.
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that the evaluated parser cannot recognize, tHeawea will either have to modify
the lexicon of the parser or skip the test item.

The main difficulty with test suites is that thene @xtremely complex to construct
(King 1996). It is also difficult to define teseins that will tesbnly the desired
phenomena — and nothing else. Furthermore, a tést Isas to be very large (in
the order of thousands of test items) if it is tiver all the major syntactic and
morphological phenomena that occur in a languagettfer problem that arises in
the application of test suites is that they areeroftlesigned to test a specific
system.

6.1.4.3 Treebanks vs. test suites

Test suite evaluation is especially suitable foeading the consistency of a
grammar and parsing model. After modifications hbgen made to the grammar
or the parsing algorithm, it is possible to chel& system for undesirable side
effects. Test suites also provide the means toptestomena that occur rarely in
free text. But one disadvantage associated withstetes is the lack of variation in
the lexical items. Another disadvantage is that tdst items usually contain a
single grammatical phenomenon that leaves intenastibetween phenomena
untested.

Since treebanks are usually designed with divessest of uses in mind, they are
usually more general than test suites. The matmdi®on between treebanks and
test suites, with regard to parser evaluationn igheir focus (Srinivast al. 1998,
Carroll et al 1998). Parser developers usually use test sageebevaluation to
monitor the development of a system and to iderit#ystrengths and weaknesses
in controlled circumstances. Their aim as theylis ts to measure competence,
namely, how successful the system is in coverirmnpmena and whether or not it
is consistently successful in treating phenomendhe same way in different
contexts. One may contrast competence with perfocaawhich is how the
system behaves when it parses running texts oeebank (measured as the
number and type of errors in the output of theesy3t Table 6-1 compares some
of the properties of the best-known test suitestegebanks.
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Table 6-1.A comparison of the treebanks and test suitesridbescabove. Column
“TB/TS” indicates whether or not the evaluation resourpessented in the row is
a treebank (TB) or a test suite (TS).

TB/ Size of
Test suite / treebank TS Size vocabu-
lary
PTB (Marcuset al 1993) TB ~42,000 sentences ?*
SUSANNE (Sampson 1995) TH ~7,100 sentences 2t
TSNLP (Lehmanret al 1996) TS | ~5,000 test items/language~200
Hewlett-Packard suite (Flickinget al. 1988)| TS ~1,230 test items ~250

*The authors do not give the size of the vocabularyhe treebank. | was, moreover, unable to
find this information from any other source.

Because treebanks and test suites are very differgheir design, they perform

different roles in evaluation and should be regdrds being complementary
rather than competing evaluation resources (Baditah 1995). Prasad and Sarkar
(2000), for example, observed a small degree oficatfn of the error types they

found when they applied treebank evaluations astl saite-based evaluations
respectively. Table 6-2 summarizes the discusdhaver

Table 6-2.A comparison of treebank and test suite-basediatiah

Treebanks Test suites
They contain naturally occurring | They are restricted to structures that are
sentence structures and sentences widken into account by the creators of the
several syntactic phenomena. They lackest suite. They usually test only one
systematic variations. phenomenon per sentence.
They are rich in lexical variety, even ., . . . .
. . S . . | This is usually restricted. It is necessary
Lexicon | though this variety is usually restricted . .

to provide a lexical replacement too|.
to one text genre.
They are usually constructed to serve aThey are often designed for system

number of purposes. specific purposes.

Coverage
of linguistic
phenomena

Generality

6.1.4.4 Collections of ungrammatical sentences

The resource constructed by Foster and Vogel (280#E only one of its kind for

English. It consists only of sentences with gramecahtmistakes; no misspelled
words are included. Such corpora with ungrammatoal grammatical sentences
as well as tests suites with negative test itenms lxth be applied to evaluate
overgeneration in parsers. Another possibility widog to generate ungrammatical
sentences by using an automatic sentence-generagtmd. This approach has,
however, not yet been tried out.
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6.2 Annotation of Evaluation Resources

The annotation scheme defines the tagsets, thatmyeof tags, for describing the
linguistic content and the principles of annotatidie annotation scheme of a
treebank usually consists of word and syntacticelev While word-level
annotation typically consists of at least POS tagsnay also include lemma
information and morphological descriptions. Soneelvanks have an additional
annotation level for semantics. TReague Dependency Treebaftk Czech, for
example, is annotated on three levels: morpholbgsatactical and semantic
(Bbhmovaet al. 2003). There are usually only two choices whetoines to the
type of syntactic annotation in a treebank: thguistic resource is annotated
either in terms of a PS or D structure scheme.

While there are some treebanks that have beenaedatompletely by hand, the
manual construction of syntactic trees remainsosv sind error-prone process.
Since taggers and parsers are readily availaldetmamate some of the work, such
a method is rarely employed in state-of-the-aréliemking. The most common
practice is to construct a treebas&mi-automaticallypy combining automatic
processing with human checking.

The differences in the annotation schemes of thguistic resources and the
output schemes of parsers are a hindrance to paksduation. There is no
widespread agreement about which POS and morplealo@gigging schemes are
best for the linguistic resources — let alone abwlith tagsets might be best for
syntactic description. Apart from the fact thatrthare considerable differences in
the size of the tagset, word-level annotation oftassumes a different
segmentation of text into lexical units and hangiesctuation in different ways.
Such differences often result in many-to-many maggibetween schemes. The
problems caused by differences in word-level artratacan often, however, be
solved — if not perfectly, then at least in a dattory way. This is effected by
automatic mapping and alignment algorithms (seeefampleLeechet al. 1996,
Déjean 2000, and Chiarcos 2006). The differencesdsn the schemes are much
greater in sentence-level annotation.

" Atwell et al (2000) have pointed out a problem that arisesnwdtee compares schemes. This
problem is how to identify precisely where a schesedefined: whether in the annotation

guidelines (if one exists), or in the annotatiohserved in the resource/output, or in the intution

generated by the linguists who are in charge ofpttegect. None of these sources is error-free.
The annotations in the resource may contain instersties, the guidelines may contain
omissions, and the experts may have made mistakes.
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There are several approaches that have been ddwviseecercome the problems
caused by differences in annotation and output selSe These arenapping
algorithms between schemes (Section 6.ab$tractannotation models that can
be transformed into resource-specific annotationeswes (Section 6.2.2), and
parallel annotationghat are undertaken in accordance with severakpapecific
schemes (Section 6.2.3). One possibility, describefection 6.2.4, is to organize
the POS and syntactic tagsets hierarchically. Bmables one to compare the
annotated resource to a variety of parsers beddwesaierarchy can be used to
allow inexact matches between the parser outputl@dnnotation.

One may distinguish classes of annotation schemeh® basis of how closely
they conform to a particular theory of syntax (Niv2003). Atheory-specific
annotation scheme that is constructed in accordamite a particular linguistic
theory runs the risk of being useful only to thossearchers and system
developers who are applying the same framework. |&Vhi theory-neutral
annotation scheme might in theory be serviceabla teider range of users, it
would be necessary to make so many compromisdégindurse of its design that
there is a risk that it would generate far toddiihformation to be useful to any
possible group of users. feory-supportingscheme is one that disavows the
extremes of the two mentioned above: it supportararotation scheme that can
be mapped to theory-specific target annotations.

6.2.1 Mapping between annotation schemes

The most important aim of the mapping approach isase evaluation on a given
annotation scheme and then to use mapping algaitonautomatically convert
parsers’ outputs to that scheme. The function afagping algorithm is to map
from a source annotation scheme to a target scheitteut changing the

information content of the annotation. One may fallgndefine a mapping in the
following way:

Definition 6-1. Mapping from a source annotation scheme to a&tacheme.

Let SandT be the source and target annotation schemes teghecLet As

andAr be the set of all the annotations that arise filoenannotation schem&s
and T respectively. LetStxt) denote the annotation of tetdt in schemeS

Stxt)OAs Similarly, letT(txt) denote the annotation ot in T, T(txt) O Ar.

1. MappingM: As—Aq is a function for each textt, M(S(txt)) = T(txt)DAy.
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Nivre’s (2003) notion of theory-supporting treeban& based on the use of a set
of mapping algorithms to create the possibilitycohverting a treebank to theory-
specific formats. Figure 6-1 illustrates how a ttyesupporting treebank might be
utilized.

S(txt)

Ml Mn
MZ

A

Ta(txt) To(txt) Th(txt)
Figure 6-1. A theory-supporting treebank based on mappingrélgos. A text
annotated according to the sche®ef the source treebank is defined in a way
that it can be accurately converted into targeteswsT, , by using mapping
algorithmsMy ..

6.2.2 Abstract annotation models

The aim of an abstract annotation model is to gl®w general theory- and tagset-
independent framework for linguistic annotation. Kidasedexchange formais
such asTIGER-XML (Mengel & Lezius 2000)ATLAS (Bird et al 2000) and
XCES(lde & Romary 2003), have the following goal immmmon: they each offer
an intermediate level between the annotated datalantools for browsing and
for manipulating data. An advantage of such an @ggr (which is illustrated in
Figure 6-2) is that it enables a common set ofstdolbe used for creating and
manipulating treebanks that use different annatatithemes.

Applications Browsing, annotation and
evaluation tool
4
Exchange format EF(txt)
A \
Annotated texts | T(txt) Totxt) | ... | Ta(txt)
A
Original text txt

Figure 6-2. Using an abstract annotation format for treebankse exchange
format EF works as an interface between the different anioots stored in
treebanks that use schemis,. Instead of treebank-specific software, one only
needs a set of tools that is able to understand etkeéhange format for
manipulating, browsing and searching any of theliagks.
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TIGER-XML is an exchange format that is sufficigntyeneral for existing
treebank-specific annotations, both D and PS basduk exported into its XML-
based representations (Mengel & Lezius 2000). Thelehis based on the
encoding of DAGs, each of which represents a sertesing four XML element
types: sentence<s>, nonterminal <nt>, terminal <t>, and edge<edge>.
Syntactic, POS, and other kinds of informationra@esented as attributes<tr
and <nt> elements. Edges encode labeled links between rtalsniand
nonterminals. TIGER-XML also allowsecondary edgeto be encoded. These
can, for example, be used for encoding semantarnmdition and LDDs. Figure 6-

3 shows examples of a TIGER-XML-encoded sentence.

plaving
ux man

is well
subj ¢

<s id="s1">
<graph root="nt3">
<terminals>
<t id="t1" word="Liverpool" pos="N"/>
<t id="t2" word="is" pos="V"/>

<t id="t4" word="well" pos="RB"/>
</terminals>
<nonterminals>
<nt id="nt1" word="Liverpool" cat="N">
<edge idref="t1" label="--" />
</nt>
<edge idref="t2" label="--" />
<edge idref="nt1" label="subj" />
</nt>
<nt id="nt3" word="playing" cat="Vv">
<edge idref="t3" label="--" />
<edge idref="nt2" label="aux" />
<edge idref="nt4" label="man" />
</nt>
<nt id="nt4" word="well" cat="RB">
<edge idref="t4" label="--" />
</nt>
</nonterminals>

s
- ___z’-----\\'\ e,
NP \_{P
I A \.-’P
N
Liverpool is W ADVP
I
playing RB

well
<s id="s1">
<graph root="nt5">
<terminals>
<t id="t1" word="Liverpool" pos="N"/>
<t id="t2" word="is" pos="V"/>
<t id="t4" word="well" pos="RB"/>
</terminals>
<nonterminals>
<ntid="ntl" cat="NP">
<edge idref="t1" label="--" />
</nt>
<nt id="nt2" cat="VP">
<edge idref="t2" label="--" />
<edge idref="nt3" label="--" />
</nt>
<nt id="nt3" cat="VP">
<edge idref="t3" label="--" />
<edge idref="nt4" label="--" />
</nt>
<nt id="nt4" cat="ADVP">
<edge idref="t4" label="--" />
</nt>
<nt id="nt5" cat="S">
<edge idref="nt2" label="--" />
</nt>
</nonterminals>
</graph>

Figure 6-3. A D and PS structure for the sentence “Liverp@oblaying well
encoded in TIGER-XML. The POS tags are omitted fthmD tree.
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In the ATLAS architecture, the abstraction leveltween the physical and
application level is called thiegical leve| with Annotation Graphg4AGs) as the
central notion (Birdet al 2000). It is possible to add time-stamps to AGSss
makes them suitable for representing, in additmrsyntactic structures, videos
and multi-modal interactions. The functions for npatating ATLAS structures
from applications are implemented in tA@LAS Application Protocol Interface
(API). The ATLAS Interchange Form&AIF) serves as the common XML-based
representation for specific annotations. The plafstorage can be relegated to a
database. Figure 6-4 illustrates ATLAS architecture

Figure 6-4.The architecture of ATLAS (Birdt al 2000).

o Annotation, search,
Applications .
evaluationetc
A
A 4
ATLAS API
Logical level ATLAS CORE
Annotation graphs

Physical level

The XCES format has been designed for severalrdifteypes of annotation such
as morphosyntactic, syntactic and coreference atioot(lde & Romary 2001,
2003, Ideet al 2001). The XCES framework is divided into two éés: the
universal resourcesthat are shared by all annotation models, andptiogect
specific resources

6.2.3 Parallel annotations

In an approach that relies on parallel annotatiarisiguistic resource is annotated
in terms of several treebank- or parser-specifiestes. The only example of such
a resource is theMultiTreebank of English which consists of 60 sentences
annotated automatically according to nine differsctiemes (Atwelkt al. 2000).
Figure 6-5 illustrates this idea.
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T 1(tXt)

txt T To(txt)

Th
Th(txt)

Figure 6-5. A parallel treebank. The source texts are anndtatéormatsT, |,.
6.2.4 Hierarchical organization of tagsets

The Grammatical RelationssSchemeby Carroll et al (1998, 2003) (referred to
hereinafter as the GR scheme) uses an annotatimmscthat is based on GRs
between heads and dependents. In order to fagilitétr-system comparisons, the
GRs are divided according to the hierarchy illusian Figure 6-6.

Dependent]

| Mod | |Arg_mod| | Arg |
| Ncmod || Xmod || Cmod |
Subj_or_dob

| Ncsubj || Xsubj || Csubj | i Clausal

| Dobj || Obj2 || lobj || Xcomp || Ccomp|

Figure 6-6. The hierarchy of grammatical relations in the GResoe (Carrollet
al. 2003).

Figure 6-6 shows thatependenis the most generic of relation type (Caretllal
1998). Dependents are further divided into thraegmies. The relation between
a head and its modifier imod (denoted asnod(type, head, dependentnd the
relation between a head and its argumard. The arg_mod relation holds
between a head and a semantic argument, whichnigdically realized as a
modifier.
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A test set of 500 sentences, consisting of texisfthe BC, has been developed
on the basis of the GR scheme (which, in this fhasi called the GR corpus)
(Briscoeet al 2002). There are in total 4,690 relations in th&t set, of which
roughly 60% belong tomods and 40% targs.

Example 6-1.The GR scheme annotation for the sentence “Liv@rgoplaying
well”. The first item, for example, indicates thie word “playing” is indobj

relation to the word “well”.

(dobj playing well)
(aux__ playing is)
(ncsubjplaying Liverpool )

6.2.5 Analysis
Table 6-3 summarizes the differences between tm®tation schemes of four

treebanks that are often used in evaluation angubsthemes of five parsers that
are based on different grammar formalisms.
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Table 6-3. A comparison of the annotation and output schenfesome well-
known treebanks and parsers for Engilislm the column “Type”, TB and P
indicate whether the item is a treebank or a patf€mammar” column indicates
the grammar formalisms on which the parser in qomests based. The PS/D
column indicates whether the scheme is based ar B6 D-style representations.
The column labeled “Functional labels” indicatesetiter the scheme includes
functional labels (subject/object, etc.). The ke columns show the number of
POS tags and syntactic tags in the tagset.

= ©
© c
2 | £| 2 |8 ¢[No.ofpog No-of
Parser / treebank S| E| n |52 syntactic
= IS o |c© tags i
- 5 ags
o o
PTB(Marcuset al 1993 B PS No 36 +12 17
PTB-II (Marcuset al 1994 B PS(D*)| Yes 36 +12 17
SUSANNHESampson 1995) | TB PS** | Yes 353 8 main, 53 sub
PARC 70QKing et al 2003) B D Yes - 18
ENGCG(Lingsoft Ltd 2006) P CG D Yes 16 32
LG Parser(Sleatoret al 1991) P LG | D/PS| Yes 8 107
RADISP Carroll et al 2006) P UG D Yes 50 23
Stanford Parse@Klein et al 2003) P |PCFG PS/D| Yes 36+12 48 (D)
StatCCG (Hockenmaier 2003) P | CCG| D Yes >1200 lex. 4 atomic types
cat. types

*PAS in the PTB-II.
**Lin (2003) introduced an algorithm for transfomngi the SUSANNE structures into D format.

The tendency in treebank building has been to naway from theory-neutral
annotation schemes toward theory-specific onesr@\2002). This is a retrograde
development for evaluation. When one considers high cost of building

linguistic resources, it would surely be more pgrattto develop reusable formats.

Each of the approaches discussed above has its disadvantages. Since
mappings are often complicated and usually haveetperformed in several steps,
there are a number of problems that may arise guhie@ mapping process (Sasaki
et al 2003, Wanget al 1994). The first of these is that the tagsets matybe
identical: the number of tags may be different #r mapping is not necessarily
one-to-one%® The second problem is that some constructionsiénsctheme may
not be able to be represented by the other scheme.

%8 Some of these issues were discussed by Atwell6)188d Atwellet al (2000) on the basis of
the classification of annotation levels by Leetlal (1996a).

% As | have already pointed out in Chapter 3, a BS lze converted into D structure if each
nonterminal has &ead child(either a lexical head or a phrase containingx&dé head). The
problem is that most PS treebanks do not proviftarimation for unambiguously identifying the
heads. Apart from this, the notion of head might he compatible in the source and target
annotations.
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In those cases where mappings can be devisedctimsyitute a useful and rather
simple method for facilitating a certain linguistiesource for evaluating parsers.
But because of innumerable potential problems,igihthnever be possible to map
between most of the existing parser-specific ougghemes and resource-specific
annotation schemes. While this approach might woeksonably well for
evaluation taggers and morphological analyzeris, riot realistic for comparative
parser evaluation.

Nivre (2003) has pointed out that there are no rjxrsapporting treebanks

available. The most serious hindrance to practiogblementation is in the

construction of mapping algorithms. The problens tirise in mapping could be
avoided, at least to some extent, by setting cmmditfor the source annotation.
The source annotation, for example, should be reduto contain sufficient

information to identify the heads. This would emabliccessful PS/D mappings to
take place. It is, however, undesirable to allow #mnotation scheme to set
conditions on the annotations that are allowed.

Each of the three abstract annotation formats dsaul above has a different
focus. TIGER-XML is designed for corpus and tredbannotation and offers an
exchange format rather than a whole abstractiandveork. ATLAS is similar to
TIGER-XML in the sense that it uses DAGs for reprgation. ATLAS has a
broader scope than TIGER-XML because one can ap@yframework in the
annotation of several different types of data idolg images and video. XCES is
the most ambitious of the formats. It offers a ctetgframework and takes the
abstraction a step further than either of the otiver models. The problem with
general models of linguistic categories, howevethat they often lead to the loss
of theory-specific information (Sasaéd al 2003).

The main advantage that the abstract annotatiorelm@s$ well as the mapping-
based approaches have over parallel annotatiohsregiard to parser evaluation,
is that they offer more grounds for comparing dseeparsing systems. The main
problem of the multi-treebank approach lies in gnggeing the consistency of the
annotations. Because of the size and complexitgnobtation schemes, it would
be too much to expect a single annotator to mastezral of them (Atwell 1996).
The creation of a multi-treebank therefore requittes cooperation of several
research teams, and this might introduce a possibiece of inconsistencies.
Because it is expensive to construct even a “ndrine¢bank, one would expect
that the cost of building a multi-treebank woulddsehibitive.
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Organizing the tagset into a hierarchy, as in tResGheme, allows for differences
between the annotation of the evaluation resounceaaparser output, and it still

remains reasonably easy to annotate. In fact, ¢timeetag hierarchy has been
defined, no extra work is required from the anrwtatThe GR scheme has been
applied only to the annotation of the rather sr@& corpus in English.

6.3 Analysis of Dependency Treebanks

In this section, | will introduce the most importaresults of the D treebank
analysis that | have already discussed in paper [1]

There has been a great deal of interest in reaarsyin the functional annotation
of treebanks. Several D treebanks in particulaeHaeen constructed. In addition
to this, grammatical function annotation has beelled to some PS-type
treebanks. The most commonly used argument forcteedethe D format for
building a treebank is that the treebank concergsduting created for a language
with a relatively free word order. Such treebankealy exist for Basque, Czech,
German and Turkish. D treebanks have been alsdapmcefor languages such as
English, which are usually regarded as languagasdan be better represented
with PS formalisms. The reasons for using D anrmtatary from the fact that the
type of structure concerned is the one that is egedoy many, if not most,
applications — to the fact that it offers a ratiomterface between syntactic and
semantic representation (Lombardo & Lesmo 1998})red@s can, moreover, be
automatically converted into PS trees (Xia & Pal@@01), and vice versa (Daum
et al 2004) — although not always with 100 % accurddye TIGER Treebanitor
German is an example of a treebank with both PSDaadnotations (Brantst al.
2000). Such hybrid treebanks are also availabl®torish (Bick 2003) and Dutch
(Van der Beelet al 2002).

The following treebanks are discussed in this eacti

1. Prague Dependency Treeba(RDT) for Czech (Béhmovat al. 2003). It
contains text from th&Czech National CorpugCzech National Corpus
2005). It is encoded in two treebank-specific forsnéeature structure
(FS) andCzech Sentence Tree Strucui@STS).

2. TheTIGER Treebankor German (Brantet al 2000). This treebank was
developed on the basis of ttMEGRA CorpugSkut et al 1998), and
consists of a set of articles on diverse topicsreal from a German
newspaper.
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. Arboretum for Danish (Bick 2003),L'Arboratoire for French,Floresta
Sinta(c)ticafor Portuguese (Afonset al. 2002), andArborestof Estonian
(Bick et al. 2005). These are sibling treebanks (Arboretumhes ¢ldest
sibling). The treebanks are hybrids with both PSI dh annotation
organized into two separate levels.

. The Dependency Treebarfkr Russian (Boguslavskgt al. 2000, 2002)
This treebank is based on tdgpsala University Corpu@_6nngren 1993).
The texts were collected from contemporary Rusgigrse, newspapers
and magazines.

. The Alpino Treebankor Dutch (Van der Beekt al. 2002). This treebank,
which comprises newspaper articles, was designethlynéor parser
evaluation. The annotation scheme was taken fraanCBN Corpusof
spoken Dutch (Oostdijk 2000) and the annotatiomlgjines were based on
the TIGER Treebank's guidelines.

. The Danish Dependency Treeba(tkromann 2002, 2003). The annotation
scheme of the treebank is baseddescountinuous Grammaand covers a
wide range of topics. The morphosyntactic annotati@s obtained from
thePAROLE CorpugKeson & Norling-Christensen 2005).

. The Turkish TreebanKAtalay et al. 2003) The texts in this treebank are
morphologically and syntactically annotated andewvebtained from the
METU Turkish Corpuswhich covers 16 main genres of contemporary
written Turkish (Oflazeet al. 2003).

. The Basque Dependency Treeba¢kduriz et al. 2003). This treebank
consists of manually annotated sentences from regvesparticles.

. The Turin University TreebanKTUT) for Italian Treebank (Bosco 2000,
Bosco & Lomardo 2003, Lesnet al. 2002). This treebank is divided into
four sub-corpora. The majority of these texts aoenfthe civil law code
and newspaper articles.

10.The Dependency Treebantor English (Rambowet al. 2002) This

treebank consists of dialogues between a traveltagel customers, and is
the only D treebank with annotation of spoken laggitranscripts.

11.The PARC 700 Dependency BariRepBank) (Kinget al. 2003). This

treebank consists of 700 annotated sentences fieriViSJdataset of the
PTB.

Table 6-4 summarizes some key properties of egi€dinreebanks. The size of the
treebanks is usually quite limited, and they rafige a few hundred sentences to
90,000 sentences. This is partly due to the faat &ven the oldest of the D
treebank projects, the PDT, was started less thanyears ago. The treebank
producers have in most cases aimed at creating laporpose resource for
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evaluating and developing NLP systems and for etudi theoretical linguistics.
Some have been built for specific purposes. Thanal@reebank of Dutch, for
example, was designed mainly for parser evaluatiost of the D treebanks
consist of written texts, and there is only one gTbependency Treebank for
English) that was based on a collection of spok&rances. The written texts are
usually obtained from newspaper articles. In otbases such as the Czech,
German, Russian, Turkish, Danish and Dutch treehathiey were sourced from
an existing corpus. Annotation usually consist®6fS and morphological levels
accompanied by D-based syntactic annotation. Incse of the PDT, a higher,
semantic layer of annotation is also included.
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Table 6-4. A comparison of dependency treebanks. KEY: M = umahnSA

semi-automatic, TB = treebank.

& Size Annotation Encoding
Name |5 | Genre Parser
Q@ (sent) methods schemes
Newspaper N~ FS, CSTS
Lexicalized
poT || (9eneral, | g5 500 M/SA PCFG parser |, SCML,
3 | economic), |~ (Collins) Annotation
= | science mad. Graphs XML
TIGER | & SA, post-editing & | ~/OPaPIIStC | Gep ymi &
™ |3 Newspaper| 50,000 interactive parser / LFG NEGRA export
2 parser
21,600
Arbore- | & Mostly | (Arb.) | D to PS mapping, M A CG parser for TIGER-XML &
tum and| newspaper| 9,500 checkin each language PENN export
others* (@ pap ! 9 guag (Arb.)
(Flor.)
Depend- - .
3]
ency TB|2 Fiction, Morphological XML-based TEN
0 Inewspaper § 12,000 SA analyzer and a .
for |@. antifi compatible
Russian 2 scientific parser
Newspaper SA, partially M
D . . . . _
Alpino |S| For parser| 6,000 disambiguation au_jed HP_SG based Own XML-based
g ; by a parse selection Alpino parser
evaluation 100l
Danish|g| Range of M. Morphosyntactic Pf'g ?n%lﬁv-iltjhl(
DependS | topics & |~5,500 annotation obtaineg - additions
wn ]
ency TB| & genres from a corpus TIGER-XML
METU- | M disambiguation & Morph. analyzen XML-based,
Sabanci=z| 16 genres| 5,000 M dependency |basedon XERO XCES-
B |4 marking FST compatible
w .
Basque|® M, automatic i XML-based,
TB é Newspaper| 3,000 checking TEIl-compatible
)
=| Mainly M checking of parserMorph. analyzer i
TUT % newspaper & 1,500 | & morph. analyzer | rule-based tagger OWQaASSEH
S| civil law output and a parser
Depend- m|  Sooken SA, M correction of| Supertagger and
ency TB|> P ' 113,000 parser output & Lightweight
Q | travel agent] x . : ES
of |F dial words**|automatic checking Dependency
English |~ ' inconsistencies Analyzer
Dep- g Financial 700 M (_:heckmg & LFG parser, Own ASCII-
Q 700 correction, autom. )
Bank |Z| newspaper . .| checking tool based
“ consistency checking

*Not all the treebanks in the Arboretum "family"eamcluded in the table. **Information of
number of utterances was not available.

The definition of an annotation scheme always imgsla trade-off between the
accuracy of the representation, the coverage otlét@ and the costs of treebank
development (Bosco 2000, Bosco & Lombardo 2003 3élection of the tagsets
for annotation is critical. While the use of a langariety of tags guarantees a high
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degree of preciseness and specialization in therigéen, it makes the work of
the annotators even more time-consuming. In addiiothat, highly informative

annotation in some applications (such as trainihgrobabilistic parsers) will

frequently cause problems with data sparsenessoppesite of this is that if the
annotation is highly generalized, the annotatioocpss will be faster but a lot of
information will be lost. The TUT and Basque treslksmattempt to deal with this
problem by organizing the set of GRs into a hidvaxa taxonomy.

The choice of the type of application for the trab also often affects the design
of the annotation scheme. A treebank for evaluasibows for some remaining
ambiguities but no errors, while the opposite maytroe for a treebank used for
training (Abeillé 2003). In an annotation schemat ttonsists of multiple levels, a
definite separation between the levels is a soafaeoncern. The format of the
annotation is also directed by the specific languag which the treebank is being
developed. The format needs to be suitable foressgmting the structures of the
language. In the METU-Sabanci Treebank, for examplespecial type of
morphological annotation scheme was introduced ussa@f the complexity of
Turkish morphology.

Semi-automatic annotation that combines parsing madual checking is the
method most commonly applied in constructing treéba None of the D
treebanks has been created completely manuallyesst an annotation tool
capable of visualizing the structures is used lmhe# the projects. There are no
fully automatically created D treebanks simply hesmathere are no parsers of free
text that are capable of producing error-free asedy

The most common way of dividing tasks between thimdn developers and the
machine is to let the annotator work as a postiaresf the parser's output. Even
though such a method is quite straightforward tplement, the method itself may
generate difficulties. Firstly, if one begins armatain with parsing, this can lead to
a high number of unresolved ambiguities and thesbiguities can make the
selection of the correct parse a time-consuming. tAsparser that is applied for
the purpose of building a treebank should therefmrdorm disambiguation to
ease the workload of the annotators. Secondly,usecthe work of a post-checker
is purely mechanical, there might be a tendencyfonecker simply to accept the
parser's suggestions without any kind of rigormspeéction. The solution that was
applied in the case of, for examplmth the treebanks for English and the Basque
treebank, was the application of a post-checking to the created structures
before they were accepted.
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Other variants of semi-automatic annotation dotexie TIGER, TUT, Alpino,
and Russian Treebanks apply a method which allbeparser and the annotator
to interact. The advantage of this method is tlatesthe errors made by the
parser are already corrected by the human opeaitbe earlier stages of parsing,
they have no opportunity to multiply during theelastages. This procedure makes
it more probable that the parser will produce arexdr analysis. In certain
annotation tools, such as those of the Russiantl@dEnglish D treebanks, the
annotator is given the option of adding commentarnnotation — a process that
makes it easier to inspect doubtful structureshénannotation tool of the TUT, a
special type of relation can be assigned to maudbtiol annotations.

Recent years have seen an increase in collaboragtween treebank projects.
Thus, for example, the framework developed for RiZT is used in th&rague
Arabic Dependency Treebar{Kaji¢ et al. 2004) and theSlovene Dependency
Treebank(Erjavec 2005, 2006). Nevertheless, the main prablith regard to
current treebanks — insofar as their use and ligtan is concerned — is that,
instead of reusing existing annotation and encodicigemes, developers have
created new ones. Another problem is that thosenseh that have already been
developed have usually been designed from theay-eaen application-specific
viewpoints, and are consequently of little use rieeycling. When one considers
the high costs involved in developing a treeb@nk,seems obvious that the
reusability of tools and formats should be giveghhpriority. Apart from the
difficulties that it creates for reuse, the creati@f a treebank-specific
representation scheme requires the developmenneiaset of tools for creating,
maintaining and searching the treebank. But thetemce of exchange formats,
such as XCES (lde & Romary 2003) and TIGER-XML (Meh& Lezius 2000),
already allow multipurpose tools to be implemerdad used.

6.4 Conclusion

| would summarize the findings of Section 6.1 ie following way:A linguistic
resource for comprehensive, full-scale parser ewmno should include the following
four kinds of materials: 1) unannotated senter@geannotated sentences, 3) test items
for checking grammatical and morphological coveraged 4) pairs of grammatical
and ungrammatical sentences. To my knowledge, b single unified resource
exists for any language. While all these mateaa¢sindeed available in English, they
are scattered over several resources.

% The estimated costs of the PDT, for example, averal USD 600,000 (B6hmow al. 2003).
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The genre-dependency of parsers is an establistotdsee, for example, Sekine
(1997)). Most of these evaluation resources comdiséxts from a single genre.
This constitutes a deficiency in most of the ertparser evaluations reported in
the literature. This deficiency is caused, in tuiya lack of treebanks divided into
genre-specific sub-treebanks. A key issue in ablElavaluation materials is
therefore genre homogeneity. The BC part of the A3Bhe only sizeable

evaluation resource to reflect such variations systematic way. Most English
parser evaluations are usually performed on nevesp@agts (namely, on section
23 of the PTB).

A further complication is that many parsing modalg trained on the same
treebank on which they are tested. Parsers therefame to be applied to texts
from numerous other genres without being testede ®©hvious question that
confronts us in these circumstances is: How wédll avparser that performs well
on financial texts from the WSJ generalize to ottestt types? An evaluation
resource tailored for parser evaluation shouldueltexts from several genres
such as law, biomedicine and prose. BRSY corpuof French, with its 4,200
sentences (Paroubeit al. 2006), is the only purpose-built parser evaluation
resource to reflect such variations in a systenvaty.

Based on the findings of Section 6.2, the most Bmm approach from the point
of view of practical implementability for annotagirparser evaluation resources
appears to be the approach in which the tagsetergemized into a hierarchy.
This approach allows for more flexibility than othegpproaches. Moreover, this
type of scheme can be more easily mapped intordiifetypes of schemes. The
GR scheme is an example of such an approach.olvalfor differences in the
schemes while still remaining reasonably easy twtate. In fact, once the tag
hierarchy has been defined, no extra work is reguirom the annotators. But this
kind of approach cannot be generally applied to mksible schemes. A
hierarchical annotation scheme of this kind couéd dncoded with one of the
abstract annotation schemes. The XML-based modeis the advantage of their
inbuilt validation (checking documents against théML schema) and
transformation (e.g<SL Transformatior)snechanisms.

It is interesting to note that none of the annotaschemes takes into account the
possibility of inherently ambiguous sentences tbahnot be disambiguated
without contextual information that spans over regkd sentence. An annotation
and encoding scheme that is tailored for syntgmdiser evaluation should allow
for more than one analysis to be stored for sunkesees.
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| have used the results of the analysis of thetiagidinguistic resources and their
annotation schemes as the basis for the desigmedaévaluation treebank and two
unannotated evaluation resources represented iméié chapter. One could
summarize the important findings as follows: Firsth comprehensive parser
evaluation has to be based on several types afibtig resources. Secondly, the
linguistic resources must contain texts from sevgeares. Thirdly, it is desirable
to organize the tagset of an annotated linguissource for evaluation in the form
of a hierarchy. This facilitates the use of theotese in evaluating and comparing
different kinds of parsers. An existing XML-basexicleange format should be
utilized in annotation and encoding in order tealifor a reuse of software tools
for browsing and manipulating the resources. If tputs of the parser to be
evaluated are transformed into the same exchangefpthe implementation of
the evaluation tools is simpler. These issues &eussed in more detail in the
next chapter.
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7 New Evaluation Resources

This chapter introduces three new evaluation ressuthat were developed on the
basis of the findings that | reported in ChapteBéction 7.1 deals with the design
of the parser evaluation D treebank for FinnishlechlFiEval. Section 7.2
introduces the design and construction of the tww ®valuation resources for
English calledRobSetindMulti-Genre Test Set

7.1 Developing a Parser Evaluation Treebank for Finish

FiEval is a treebank for Finnish that is currenityder construction. It has been
designed especially for the evaluation of syntacparsers, taggers and
morphological analyzers. This treebank consistdath naturally occurring and
manually constructed sentences from several gefites.design of the treebank
and its annotation and encoding schemes are irdeadun Section 7.1.1. Section
7.1.2 describes the purpose-built annotation tatkbdDepAnn

7.1.1 Designing FiEval - A parser evaluation treefdafor Finnish

This section describes the annotation and encosithgmes of the treebank and
justifies the choices that were made in its deslgis essential to link the design
of a treebank to its intended usage. Certain mdgsign decisions, such as
choosing whether or not a treebank will focus @pecific application, will affect
other collateral choices. There are a number obmagcisions that one has to
make when designing a treebank. These decisiosstdfie content, the type of
annotation and the methods and tools that will #&dun the construction of the
treebank. Theannotation guidelinesarticulate the conventions that guide the
annotators throughout this process. Figure 7-ktilades the process of creating
the FiEval treebank.

Source texts  Parsing Conversion  Annotation Treebank

Genre 1 Annotation :
Parser 1 guidelines Encoding
A TIGER- scheme
Genre 2| —» XML . | Annotation| —p
schem .
Parser 2| converte Data archif
Genren DepAnn tecture

Figure 7-1 The process of creating FiEval.
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Making a treebank especially suitable for parsed a&agger evaluation has
implications for theselection of the contefaturally occurring text vs. artificially
constructed test sentences) anddésign of the annotation and encoding schemes
(so that one might better match the output of tdwdstthat need to be evaluated).
Decisions about thmethods and tools for creating the treebam& important for
making the treebank consistent and easy to constrwgll now analyze each of
these issues in detail in the subsections thabviollsome of the treebank design
criteria have been described in Ide and Romary3p00

Selection of the content
» transcriptions of spoken language or written texts
» gpecific genre or balanced over multiple genres
* size

All the source materials used in FiEval are writtemts. No transcriptions of
spoken language have been included. | made thisebecause most of the work
performed by syntactic parsing focuses on the ming of written texts. It

therefore seems logical that a treebank for pagsatuation should, in the first
place, focus on the same modatity.

A key feature in a treebank which is intended toubed for parser evaluation is
the inclusion of texts from several different gemr€iEval currently consists of
texts from a work of fiction (a novel) (Gaarder #99a newspaper (Karjalainen
1999), and law code texts (European Union 2005lekjn Because we in the
EdTech group of the University of Joensuu are eulyecarrying out research into
automatic and semi-automatic essay assessmenfofsegample, Kakkonen &
Sutinen 2004), we are particularly interested madbility of parsers to analyze the
kind of text that one will encounter in such a @xtt These texts consist mainly of
student texts such as short answers to assignmentger free-text responses
(essays), and extracts from student theses. Exarmophal such texts were sourced
from undergraduate and graduate students from theeksity of Joensuu. Also
included is a sub-corpus (referred to as TS) whadmsists of manually
constructed sentences that reflect the main syataabhd morphological
phenomena of Finnish.

At the time of writing, the FiEval treebank consisif 3,160 parsed sentences.
While a larger treebank is always better, increpsihe size of a treebank

1 As the parsing of spoken language is one of tiierduapplication areas of parsers, it might be
worthwhile later on to add spoken language trapsctd the treebank.
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obviously also increases the cost of its develogm&fhile the current size of the
treebank is acceptably large for parser evaluat®npt yet adequate for training
probabilistic parsing models.

Design of the annotation and encoding schemes

» phrase structure or dependency

» type of theory support: theory-neutral, theory-siieaheory-supporting

e using existing annotation and encoding schemegsigding new ones

» designing the tagsets: the set of tags for POSphobogical and syntactic
annotation

» the type of the encoding scheme: markup-langua§€&iext file

» data architecture: the files/database and annotatiare interspersed
throughout the document containing the primary texdre stored in one or
more additional documents linked to the primanyt tex

Because the Finnish language is characterizedrblatively free word order, and
because existing parsers for Finnish are implendeimteDG frameworks, D
representation becomes an obvious choice for a&pgtagger evaluation treebank
for Finnish. Moreover, by many (such as Yamada lliatsumoto (2003)) the D
annotation is regarded as being more intuitive easier to understand than PS
annotation. This feature of course makes for faster less error-prone treebank
construction. Because semantic dependencies aredeimt in the syntactic
dependencies, the D description also offers a nstraightforward interface
between syntactic and semantic representations.

Instead of creating a theory-specific treebanlkedighed the annotation scheme in
such a way that it will allow the treebank to besdidor evaluating several
different types of parsers. This was partly achielig organizing the POS tagset
into a hierarchy. In that sense, the treebankdergrsupporting. The two grammar
formalisms that were used as the basis for thegde§lG and FDG — the only two
frameworks in which parsers have been implemerited far for Finnish— are
closely related. From this point of view, one migirgue that the treebank is
theory-specific.

Designing an annotation format involves severapste-irstly, the annotation
scheme consisting of the morphosyntactic labels thrdsyntactic tags together
with the general structural principles for the atation needs to be designed. Then
it is necessary to select an encoding scheme phisical representation of the
annotation information in a physical document wigs. Finally, adata
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architecturehas to be chosen for the primary text and its tatimms. This will

dictate whether the treebank is stored in a datalas files and whether
annotations will be interspersed throughout theudont containing the primary
text or stored in one or more additional documéintsed to the primary text. The
annotation scheme of FiEval consists of word-lea&@rmation (the word form,
the lemma, and POS and morphological tags) andastyatdescription. The
encoding is based on TIGER-XML and has been dedigneterms of the
guidelines proposed by the Nordic Treebank Netw@tkomann 2005). The
annotation and encoding schemes and the data esthi# of FiEval will be
discussed in more detail in Sections 7.1.1.3.1dl75.

Construction method and tools
e annotation method: manual, semi-automatic, autamati
» checking the annotation: checking the levels ofctation (POS and
syntax, for example) separately or simultaneously
e annotation tool: the use of an existing tool ordegelopment of a new one
» the morphological analyzer and parser: the selectf@appropriate ones

| already pointed out above that the manual coostm of syntactic trees is both
slow and error-prone. It is unfortunate becauseettae no tools available for
creating high-quality treebanks fully automaticallyreebanks are therefore
usually created by means of a combination of aut@maad manual processing. In
addition to parsers/taggers for creating the ihi§uctures, several types of
resources are needed for semi-automatic treebamdtragtion. These include the
annotation guidelines on which the work of the datars is predicated, and an
annotation tool that one applies for checking amdtexting automatically created
structures as well the validity of structures thave already been created.

FiEval currently consist of sentences that havenlzeomatically tagged by two
morphological analyzers/parser€G parser for Finnish (FINCG) (Karlsson
1990) and=DG parser for Finnish(FI-FDG) (Tapanainen 1997). A few sentences
have been manually checked as part of the prodessptementing the purpose-
built annotation toolDepAnn (which will be introduced in Section 7.1.2) and
defining the annotation format.

7.1.1.1 Related work

The Alpino Treebank of Dutch is similar to FiEvadause it too focuses on parser
evaluation (Van der Beedt al. 2002). Apart from having this feature in common,
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FiEval and Alpino both utilize the TIGER Treebank German (Brantst al.
2002) as the main inspiration for the annotatiamiat. While FiEval only applies
the TIGER-XML (Mengel and Lezius 2000) encodingesoie, both the annotation
and encoding schemes of Alpino are similar to thafsthe TIGER Treebank. In
addition to the TIGER Treebank, there are two Datisebanks (Kromann 2003,
Bick 2003) that also support the TIGER-XML form&he morphosyntactic tagset
of FiEval has been organized in such a way thatacetag matches can be
accounted for in the process of parser/tagger atialu The idea was originally
used by Carrolet al. (2003) in the syntactic annotation scheme base@dRa

7.1.1.2 The Finnish language

Finnish has a rich morphology. Nouns, for exampbese fourteen cases. Finnish
is an agglutinative language in which grammaticatkers and endings are joined
to a word root. For example, the word “autoissarkki?” (which literally means
“In my cars, t00?”), can be broken down into thiofeing structural components:
root (*auto”) + plural marker “i” + inessive “ssa’ 1st person sing. possessive

“ni” + enclitic particle “kin” + question marker ‘&

As in English, the subject-verb-object sequendbasword order that occurs most
frequently in Finnish (Karttunen & Kay 1985). Besauit possesses such a rich
inflectional system, word order in Finnish is relaety free. Because of its
inflection, the function that a word plays in a sence of words can be often
understood without any additional reference tosgscific position in a sentence.
For instance, all the six permutations of the thaeedshén “he” (sg nom),soi
“eat” (past sg 3rd), ankklan“fish” (sg acc) are grammatical sentences in Ehni
This looseness of ordering constraints is not, hanefound in all syntactic
categories in Finnish. For example, the order ofsttuents in NPs in Finnish is
almost as fixed as it is in English. Furthermorghaugh all the possible word
orderings in the example above are grammaticay, éine not identical. While all
Six sentences express the same proposition, tleeyised in different discourse
modalities to place emphasis on different aspeftiseoproposition.

7.1.1.3 Morphosyntactic annotation scheme
Because of the complexity of Finnish morphologg thorphosyntactic annotation
scheme of FiEval is rather extensive. The morphiasyic tagsets of FINCG and

FI-FDG are similar, and the tagset of FiEval clgselsembles both of these. The
scheme is defined as follows:
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Definition 7-1. Word-level annotation in FiEval.

1. The word form WORD.

2. The base form LEMMA.

3. The part-of-speech tag PQS {V, N, A, AD-A, ADV, PRON, PRE,
PSP, NUM, CS, CC, CC>, INTJ, FW}.

4. Morphological tags MORPHI {SG, PL, NOM, GEN, PTV, ...}.

The word-level tagset is designed in a way thadwal for inexact matches
between the two parsers and the treebank. The mgyptactic annotation scheme
consists of 14 POS and 58 morphological tags. TS Rags and their

descriptions are given in Table 7-1 (below). Figa illustrates the organization
of the POS tagset. FW is the only tag not preseeither parser’s tagset. All FI-
FDG tags and all except two FINCG tags (ABBR fobr@viations and Q for

quantifiers) have a matching tag in the tag hidnarcTable 7-3 gives all the

morphological tags for nouns.

Table 7-1 The POS tags in FiEval. KEY: coord. conj. = canating conjunction.

Tag| Name | Examplel Transl. | | Tag Name Example| Transl.
\% Verb mene go N Noun pallo a ball
A Adjective suuri big AD-A | Adjective adjunc] melkein almost

ADV | Adverb nopeasti quickly] [PRON|  Pronoun min& I
PRE | Preposition| ennen before | | PSP | Postposition takana behing

NUM [ Numeral yksi one Cs Sub_ordmate kun when

conjunction

CC Coor_d. ja and ccC> Multipart .| seka..ettda| both...an

conj. coord. conj.

INTJ | Interjection Hei! Hey! FW | Foreign word word

POS
[v] [~] [a] |apv] [ero| pp @ [nom| ¢ [om] |Ew]

[pRe] [psp] [ cs [[ cc||ccs] TART! PREP!

Figure 7-2 The part-of-speech tagset. The boxes with solgsldenote tags used
in the treebank. The boxes with broken lines regretags used by either of the
parsers although they are not included in the aieklannotation. KEY: PP = post-
or preposition, C conjunction, ART foreign alt, PREP

preposition.

foreign
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Table 7-2 Morphological tags for nouns (N) in FiEval.

Tag | Name Example Translation
SG Singular pallo a/the ball
PL Plural pallot (the) balls
CASES
GRAMMATICAL CASES
NOM | Nominative pallo a ball
GEN | Genitive pallon ball's
PTV | Partitive palloa some/(without a) ball
LOCATIVE CASES
INE Inessive pallossa in a ball
ELA | Elative pallosta out of a ball
ILL lllative palloon into a ball
ADE | Adessive pallolla on a/by means of a ball
ABL | Ablative pallolta from a/the ball
ABSTRACT LOCATIVE CASES
ESS | Essive pallona as a ball
TRA | Translative palloksi transformed into a ball
OTHER CASES
ABE | Abessive pallotta without a ball
CMT | Comitative palloineen with a ball/with the balls
INS Instructive laivoin by means of a boat
PRO | Prolative meritse by sea
POSSESIVE SUFFIXES
1SG | 1st pers. sing. palloni my ball
2SG | 2nd pers. sing.| pallosi your ball
3 3rd pers. s./plu| pallonsa his/her/their ball
1PL 1st pers. plur. pallomme our ball(s)
2PL | 2ns pers. plur. | pallonne your ball
CLITICS
HAN | -han/han pallohan the ball (adds politeness
KAAN | -kaan/-k&an ei pallokaan not even the ball
KIN -kin pallokin also the ball
KO -ko palloko [do you mean] the ball?
PA -pa/pa pallopa the ball (adds emphasis)
S -S pallopas the ball (adds emphasis)

*Often implies an explicit reversal of the othesadlissant’s presupposition.

7.1.1.4 Syntactic annotation scheme

The syntactic annotation scheme of FiEval follohes D description employed by
the FI-FDG parser. The dependencies are markedgaseconnecting the words.
The formal definition of the syntactic annotatiameme is given in Definition 7-2

below. The D relations are labeled with 31 D tygescribed in Table 7-3.
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Definition 7-2. Sentence-level annotation in FiEval4={MAIN, SUBJ,
OBJ,...} is the set of dependency relation labelggtaletS be an annotated
sentence, consisting of:
1. Sequence =(ay, ay,...0a,) Of wordsa;... a,, Where each; is annotated
with word-level information.
2. A partial functionD;:{1,2,...,p|}—Tg, whereD(i, j) = |OT4if and only
if there is a dependency link from the wartb the word, tagged with
the labellJ{MAIN,SUBJOBJ...,ORD}. The root of the sentence is
denoted with 0.

Table 7-3 The dependency tags in FiEval. The head of ttetioa and all the

elements dominated by it are denoted by italicsYKEomp. =

complement;

postmod. nom. = postmodifying nominal; attrib. adh\attributive adverbial.

Tag |[Name Example Translation
MAIN |Main verb Potkaisepalloa. Kick the ball.
SUBJ |Subject Héan potkaisi palloa. He kicked the ball.
OBJ Object Ostinpallon. | boughta ball.
DAT Indirect obj. Syo6tatkd seminulle? Are you going to passtih me?
COMP |Subject comp. | Pallo ooy6red The ball isound
oC Object comp. Héanet palkattivalmentajaksi | He was hireds the coach
PM Preposed Sy6tin, ettatekisit maalin. | passedso thatyou can score
marker goal.
PHR |Phrase Hantgidettiin kiinni. Hewas held
COPR |Copredicative | Han otuomarina He was actings the referee
VOC [Vocative Pelg syota pallo! Pelg pass the ball!
TMP  [Time Pelasimmeilen We playedyesterday
DUR |Duration Pelasimmkaksi tuntia We played fotwo hours
FRQ |Frequency Voitimmdolmesti We wonthree times
QUA |Quantity Se nousi yli kolmprosenttia | It went up over threpercent
MAN |Manner Han taklageajusti. He tackledard.
LOC Location Pele asuBrasiliassa Pele livesn Brazil.
SOU |Source Liverpool FC oBnglannista | Liverpool FC isfrom England
GOA |Goal Potkaisin pallomaaliin. | kicked the ballnto the goal
PUR Purpose Pelaammwittaaksemme We playto win.
PTH Path Pallo tulpostitse The ball caméy mail
RSN |Reason Miksi et syottanyt? Whydidn't you pass?
CND | Condition Havetkagps ette voith Shame on youf you don’t win
META |Clause adv. Teimelkeinmaalin. lalmostscored a goal.
QN Quantifier Pystytko tekemaanisi maalia?| Can you maKee goals?
ATTR Premodifying Joukkueerkannattajat huutavat The §pectatorsof the teamare
nominal shouting.
MOD |Postm. nom. S¢oka pystyytekee maalin. The omveho can will score.
AD Attrib. adv. Peli olitodellarankka. The game wasally tough.
o Taklasin puolustajanja kaksi| tackled a defenderand twqg
CC Coordination hvokkAEAiAS .
yokkaajaa strikers
INS Instrument L6in palloanailalla. | hit the ballwith a bat
COM | Comitative Peladdnenkanssaan! Playith himl
ORD |Ordinance Sittenpotkaisin palloa. Thenl kicked the ball.
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Example 7-1 The parse tree and annotation of the sentendgerfiool pelaa
hyvin” (Liverpool is playing well).
o={
""" R OOT {WORD-=Liverpool, LEMMA=Liverpool, POS=N, MORPH=SG @M}
P ¢MAIN {WORD=pelaa, LEMMA=pelata, POS=V, MORPH=ACT PRES3G
{WORD-= hyvin, LEMMA=hyv4, POS=ADV, MORPH=-}

Liverpool| [hyvin

D+(0, 2)=MAIN, Ds(2, 1)=SUBJID,(2, 3)=MAN

7.1.1.5 Encoding scheme and data architecture

In order to avoid having to implement browsing asehrching tools for the
treebank, | made a decision to base the encodirgnaexisting encoding format.
After a detailed analysis of XML-based encodingesubs (which are described in
Section 6.2.2 above and in paper [1]) had been MAGER-XML was selected.
TIGER-XML offers an XML-based representation thatdapable of encoding
different kinds of corpus and treebank annotatigdengel & Lezius 2000).
Syntactic categories, POS, lemma and other worarnmdtion, are described as
attributes in the terminal nodes in DAGs. The nonteals encode D links.

| selected TIGER-XML for the following reasons. $tly, it is flexible and
extensible enough to accommodate different treelzamiotation types, both D-
and PS-based. Secondly, several well-implementad such as th€IGERSearch
viewing/query tool and'IGERRegistryindexing tool (Koniget al 2003) already
exist for TIGER-XML. These are capable of transforgr many well-known
corpus and treebank formats such as the SUSANNEt@ndPTB into TIGER-
XM. Thirdly, TIGER-XML has already been successfulised for D annotation
by other treebank projects such as the TIGER Trdel@rantset al. 2002) and
the Danish treebank (Kromann 2003). Fourthly, theme explicit specifications
available on how to encode D structures TIGER-XMlomann 2005). Finally,
the architecture of the annotation and encodingmeehof a treebank should allow
for refining the encoded information at a lategstaboth in width and depth (Skut
et al. 1998). Adding depth refines the existing represon. TIGER-XML allows
the user to define the attributes for nodes inrdagyic tree, thus enabling one to
create a flexible depth of representations. “Insiggwidth” refers to adding new
levels of annotation. An extension called SALSA/ERE-XML (Erk & Pado
2004) has been devised that allows for incorpogaggmantic role annotation into
a TIGER-XML encoded treebank. This same mechanmuhdde used for adding
levels other than semantics.
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In TIGER-XML the annotations are interspersed tigloout the documents. But it
is easy to extract the original content of a doaotinfeone needs to do so. The data
architecture of the treebank is organized in tHWiong way. Texts are divided
into sub-corpora on the basis of genre. Each sygbdsas then stored in a separate
TIGER-XML file. One of the features of the treebaidsign is that it allows for
the inclusion of parallel annotation for a parttbé sentences. This feature is
useful for annotating ambiguous sentences. Wherevakiates a syntactic parser,
it is fair to accept any of the ambiguous analyasscorrect for sentences that
cannot be disambiguated solely on the basis ohgynt

7.1.2 DepAnn — An annotation tool for dependencgebanks

Constructing a treebank — even with a semi-autamatethod — is a labor-

intensive undertaking. Efficient tools play a keyerin keeping down the costs of
treebank development and in allowing developersreate larger and better
quality treebanks. A crucial component in semi-endtic treebank creation is the
annotation tool. A well-designed and well-implenezhtool can play an important
role in making the work of annotators easier. Arus use an annotation tool to
browse, check, and correct the parser’'s output,cagate structures from scratch.
In some existing tools, the annotations are autoaigt checked against

inconsistencies before they are saved to the tn&eldde user is also able to add
comments to the structures or mark them as dowstiere necessary.

After carrying out an investigation into existingretation methods and tools,
such asGRAPH (Bohmovaet al. 2003),Abar-Hitz (Diaz de llarraz&t al 2004),
Annotate (Plaehen & Brants 2000DTAG (Kromann 2003),CDG SENtence
annotaTOR(SENATOR) (White 2000), | came to the conclusibattnone of the
available tools were able to satisfy all the nesad requirements. The tools were
either not suitable for D annotation or were incatitge with any common XML-
based encoding schemes, the user interface wastabisy or the tool did not
offer all the necessary functions. In addition ltatt there are no annotation tools
that are capable of showing outputs from severatgua for the purpose of
assisting the annotator to make choices. A decisias therefore taken to design
and implement an annotation tool thlad contain all the desired characteristics.
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7.1.2.1 Design principles

It was necessary to conduct a prior analysis daftayg annotation tools in order to
get a clear idea of what | would need in the systemt | intended to develop. On
the basis of that analysis, | decided to incluaefttiowing key features:
1. Support for an existing XML encoding scheme
The use of an existing encoding scheme would malee slystem
reusable. Existing tools that support the samemehmuld be used for
browsing, manipulating and searching the annotaitszbanks.
2. Both text and graphic display and manipulation of parse trees
It is necessary for any annotation tool to be dbleshow sentence
structures in a visual display. Any such graphisptiily should also
preferably be interactive so that the user can mdate the structures
wherever necessary. There are, however, certaintaion tasks for
which a text view of the structure would be morgahle.
3. An interface between morphological analyzers and parsér
constructing the initial trees
In order to generate the trees for human inspeaiwh modification,
the annotation tool must have an interface for apmological parser, a
POS tagger and a syntactic parser. This tool shbeldcapable of
simultaneously using outputs from several toolguime the annotator’s
decisions.
4. An inconsistency checker for both structures and @ngod
The annotated sentences that will be saved tordebank need to be
checked for tagging inconsistencies. Apart from 4NL-based
validation of encoding, the inconsistency checkeeds to be able to
alert the annotator to several other kinds of rkesta such as
mismatching combinations of POS and morphologiagkt a missing
main verb, and fragmented, incomplete parses.
5. Menu-based tagging
In order to speed up the annotation process, tagd to be chosen from
a pre-defined tag list rather than by the annotgfping the tag labels
manually. Menu-based tagging is not only efficiahtalso diminishes
the error rate by eliminating the errors gener&gdypos in the labels.
Keyboard shortcuts for selecting appropriate tabsukl also be
provided for more advanced users.
6. A commenting tool
For facilitating later revisions that might needo® performed by other
annotators, a user should be in a position to amldneents to the
annotated structures. A user should also be abteaik a sentence as
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either ready or unfinishedso as to make it easier to locate sentences
needing further revision.

The predominant design principles, apart from mgkihe annotation process
faster and less error-prone, were that the toolilshbe reusable and modifiable.
The system was therefore designed in such a wayheanodules for processing
the treebank output and input were kept separate the structure viewing and
manipulation modules. This makes it easier to nyottile tool. Support for an

existing encoding scheme is a crucial reusabilggtire of any treebanking
software. The selection of the format was initialgrrowed down by the decision
that the format should be XML-based — because XNfers a set of validation

capabilities — so that it could automatically chémkencoding inconsistenciés.

7.1.2.2 Main functionality

Figure 7-3 illustrates the main frame of DepAnrégwuinterface.

E DepAnn - Tuomo Kakkonen, University of Joensuu. - English example
Project Sentence View Help
E 52: The parses ware craatad by the Stanford Parsar
B
C
EY Set head ~
q] e [ 1]
Ssd-nna
[ From the treebank Set type »
Insert type D
=== (51 - (ca— ——r
=
521 |The oT | Mark as root it SOT  (det a
52 2 |parses NS i 502 |nsubjp... s2 501 |—
52_3 WErE \VBD 503 |auxpa 52_3 = E
s2_4 |oreated VBN ponj 532 = 5; g Sg_;gé
25 hy N iy prep |52 52 5 53 -
4 I I LS s [+

Figure 7-3. The main frame of the DepAnn tool.

The main groups of functions are indicated in Fegt#3 by boxes A...E. The text
field in the area bordered with box A shows thetesete being annotated in the

%2 As described in Section 7.1.1.5, TIGER-XML wasest#d as the encoding scheme because of
the several advantages that it offers. Since TIGEBR- is a general model of treebank encoding,
it would be possible to show and manipulate PSctires with DepAnn. A decision was
nevertheless made not to include both PS and Btates in the design of the tool because it was
felt that too general a design would hamper theieficy of D annotation. The visualization
functions and user interface are therefore tunednfmipulating D structures.
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raw text format. Area B is a toolbar with contréds treebank browsing (buttons
for showing the next and the previous sentence arslidebar for browsing),
checking and saving the sentence, and modifyingdfgsets. In area C, the user
can graphically manipulate the structure by chamgthe values on nodes
representing the words and D links, and by remqvadgling and rerouting the
links between the nodes. Area D consists of thési@v functions. The user can
also mark the sentence @Eady this indicates that further revision is not nesde
In addition, the user can utilize the comment fiétd write notes about the
sentence structure. Box E frames the tables fdrltaged structure manipulation
and viewing. The parser and tagger outputs fongithe annotation decisions are
shown in a separate resizable and customizablegdil a computer system with
multiple monitors, for example, the dialog can lb&cpd into a separate desktop.
In the current version, the user can select whiaisqr’s output is used as the
initial tree for correction and modification.

In the DepAnn tool, the structure to be annotasekpresented to the user in text
and graphic formats in order to offer the use efblest possible option for his or
her needs. Because the text and graphic viewsullyaritegrated, changes applied
in the graphic view immediately affect the textwjeand vice versa. The user
interface is also customizable to suit the task #r@dannotator’'s preferences. A
user can add comments on annotations such as rersiadout problematic parts
in the sentence structures. Completed trees camdr&ed as ready, thereby
indicating that no further inspection or modificats are needed. Outputs of
several parsers and POS taggers can also be applpallel. These allow the
annotator to compare the outputs before makingamptation decisions. To be
able to use the output of a parser in DepAnn, avexer is needed to transform
the output from the parser- or tagger-specific farno the format used by
DepAnn. TIGER-XML (Mengel & Lezius 2000) is usedths input format for the
structures obtained from the automatic tools, a$ agethe output format for the
annotated treebank. For internal data representaie TIGER-XML structures
are transformed into Java objects.

The annotation process that uses DepAnn begins pvithessing the treebank
texts with one or more parsers and taggers. It tygplies a converter to the
outputs in order to transform the tool-specificpuitinto TIGER-XML. After the
conversion, the annotator can view the parsedtstes The annotator can select
the parser output to be used for creating theairitees and modify these.

Once the user stops editing a sentence, the progmriorms an automatic
consistency check to validate sentence structumegtation, and encoding. In the
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first place, it runs a series of checks to verfifgttthe sentence has a main verb and
a root, that all the words have word form and lemmé&rmation and
morphosyntactic tags, that the sentence is notrfeaged, and so on. Secondly, if
the first series of checks is passed, the progmamsforms the sentence into
TIGER-XML and validates it against the XML schenmidentify any possible
errors in the encoding. If any such errors appikar user is alerted. The user can
select which checks should be run by modifyingsystem set-up.

7.1.2.3 Implementation details

The annotation tool is implemented in Java. Becdasa is platform-independent,
the system can be used in any environment in wlaeta is available. The system
consists of three main components: the interfacearsers and taggers, the
annotation tool itself, and the output module. édiswo freely available open-
source package§penJGraph(Salvo 2006) andIGER API(Demiret al 2006),
for developing the system — although both had tenbdified before they could be
used as a part of DepAnn. TIGER API, a Java APIM&@ER-XML, is used for
input and output processing. The graphic annotat@mipulation functionality
was built on top of OpenJGraph. The annotation tosésJava Database
Connectivity(JDBC) both for storing the outputs from the pagsand tagging
tools, user comments and information on comple¢ediesices. Because of this, the
MySQL database currently being used can be replacednigyother JDBC-
compatible database.

annotation
textual tigerAPI |

graphical | graph

— — — >

consistencyCheckier

database| java.sql

Figure 7-4. The main Java packages of DepAnn.
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7.2 Evaluation Resources for English

In this section | will describe the two linguistiesources for English that |
developed as part of this research. Sections a2d17.2.2 respectively describe
the design and construction of the Multi-Genre TeettandRobSet.

7.2.1 Multi-Genre Test Set

TheMulti-Genre Test SMGTS) is a test set that comprises 826,485 seateim
English. It contains six subsets that cover thdofahg genres: newspaper,
legislation, fiction, non-fiction, religion and bieedicine.

7.2.1.1 Main design principles

MGTS aims to provide a sizeable corpus of texts émmluating parsers’
performance on diverse text genres. Because theusds divided into genre-
specific subsets, it allows a user to measure fieete of genre variance on the
performance of parsers. The texts differ not onithwegard to genre but also in
terms of discourse function and intended audied@le most of the texts address
a general readership, the biomedical texts and sirttee texts in the non-fiction
data set are written for experts.

7.2.1.2 Developing the resource

The text materials were obtained from the followswgirces: théeipzig Corpora
Collection(LCC) (Quasthofkt al. 2006), theDxford Text Archivé OTA) (Oxford
Text Archive 2006), theProject Gutenberg(PG) (Project Gutenberg 2006),
GENIA (GEN) (GENIA Project 2006), th¥apex CorpugYAP) (Yapex Project
2006) and the\ligned Hansards of the 86Parliament of Canadaorpus (HAN)
(Natural Language Group of the USC Information 8ces Institute 2001). All the
text sources were available for use without charge.

The test set was constructed in the following way:
» Deletions were made to the texts. These includedrédmoval of some
poems and song lyrics as well as sentences in é&gaguother than English.
* Text normalizations were carried out. These inaldee removal of
underscores (_), markup (e.g. XML tags) and otloeles.
* The texts were divided into sentences by usingst#r@ence tokenizer of
the Maximum Entropy Part of Speech TaggéMXPOST) tool

137



(Ratnaparkhi 1996, Ratnaparkhi 2007). A Java-bgsesi-processor was
implemented for correcting some of the systematablems observed in
MXPOST’s output.

* Automatically tokenized texts were checked manugdlyinconsistencies.
A considerable number of errors left by the autéendbols were
corrected?

» The texts were collected into sub-corpora of betw@and 12 MBs size.

» Two separate versions were made of each file foaosed: one for parsers
that take raw text as input and another for thbs¢ take the input text in
the PTB format. A small Java tool was implementedgitoduce the two
versions automatically.

* Finally, the texts were tagged with MXPOS for uséhwhe parsers that
make use of a POS tagged input.

Table 7-4 shows the subsets of MGTS. There areBRB35 tokens in total (with
an average length of 18.6 tokens per sentence)aVémge number of tokens per

sentence in the sub-corpora varies between 15.2aidd

Table 7-4 The materials in the Multi-Genre Test Set.

_— No. of | Avg.
Genre Description 9- | sources
sent. |lengt
Legislation Proceedings from the Canadian Parliament 300,042| 17.2 HAN
(Hansard)
Newspaper texts from Financial Times, Wall
Newspaper Street Journal & Associated Press 217,262) 195 LCC
Fiction Novels from the 20th and 21st centuries 97,156  15.9TA, PG
Non-fiction Non-fiction books from the 20th and 21st 61911 | 21.9| OTA, PG
centuries
Religion The Bible, the Koran, the Book of Mormon 45,459 127. OTA, PG
Biomedicing Abstracts from biomedical journals 14,655 216 GEKENP
TOTAL 826,485| 18.6
7.2.2 RobSet

RobSetconsists of 443 test items, each of which contaipsir of erroneous and
correct sentences. Each of the erroneous sentecmesins one to three
misspelled words.

® The manual checking and correction took approxégatne week of working timeChecking the
whole test set sentence-by-sentence would takeoupeveral months. | estimated the error
frequency to be 0.4% by sampling a total of 145tcemly selected sentences. | considered the
error rate to be low enough for the purpose to ithe test set was to be used in this research.
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7.2.2.1 Main design principles

It is clear that as the level of noise in the irgpimcreases, the performance of a
parser degrades. The effect of the noise on thiempesnce can be measured by
parsing sentences with successively more spellilgjakes and observing the

consequent effect on the performance of a parsehSBt enables one to make
these kinds of evaluations.

7.2.2.2 Developing the resource

| began the test set construction by selectingelflemces from a public domain
web page. | then altered one, two or three wordsgs® sentence, and this gave a
total of 443 test sentences — 255 with one errdr®hwith two and three errors
respectively. The length of each of these sentemessbetween 5 and 36 words,
and the average length was 16.3 words per sentéticen manually introduced
misspellings into the sentences by deleting, addind transposing characters,
permitting only one edit operation per word. Thareltter additions were based
on the keyboard proximity of letters in order tanalate errors in naturally-
occurring texts. Since the purpose was not to dutce structurally distorted
sentences, only alterations that did not creatacaeptable word were permitted.
Table 7-5 shows examples of sentences from thaégst

Table 7-5 Example sentences from RobSet. The errors theg iméroduced are
indicated by in italics.

Correct sentence Noisy sentence
Your username is not logged. Yoruusername is not logged.
Please e-mail suggestions for improvements. Pleasisuggestions for improvements.
A text-only browser such as Lynx is great | A text-only browsemuschas Lynxsi great fol
viewing almost all the pages at this site. viewinalmost all the pages at this site
Once you have files loaded into the cajOnce you have filedoadsd itno the cachg
reaccess is speedy. reaccess ispeedu

7.3 Conclusion

I have introduced three resources for the evaloationatural language parsers,
and have discussed the design principles and th&trootion methods as well as
the contents of the resources involved. The twoue®s for English are applied
in Section 10 for evaluating parsers for Englists the treebank for Finnish
currently consists of automatically parsed sentgnicean not yet be used reliably
for parser evaluation. Manual checking of a tre&beontaining thousands of
sentences is beyond the scope of this research.
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I EVALUATION METHODS AND TOOLS

8 Analysis of Existing Methods and Tools

It is an extremely laborious task for a human bdmgvaluate individual parser
outputs manually, and it is also one that is likelygive rise to errors. There are
some methods such a&xtTreesthathave been developed to assist the work of
inspection (Newman 2008§. Experiments have shown that formats such as
TextFree can speed up the manual evaluation prodesspite of this, it is
necessary to use automatic evaluation methodsykiematic parser evaluation
because of the major drawbacks inherent in maruadliation practices. The first
of these drawbacks is that manual inspection i$ lsbdw and error-prone. It
would be extremely cumbersome in practice, if mapassible, to use manual
inspection for comparing parsing systems that ufereint output formats. The
second drawback is the possibility of introducingasb along with human
evaluators. Whenever an evaluator decides whethaota parse is appropriate or
acceptable, he or she introduces bias by makinlg ayadgment (Bod 1998). In
those cases where an evaluator might judge ansasadybe appropriate, he or she
might have assigned a completely different analysithe sentence if he or she
had not already seen the parser’s analysis.

In addition to the linguistic resource that is ussdca comparative material, metrics
and measuregare also needed for automatic evaluation. évaluation metric
allows one to compare a system’s performance aftprovements, as well as to
compare the performance of different systems. Maggpbdften need to be applied
to parser outputs and evaluation resources in cmmenake them sufficiently
similar for metrics to be appliedeasureglefine the way in which the results are
reported.

The quality of a parser can be approached fromrakperspectives. The most
commonly used perspective in parser evaluatiomaspreciseness of the parses
produced by the systems. Most of the work that besn done on parser
evaluation has in fact concentrated solely on thésticular point of view.
Preciseness evaluation methods are described itioSe®1 below.Coverage
(Section 8.2) refers to the proportion of the duues in the gold standard to
which the parser assigns one or more parses. Aeparability to produce an

% In TextTrees, parser output trees are convertén unlabeled indented strings. These trees
contain a minimal amount of bracketing to easednspn work.
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error-free or only a slightly altered output fronput sentences containing errors is
referred to asobustnessRobustness evaluation methods are discussedctioSe
8.3. Efficiency (Section 8.4) refers to the speed with which as@aperforms
analyses. It can be extended to cover the use ofame Existing evaluation tools
are discussed in Section 8.5 of this chapter.

8.1 Preciseness Evaluation

Preciseness refers to a parser’s ability to cdgrectalyze grammatical structures.
These structures, depending on the type of evaluathay be either constituents,
dependencies or sentences. Preciseness is meagucechparing the analyses in
the gold standard to the parses in the parser butpu

Definition 8-1. Gold standard.
Gold standards a 2-tuple GS=(S,A) where
1.5=(s1,S,...,S) is a finite sequence of grammatical structures, i
constituents, dependency links or sentences.
2.A=(ag,a,,...,a,) is a finite sequence of analyses. For eadlxi<n, g
LIA, is the analysis fUS.

Definition 8-2. Parser output in evaluation.
Let GS=(S,A) be a gold standard. [Eebe a parser.
1. Parser outputO(P,GS)=(P%), P®),... P@Es)) is a sequence of
analyses such that $)(for eachi, 1<i < nis the analysis assigned
by parselP for sentencg LS

Let GS=(S,A) be a gold standard and O(P,GS) a pargeut for sentenceSin

the gold standard. Preciseness evaluation is carried agrbyaring each element
in O(P, GS) to each element An GSconsist of two setsIP (true positives) and
FN (false negatives)TP is the subset oS whose analyses in O(P,GS) match
with the corresponding analysis /&) the parser produced a correct analysis for
these sentences. The members offeffalse positives) do not match in O(P, GS)
and A. This means that the parser was not able to producerectanalysis for
these sentences. 3é\l consists of the elements@Sthat do not have an analysis
in O(P, GS), i.e. they comprise the set of sentences fichwthe parser was
unable to produce an analysit?UFN constitutes the gold standard. The parser
output is formed oT P andFP. Figure 8-1 illustrates these concepts.
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Gold standard Parser outpt

Correctly parsed

(TP)
No(tFpl\zla)rse Incorrectly parse:
(FP)

Figure 8-1 The sets of analyses in parser evaluation. TN is ¢heofsall the
sentences in the language L not included in the gold sthrataparser output,
called the true negatives.

Example 8-1 Let GS=(S, A) be a gold standard. Let O(P,GS) paraer output
for S. The following table shows for each senterge.ss the gold standard
analysis, the parser output and the group to whidh, HP or FN) the parser
analysis belongs.

S A O(P,GS) Set
sl al al TP
s2 a2 NULL FN
s3 a3 a3 TP
s4 a4 a4 TP
s5 a5 p% as5 FP

The most common measures used in preciseness evalaetiprecision(P) and
recall (R), which are defined as follows:

Definition 8-3. Precision and recall.

A

1. P=
[TPUFP|

__ [T

. R=
TPUFN]|

F-score is a combined measure of precision and recall fawlitates the
comparison of evaluation resultS-score can be defined as in Definition 8-4.
Figure 8-2 illustrates examples®Bfscores for certain precision-recall pairs.
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Definition 8-4. F-score.

F-score - 2PR
P+R

1.00 ¢ . *
0.00 0.67 1.00
0.75 075
T
So.50 0.00 .50 0.57
x
0.25
0.00 0.00
0.00 * ‘ *
0.00 0.25 0.50 0.75 1.00
Precision

Figure 8-2 Precision-recall pairs with their corresponding F-scores
8.1.1 Phrase structure based metrics
8.1.1.1 PARSEVAL

Perhaps the most widely used parser evaluation metknagn asPARSEVAL
(Black et al 1991). It uses PS bracketings to compare the staegciara parser
output and a treebank. For the evaluation, parser o(fBiy FP) and the gold
standard (TRIFN) are represented in bracketed string format.

Example 8-2 Bracketing representation of the PS parse tree simoWwigure 3-2.
Phrase boundaries are represented with bracketsisgaamintervali], j], wherei
indicates the index of the first apthe last word in the phrase. There are therefore
five phrase boundaries in the sentence used as #éinepdex [0,5], [0,1], [2,5], [3,5]
and [4,5].

[S[NP[Detthe][NounbaII]][VP [Verbis][NP[Prepin][NP[Detthe][Noungoa\]].].].].

: [0,1] ' [4,5]

[3,9]
[2,5]
[0,5]
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In PARSEVAL, precision and recall measures are operaliced on the basis of
the brackets: |TP| is the number of bracket pairs faclwthe parser output and
gold standard match. |FP| is the number of bracket pawhich the analyses do
not match. |FN| is defined as the number of the bradkethe gold standard for
which the parser was unable to produce an analydide\WWhlabeled PARSEVAL

compares only the brackets,labeled PARSEVAtwo analyses match if and only
if both the brackets and the labels (POS and syntact®} tagtch. In addition to

precision, recall and F-score, tmeimber of crossing bracketis used as an

evaluation measure. The number of crossing bracketiefised as the mean
number of bracketed sequences in which the parseutooyerlaps with the gold

standard structure. Figure 8-3 illustrates the idea oftbesing brackets measure.
Example 8-2 shows an unlabeled PARSEVAL evaluation.

Crossing Nor-crossing Nor-crossing

i ¥ j i ji ¥ P .j’.“j
Figure 8-3 Non-crossing and crossing brackets. The phrasedanes [, j] and
[i", j] are boundaries in the gold standard and the parseutogtgpectively. Pair

[i,j]1[’, ] ]is defined as a pair of crossing brackets if they ovetlegt is, ifi <7V’
<j<j.

Example 8-2 An example of PARSEVAL measures. A is the gold stehda
structure and B the parser output (adapted from (Lir8))99

A) [[He [hit [the post]]] [while [[the all-star goalkeeper] [was [out [of [the goal]]]]]]]

B) [He [[hit [the post]] [while [[the [[all-star] goalkeeper]] [was [out of [the goal]]]]]l]

precision =75.0% (9/12)
recall =81.8% (9/11)
F-score =78.3%
crossing brackets =1 pair

8.1.1.2 Maximal projections of heads

To eliminate some of the problems in PARSEVAL brackebaged evaluation,
Ringger et al (2004) have proposed a method that they claim is deiteor
evaluating and comparing both probabilistic (treebank) emd-based (non-
treebank) parsers. Their idea is to concentrate oagpects that are common to
different types of parsers. The method is therefomectkd at comparative
evaluation. Instead of using bracketed structures, atitdors applymaximal
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projections of head¢MPHsf® to obtain a more suitable format for comparing
parsers across frameworks.

8.1.1.3 Leaf-ancestor metric

Leaf-ancestor(LA) metric is based on evaluating the similarity lofeagesof
individual terminal elements in the parser output and the gjalddard (Sampson
(2000), Sampson & Babarczy (2002))liAeageis the sequence of node labels for
the nodes on the path from a terminal to the root. A leitk®t is inserted in the
lineage of a terminal element immediately before the ladfelthe highest
nonterminal beginning with that element. A right bracket is tegein the lineage
of a terminal element immediately after the label of the dBgmonterminal
ending with that element.

The evaluation is carried out by comparing each wdidéage by using thedit
distancemeasure (Levenshtein 196@dit distanceis defined as the minimum
number of insert, delete and replace operations needeginsform one string into
the other. While deletions and additions have the cost lohemetric uses a
modified edit distance measure in which the cost of repmiaa node label is
defined by a function that sets a value between 0...2a¢h eeplacement. This
reflects the fact that when two grammatical categoriegmatiesly dissimilar, they
actually count as two separate errors (namely, failimgd¢ognize the right tag and
falsely assigning another tag). However, when the catsg@re more or less
similar, the lineages should be recognized as less far. ey are then assigned
value 1. A sentence-level LA measure is defined asvieeage of the LA values
for the words in the sentence.

%5 Maximal projections are projections of a head timite with the start symbol or with a non-
head daughter of a rule For example, in the stradiXi’ [specifier] [X' [X] [complement]]]X is
the head of the phrase aXd and X" projections ofX. More specifically, the top nod¥" is
referred as the maximal projection axichs the intermediate projection Xf Unlabelled precision
and recall are used as evaluation measures toefuathstract away from differences between
parser output formats.
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Example 8-3 Leaf-ancestor metric. The analyses A and B are ftoengold
standard and the parser output respectively. The cotuAihgives the LA score
for each word. The LA score for the whole sentesda 88.

A) [S [NP [N Liverpool]] [VP [V is] [VP [V playing] [ADVP [ADV welll]]]]

fs B) [S [NP [N Liverpooll] [VP [V is] [VP playing well]]]
NP vp
NV VP S
I — N
Liverpool is W ADVP NP WP
| | | ..----""/"\
playing ADV M W ‘\:."E&
wx|all Liver|poo| is playing w;il
A LA | Word B
NNP][S 1.0| Liverpoa| NNPI][S
V][VPS 1.0 is V][VPS
V][VPVPS 0.8| playing [VPVPS
ADV[ADVP VP VP S]|0.73 well VP VP S]

8.1.2 Dependency-based metrics

Several methods have been proposed that use D strucsreéBe basis of
evaluation instead of PS bracketings. In addition to éweldpers of D parsers, D-
based evaluation methods have been widely applied witnPtBFG parsing
research community (by Collins (1999), for exampéed by developers of CCG
parsers (such as Clark and Hockenmaier (2002a, 200Rb addition to the
evaluation methods based on D treebanks and D outpat,atenethods that are
based on mapping or mixed D/PS representation haue fm@posed. Lin’'s (1996,
1998, 2003) model maps the treebank and parser toufmuD structures. The
Relation Modelof Srinivaset al (1996, 1998) — referred to hereinafter as RM —
aims at combining PS and D representations by addingel&tions between
phrasal constituent chunks. The GR evaluation schemeao{Cat al (1998,
1999)) uses a corpus annotation scheme with GRs betwesels and dependents.

8.1.2.1 Pure dependency measures

Table 8-1 summarizes the pure D evaluation mea¥uttest will be described in
this section.

% The term “pure D evaluation” is used in this resbao refer to the methods that are used for
comparing D trees with one another — without uging mappings from other types of structures
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Table 8-1 Evaluation measures based on D structures (adapied Mivre &

Scholz (2004)). All the measures are reported as peges of the nodes or

sentences that are correct.

Name Measure Origins

Nodes that are assigned the correct Eisner (1996),
head or no head if it is the root | Collinset al (1999

Nodes that are assigned the correct

Labeled attachment sco(eAS) | head and D label or no head if it {sNivre et al (2004)

the root
Non-root nodes that are assigned |the

Unlabeled attachment sco(gAS)

Dependency accuragipA) correct head
Sentences in which the root is Yamada &
Root accuracy{RA) I i !
recognized correctly Matsumoto (2003

Sentences whose unlabeled D

Complete matciCM .
P tCMm) structure is completely correct

Example 8-4 Pure dependency evaluation measukes. the gold standard parse
and B the parser output. The roots are denoted with the faid font. For
example, UAS is calculated as 6/7 because out ofotla¢ af seven word nodes,
six of which have been assigned the same head (rb foeahe root) in both
analyses. Only the word “him” has been assigned agvhead. Only three of the
labels match in the D links. LAS is therefore calculate®/d@s In DA score the
root is excluded and it is defined as 5/6. Although thé moaiches (RA = 1/1), the
whole sentence has not been correctly analyzed (CM)= 0

XCOMP /DQ%
SUBJ
OBJ DET
m /—\ AL% V—\

A) Pele promised him to bring the ball
CCOMP

OBJ
A/Sum YN
B) Pele promised him to bring the ball

UAS = 85.7% (6/7)
LAS = 42.9% (3/7)
DA = 83.3% (5/6)

RA = 100% (1/1)

CM = 0% (0/1)

The Shared Task on Multilingual D Parsingt the 10th Conference on
Computational Natural Language Learning (STMDP-CoNLL-(8uchholz &
Marsi 2006, CoNLL-X Shared Task 2006) was the fixstlgation to use standard

(such as Lin’s model, which will be described irct8m 8.1.2.2) or specific annotation format for
the evaluation resources (such as in GR modeldtid3e8.1.2.4).
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metrics and test data for a wide range of D parseskidimg parsers for languages
other than Englisi’ LAS was the official measure used for ranking thesgar.
UAS was used for an additional measure for system cosgpaand error
analysis.

8.1.2.2 Lin’s mapping model

As | have already noted in Section 3.1.3, PS treesbeamapped, with certain
restrictions, into D trees. Lin (1996, 1998, 2003) hagp@sed an evaluation
method based on PS/D mappings. The mapping algorighbased on the one
proposed by Magerman (1994). Lin (1998) applied théhateto evaluate the D-
based MINIPAR parser on the SUSANNE corpus by fratsforming the corpus
from PS to D structures. A D relation in Lin’'s model detssof a modifier, a head
and an optional label indicating the type of relationship batweese two.

A D output or a mapped PS output is scored on thes lmdseither labeled or
unlabeled D relations that classify each into one of theviatlg four categories:
(1) A “correct” word modifies the same word in the evahratesource and parser
output or else it does not modify any other words in eitsteacture. (2)
“Incorrect” words modify a different word in the parsautput than in the gold
standard. (3) If the word does not modify any word & duitput, but does so in
the gold standard, it is referred to as “missin@¥) In the opposite case of a
missing link in the gold standard parse, the modifieeeferred to as being
“spurious”.

Precision and recall are calculated over the D links. Roecimeasures the
percentage of D links in the parser output that matchCihénk in the gold

standard parse. Recall is defined as the proportiothefD links in the gold
standard that match the parser output. Lin (1996, 199@3)2does not report F-
scores.

%" The shared task in the 10th CoNLL provided tetst &® D parsing in 13 languages.
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Example 8-5. Lin’s D-based evaluation method. This example reprssa
labeled evaluation. The correct words are “Pele”, “psewli’, “to”, “bring”, and
“ball”. There is one incorrect word, “him”, and a missingrd, “the”.

XCOMP DOBJ

SUBJ OBJ AU D

A) Pemmmm Yo,\ rig’t/?e\\‘ bi

CCOMP

SUBJ 0BJ

AUX

SUB,
B) Pe’le/pr\omised him pbrm b

Precision = 60.0% (3/5)
Recall = 50.0% (3/6)

8.1.2.3 The relation model

The RM model (Srinivagt al (1996, 1998)) is based on the idea that evaluation
can be defined as measuring how well a parser caresx@ certain relation.
Srinivaset al (1998) propose two derivatives from this general hddechunk-
based evaluation, the relation is the one between thesvgtaing and ending the
chunk. In the D-based evaluation, the relation is defadwordx depends on
wordy”.

These two models can be applied in parser evaluatitmeifiollowing way. The
parser outputs are flattened into chucks and the ewvaueifirst carried out by
using these chunks. D-based evaluation is next used ¢& tiee correctness of the
internal structure of the chunks. Evaluation is carried auhe basis of the links
between these. The results are reported by using ddbeted or unlabeled
precision, recall and F-score measures. Srinighsal (1998) represent an
evaluation in which the output from a TAG parser and BirBctures used as the
gold standard are compared firstly on the basis ohk$iuand, secondly, on the
basis of dependencies between words.

8.1.2.4 The grammatical relations metric

The GR metric is based on the GRs annotation scheme #wintvoduced in
Section 6.2.4 (Carrolet al 1998, Briscoe & Carroll 2006). Two GRs are
considered to match if the relation assigned by the parser the same level or —
in the case omod subandclausalrelations — one level apart in the hierarchy. A
clausal relation, for example, matches botkcomp and ccomp relations.
Furthermore, théypeslot in themod iobj andclausalrelations can be unspecified
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in the parser output. Recall and precision over GR stestare used as
evaluation measures (Carrellal 1998).

Example 8-6 An example of GR measures. A is the gold standaudtste and B
the parser output (adapted from Lin (1998)). Precisiahragall are both 1.0 in
this case, since theobj and obj reltations andhcsbujand subj relations are on
adjacent levels in the GR hierarchy (see Figure 6-6).

A B
(dobj playing well) (obj playing well)
(aux__ playing is) (aux__ playing is)
(ncsub playing Liverpoa ) (sub playing Liverpoc )

8.1.3 Analysis

In this section | will offer an analysis of existing preriess evaluation metrics on
the basis of the methods and measures applied, the tyjpegwilstic resources
needed, and suitability for evaluating specific types ofsgratr Table 8-2
summarizes the properties of the preciseness evaluatethods mentioned
above.
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Table 8-2 Comparison of preciseness evaluation metrics descrilies column
headed “Basisindicates whether the metric is based on either PS or Bustes.
The two columns below the heading “Aim” indicate whetlher inetric is aimed at
evaluating PS or D parsers, or both. Column “P/R” indgcatbether the metric
uses recall and precision as the evaluation measurédsm@dOther” lists the
other evaluation measures used by the metric. The ldsimooof the table
indicates whether the method relies on some existingtatimo schemes), and
whether it uses its own schem®& Or mappings between annotation and output
schemesn).

Aim Measures

Metric Basis Scheme
PS D P/R Other
Unlabeled PARSEVAL PS Yes No Yes F-score, no. of e
Labeled PARSEVAL PS Yes No Yes | crossing brackets e
No. of crossing
MPH PS Yes (Yes)* Yes | brackets, no. of m
matching sentences
LA metric PS Yes | (Yes)* No Edit distance e
Percentage of
UAS, LAS,DR,CM,RA D No Yes No correct words/D e
links
Lin's model D Yes Yes Yes - m
Relation Model D&PS Yes Yes Yes F-score o]
GR metric D Yes Yes Yes - o]

*Ringgeret al (2004) claim that the approach generalizes torix&ires — a claim remains as yet
untested in practice. *While Sampson and Babaf@p?2) claim that this metric could be used
for evaluating D trees, no such evaluations hawsetbeen reported in the literature.

8.1.3.1 PS-based evaluation

One of the advantages of PARSEVAL is that the evaluatam be based on a
relatively undetailed treebank. PARSEVAL also providegs @nth a means to
compare parsers by using rather different types ®foBtput schemes. Several
criticisms of PARSEVAL have nevertheless been docundenBginivaset al
(1996, 1998) point out, firstly, that parsers generatiegailed analyses are
penalized by the PARSEVAL precision measure if the coispa is based on an
undetailed treebank, and, secondly, that PARSEVAL isiitatsle for evaluating
partial or D parsers. Lin (1998) also argues that a icrgdsrackets measure
counts a single bracketing error more than once in stases. PARSEVAL is
most commonly combined with the PTB as the gold standaudi this may cause
serious problems. Because the PTB trees are flat avel lew brackets in them,
the number of crossing brackets is likely to be low;léiss structure is assigned to
a sentence, the fewer are the possibilities for error. Mhises it easier to obtain
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high precision and recall scores. One can predict that pittéon generalize
PARSEVAL to D structures would face serious problems.

While the method proposed by Ringger al (2004) makes PARSEVAL-style
evaluation suitable for a wider range of parsers, sachpproach would not be
without drawbacks. Firstly, in order to perform MPH ewadion, both the parsers
to be evaluated and the evaluation resource need todmeanotation scheme
that marks the heads. This is not true with, for exanmpé&PTB. This means that
the heads have to be automatically marked — a procasmight introduce errors
into the resultant structures. Secondly, as Ringgal themselves point out, this
approach cannot be generalized to all kinds of structdoesexamplesmall
clauses Thirdly, although Ringgeet al claim that the approach generalizes to D
structures, this claim remains as yet untested in practice.

Sampson and Babarczy (2002) claim that the LA metbeiter than PARSEVAL
because it allows imperfect matches to be made betwegratber output and the
gold standard. Furthermore, LA accounts for the sevedtthe mismatch by
applying the function that determines the replacemens afstach label pair. The
LA metric is moreover better suited to locating parsingrstr While the LA
metric is based on comparisons on the terminal |IERARSEVAL deals with
global scores (bracket matches). LA assigns every tefmuittaa path to the root:
this allows detailed error analyses to be carried out. Samped Babarczy
suggest that LA could be used to identify configuratiorertigular words and
structures) that are regularly associated with low scadit@s.would enable parser
development to be focused on problematic areas.

8.1.3.2 D-based evaluation

One may justify the use of D-based evaluation schem@®inting to the fact that
semantic dependencies are embedded in the syntactic depessd One can
therefore argue that the results of a D-based evaluat®more meaningful than
those that rely on PSs. Buchholz and Marsi (2006) rtasléllowing observation
on pure D evaluation measures based on the experiehties 8TMDP-CoNLL-
X. Firstly, there is little difference in the ranking betwedka parsers that occur
when one uses UAS or DA instead of LAS. Secondlg cen observe very little
difference in scores or rankings when scoring is peréd on all tokens
(including punctuation) instead of only on word tokens.

However, one needs to be cautious when one usesDpenaaluation methods.
When evaluating her probabilistic CCG parser using LAS, éxample,
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Hockenmaier (2003) observed that the results werelinettly comparable to the
evaluation results of Collins’s PCFG; CCG categories ensoteategorization
information and are more specific than those of Colljifeckenmaier 2003 In
addition to this, parsers use different sets of D typésckenmaier therefore
argues that the scores based on unlabeled D relatiotiseanaly ones that can be
compared across parsers that are based on difganmar formalisms.

Lin’s precision measure is equivalent to the DA measline. main advantage of
Lin’s metric is his use of PS/D mappings: this makegjiiaable to a wide range
of parsers. The problem with Lin’'s approach resemblesctmtral problem of
PARSEVAL: part of syntactic information is lost in the magpiand some detail
in the evaluation is also lost. Moreover, as | have alrgaitgd in Chapter 3,
mapping from dependencies to PS structures is one-to:nthage are many
possible trees that can be generated for a given DtugteudNon-projective D
structures can also not be mapped into single PS trees.

Srinivaset al (1996, 1998) claim that the RM model is suitable foerhstystem
comparisons. This model, however, remains untestedmpamtive evaluations.
In addition to this, the details of the metric are ratheruebgrepresented by
Srinivas et al. (1996, 1998). Why this approach should be preferredther
models based on D/PS mappings, is not entirely clda.two most problematic
parts of the evaluation scheme appear to be the definitiah aartomatic
identification of chunks — as well as the fact that bothetheduation resource and
parser output in most cases need to be mapped onto thecR&ne. Because
parsers do not produce a chunked output, these needbe introduced
automatically. On the other hand, if a treebank used iluatan is of the PS type,
mappings need to be done so that the second, wordivesetl evaluation phase
can be carried out.

Evaluation using the GR scheme is in many ways similar t&s lorethod. The
main difference is that the GR scheme defines a spé&wifentory of D relations.
Because the relations are organized into a hierarchy vemahles parsers using
varying levels of detail in their output to be compared t6R-annotated treebank.
Using GR metric requires the parser to be evaluated totifiglemeads and
dependents. The main disadvantage of the GR scherttetisit requires the
construction of a custom-built test set. GRs also lack unifgratross languages

%8 In order to get a D link correct, a CCG parserdse® identify whether the dependent is an
adjunct or a complement. A PCFG treebank parses doteneed to make this distinction.
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(Van Valin & LaPolla 1997). The relations and the higngrevould consequently
need to be modified for each language or group of lagegia

Both GR and Lin’s models compare favorably with PAR®MENN their ability to
provide detailed information about the preciseness oirgargh the GR scheme,
for example, precision and recall scores can be geovion the word level by
using either groups of relation types or single relatipesy

8.1.3.3 Conclusion

In conclusion, | make some recommendations about whicthe evaluation
metrics and measures would be best used for evaluaingus types of parsers
and suggest ways in which existing methods and measught be improved.

The LA metric is undoubtedly best for PS evaluation. Fissitt allows for
imperfect matches between the parser output and tlie sgndard annotation.
This facilitates system comparisons and makes it possibkvdatuate a wider
range of PS parsers against a single gold standangrces&econdly, because it is
based on paths between the nodes in the parse treeAtheettic offers error
analysis and error locating capabilities. In addition tlweeefto providing
information about the performance of a parser, it gsavides directions for
improving the system.

The most important D-based word-level evaluation measane$JAS and LAS.
LAS provides information about which D links are assid completely correctly,
and this, in the end, is the ultimate purpose of everyrepaWhile UAS is only
concerned with the structure and not with the labels, it itetbér comparing
parsers, even when they use dissimilar tagsets. Whertyfie of evaluation is
accompanied by the use of an evaluation resource withrard¢hécally organized
tagset (as in the GR corpus and FiEval), it facilitatesyparability between
different systems. One should also report evaluationltsesaparately for each
relation/D type in order to allow for a detailed analysisddferences in the
performance of various parsers.

When a direct comparison of the preciseness figufeseweral parsers is not a
concern and when a linguistic resource that is annotaitbda scheme similar to
the parser’s output scheme is available, it would be @efieito use that resource
along with corresponding (PS or D) evaluation metrics. lieiger to use D-based
evaluation metrics for comparative preciseness evaluatieen possible. This is
because the results of a D-based evaluation are mon@ingkd than those that
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rely on PSs because of the fact that semantic depeiedesre embedded in the
syntactic dependencies. Moreover, at least one of theutostghemes in the
majority of parsers contains a type of word-worgetedency-based scheme (i.e. it
Is either a D output, or a GR output or a PAS output).

It is interesting to note that many current evaluation nmeetack a sentence-level
measure. Manning and Carpenter (1997) point out that wiakes NLP hard is
the fact that an NLP system has to make consecutiveiateisorrectly if it is to
be successful. In order to parse a sentence correacpgrser therefore needs to
make a correct decision about each word as well asdghtence structure. The
overall success rate in parsing a full sentence is thasmth power of the
individual decision success rates. In PARSEVAL, for eplemprecision, recall
and crossing brackets measure success at the leveliatliad decisions — and
not at the level of the sentence. This means that theyatirer easy measures on
which to do well. It may thus be argued that these messuigs those essential
qualities that define a high-quality parser.

Hence, in addition to word and PS nonterminal/D link -levellysis, which is
much more useful than sentence-level measures foramadysis, it is crucial to
report the percentage of sentences that have beentboparsed. With D-based
evaluation, this can be done by using the CM measugoped by Yamada and
Matsumoto (2003), which was discussed in Section 8.alibge. In addition, it is
reasonable to report labeled CM figures because thisureeandicates the number
of sentences for which there are exactly correct amalydas, in the end, should
be the main goal of preciseness in parsing. The L&icmaefines a sentence level
measure for PS evaluation, that calculates the proposfi@entences that have
matching structures and labels in the gold standard asdrpautput.

8.2 Coverage Evaluation and Error Mining

The most straightforward way of evaluating the coverafge parser is to parse a
set of sentences and measure for which proportioneotémtences the parser is
able to produce a parse. Coverage is defined as:
TPUFP|

—_— 8-1

TPUFPUFN| (8-1)
Van Noord (2004), and Sagot & de la Clergerie (200@G)\e proposecrror
mining methods in which the results of coverage evaluationsised for further
analysis. The aim of this is specifically to locate deficies in the lexicon and the
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grammar. The methods compare the sentences that thex gaetle to analyze
with those that it is unable to cover. Both methods aredbaseobserving the
frequencies of word-grams. Aword n-gramis either an individual wordhE1) or
a sequence of wordsX1). The purpose of using wordgrams is to detect the
words and sequences of words that make a parséo tailalyze a sentence.

Example 8-7 The setsG,, n={1, 2, 3} of word n-grams of the sentence
“Liverpool is playing well’
"Liverpool is playing well.”
G; = {"Liverpool”, “is”, “playing”, “well"}
G, = {"Liverpool is”, “is playing”, “playing well"}
Gz = {"“Liverpool is playin(’, “is playing wel'}

8.2.1 Van Noord’s method

The error-mining method suggested by Van Noord (20@ks in the following
way. Let GS(S,A) be a gold standard and O(P,GS) outpwt parser for the
sentences in the gold standard. Tpersability of n-gram q is calculated as
follows:

Definition 8-5. Parsability oh-gramq in Van Noord’s error mining method.
Let T = (J1,9,,....0,) be a sequence of sentences. fidbe ann-gram.

C(T,g) is the set of sentencesTirthat contairg:
c(, o= f{i[a[j...i +n-1=q wheret< j <|g|-n+1j.
The parsability ofy is defined as
IC(TPUFN, q)|
IC(TPUFP,q)|’

where TP, FN and FP are sets of sentences as difiis=ction 8.1.

parsability)=

If an n-gram is to be considered normal, its parsabillipusd be close to the
overall coverage of the parser. A considerably lopersability score indicates a
problem in the lexicon or the grammar. Error miniisgperformed by using

increasingn values, starting from %. The result of the mining is reported asran

gram table, and is sorted according to the paitabdores and frequencies.

% Whenn is increased, only the-grams that have lower parsability values tharsisn-grams
(obtained with lower values af) are considered (Van Noord (2004)). The purposthigfis to
identify the most important-gram and thus to reduce the number of redundamams that are
within each other.
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8.2.2 Sagot and de la Clergerie’s method

In contrast to Van Noord, Sagot and de la Clerg@@96) base their error mining
method (hereinafter referred to as the SC method)bserving the sentences that
were not covered. Their aim is to use statisticatieling for finding the cause for
the parsing failures. The SC method uses the seispicious forms$o refer to the
kind of results that Van Noord’s method can detkraddition to this, one of the
capabilities of SC is to identify the cause of tlalure in each uncovered
sentence. This word is then callibe main suspect

Sagot and de la Clergerie have devised several efagrgending this basic model.

For example, they have developed a method for giogian estimate of the

benefit that might accrue from the correction of ttorresponding error in the
parser for each suspicious form. This process allparser developers the option
of identifying the most critical directions for ther development.

8.2.3 Analysis

| shall now analyze the two error mining methodscbynparing their similarities
and differences, their respective degrees of usalaind the information that they
are able to provide. Both these methods are sirmildéineir aim: they have been
developed to detect errors and deficiencies inlgkizon and the grammar of a
parser. The main advantage of both approachesaisnth annotated resource is
needed for carrying out error detection. Since lib#se methods are based on
using unannotated texts, one can apply huge calfecof text for mining.

The main deficiency of the SC method is that @pglied only to single words and
word bi-grams. This limits the errors that are ditble by using this method
mostly to problems in the lexicon. Van Noord’s neetthas been applied with
values from 1 to 5, and this allows for the obstovaeof a wider array of error
types. While Van Noord’'s method does not analyzeouared sentences directly
at all, the SC method bases its analysis solelyhese sentences. In addition to
providing information about the items that mostfrently cause problems, the SC
method is able to provide estimates of the mairseswf parse failure for each of
the sentences that have not been covered. But \Gordlé¢ method can only
provide the former kind of informatioiAnother advantage of the SC method is
that it offers a graphic tool for viewing miningstéts.
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8.3 Robustness Evaluation

A parser’s ability to produce an error-free or oalslightly altered output from
input sentences containing errors is referred toohsstness. A robust parser is
able to provide as complete and correct an anabfstbe input sentence as is
possible under the circumstances. Foster (2004)Bagglert et al. (2003, 2005)
have proposed metrics for evaluating the extemthtich the parser is able to parse
noisy inputs.

8.3.1 Evaluation based on manually constructed exdes

Foster (2004) has proposed a robustness evaluagtimod based on the corpus of
ungrammatical sentences discussed in Section 642#idea is that the highest
similarity score between the parse for an ungranualasentence and any of its
grammatical counterparts is chosen for each seaf8rEhis may be formally
expressed as follows. L&t andG be the set of analyses for the ungrammatical
and grammatical sentences respectively. It is ptesthat there may be more than
one grammatical (corrected) sentence correspontingeach ungrammatical
sentence. Thus, each elem@hG is the setA={1,...,n} of analyses for the
grammatical sentences. The sentences are commafeltbavs:

GetSentenceScofgs G)
sentScores- []
FORi — 1TO |[U| DO
sime—[]
u<—U;
FORj «— 1TO |G| DO
9-G;
sim—simU CalculateLabeledPARSEVAL(u,g
sentScores-sentScorels GetMaxgim)
RETURN sentScores

Figure 8-4 Pseudocode of the Foster’s robustness evaluatgthod.

The robustness of a parser can then be definetheaprecision and recall it

displays over all of the test sentences. Fostedd4pP€eports on an evaluation of a
state-of-the-art probabilistic parser by CharniaRQQ). This parser was able to
produce an exactly correct parse for one thirchefungrammatical sentences. For
agreement errors and errors caused by the useadray preposition, the accuracy

0If, for example, an ungrammatical sentence haspwssible corrections, and if its parse is 90%
similar to the first correction's parse and 80%ilsimto the second correction's parse, it is
allocated a score of 90%.
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rate was over 70%. The most problematic type obrerwhich reduced the

accuracy rate to only 20%, was one erroneous watdaPOS category than was
different from the original correct one. It is n&rprising that similar behavior
was observed on sentences with more than one error.

8.3.2 An unsupervised robustness evaluation method

Bigert et al (2003, 2005) deliberately constructed sententasdontained errors
for the purpose of evaluating robustness by usingutomatic tool that simulates
naturally occurring typing errors and so introdusgelling errors into input
sentences. This automated introduction of errorabled the researchers to
undertake controlled testing of the effect of ims®d error rates on outputs. The
evaluation was conducted in the following way. fiygsthe parser to be evaluated
was given an error-free text to parse. Secondky,phrser was given ill-formed
input texts to parse. Finally, the results obtaifredn the first and second stages
were compared. The degradation of a parser's out@ag then measured by
comparing the parser’'s preciseness on error-frees t® its preciseness on ill-
formed inputs.

The procedure described above was repeated foraddgeels of distortion. The
lower the level of degradation is, the more robsghe parser in the face of ill-
formed input. Bigeret al. conducted these experiments at error levels of %4
2%, 5%, 10%, and 20% respectively. They iteratexdl gfocedure several times
and calculated the results as the average of Hteries. The preciseness of a
robust parser was expected to deteriorate as mutds® than the level of errors
introduced.

8.3.3 Analysis

| analyzed the two robustness evaluation methodshenbasis of the type of

information they can provide and on the type ofougses that are needed for
carrying out evaluations. While Bigeet al’s measure is based on the overall
preciseness on a certain error-level, Foster's ureaprovides sentence-level
figures on the similarity of the parses returned fbe grammatical and

ungrammatical sentences. This information can led & error analysis.

Both these methods base their evaluations on umatediatexts. This renders them
applicable to a wide range of parsers without amyther need for any
modifications to the evaluation resource or for isieg mapping algorithms
between parser output and annotation schemes. énatlvantage of the method
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of Bigertet al is that it does not require any human intervenfar constructing
the evaluation resource. The only prerequisite setaof unannotated sentences
and an estimate of a parser’s preciseness on fee@rtext. Foster's method, by
contrast, relies on manually constructed test seete Bigertet al’s tools,
however, have only been applied to Swedish. Whdstér's method has been
applied to a wide variety of grammatical errorsgddt et al. have only reported
experiments on spelling errors. It nevertheleseappto be possible to generalize
the method to other types of errors.

8.4 Efficiency Evaluation

Few studies have been undertaken to compare tiseeatfy of parsing algorithms
on the basis of parse times and the effects oémdifft grammars. | have already
described one of the rare works that uses commammars and test data, that of
Van Noord (1997), in Section 4.5.3. The problemhveikperiments of this kind is,
however, that when they are carried out with ddférmachines and when the
algorithms are implemented for different languagesnparisons between studies
become problematic. In the following section, | aédse several methods
suggested for resolving these difficulties.

8.4.1 Heap- and event-based measures

Carballo and Charniak (1998) have used the numibedges that have popped off
the agenda of a chart parsdo measure efficiency in probabilistic parsingaRo
and Charniak (2000) propose a related measured lmasevents considered, that
is applicable to a wider range of parsing approscliemeasures the number of
events for which a probability must be calculat&dearch or pruning technique is
more efficient than others if it reduces the numbérevents that must be
considered.

Carballo and Charniak (1998) argue that their fficy score cannot be
artificially reduced through optimization. They iolga however, that the measure is
general enough to cover different search and pgubdchniques, and that it is
independent of the execution environment and —dertain extent — independent
also of the implementation language. Carballo ahdr@iak (1998), and Roark
and Charniak (2000), argue that such a measurdesnplrsing efficiency to be

" In addition to the chart, a chart parser has aradata structure. It is thegendathat contains
the items yet to be recognized. The data is redobgeusingedgesthat contain information such
as the head of the current item and the positiothefword in the sentence. When an edge is
placed onto the chart, it is said to be “popped thié agenda.
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compared at the algorithmic level without any diten to the low-level
optimization that has been performed. However, thlsp point out that some
significant part of a parser's function may be dmstected from the heap
operations.

8.4.2 Moore's method

Moore’s (2000) method is based on using common grars, test data and
standard implementations of reference algorithmaliprogramming languages of
interest. The logic behind this is that the efingg of an algorithm can be reported
relative to the speed of this reference parsers Tditors out the influences of
different programming languages and computing @tats.

In contrast to Charniakt al’s (Carballo & Charniak 1998, Roark & Charniak
2000) experiments, Moore evaluated non-proballisigorithms. His method
works in the following way. Firstly, a set of graram, a test set and reference
parser implementatioffsin the most commonly used programming languages, a
provided. Secondly, the evaluator parses the tagesces on one machine with
his/her parser and the reference parser is impledan the same programming
language. Thirdly, efficiency is measured as theg@age of the execution time
of the parser being evaluated over the time recbfolethe reference parser.

8.4.3 Evaluation based on strongly equivalent grameus

Yoshinageet al. (2003) describe a method based on the use ofghrequivalent
grammars obtained by grammar conversion. They septean algorithm for
converting LTAGs to strongly equivalent HPSG gramsnand demonstrate an
evaluation on manually constructed and automagicaduced TAGs and an
HPSG. The authors claim that grammar conversioriradis away from the
surface differences between grammar formalisms, thisd means that one can
gain a deeper insight into generic parsing techesgand share techniques that
have been developed for different grammar formadism

2 The CYK algorithm could, for example, be implemehtwith maximum efficiency in C and
Lisp. The source code should be made availabléabrésearchers will be able to examine and
improve the implementation without changing theibakyorithm (Moore 2000).
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8.4.4 Analysis

While the observation of the running times of pesss well-suited to monitoring
the progress of a single parser, such a method mtwegllow for making reliable
comparisons with other systems unless the samenggesnand test sentences are
used and unless it is possible to relate the parses obtained across different
implementation languages and platforms (such asxX.iWwindows and SunOS).

Moore (2000) points out that Roark and CharnialO@tave applied the events
considered measure to a best-first parser and beam-search-based parser.
Although these parsers differ in some respectsy tleo have a number of

attributes in common. This makes it easier for aes®ers to identify a common

measure for comparing their efficiency. Moore fertclaims that there are several
ways in which the number of events that are beowgsiclered can fail to correlate
with the parse time. The metric, for example, doatstake into account the effort

needed to compute the probabilistic models. Thesoreadoes not take into

consideration the pruning phase, which may be drtbeomost time-consuming

tasks.

Moore’s (2000) experiments showed that the numlfechart edges do in fact

often fail to predict the running time of parseesrectly. This led him to conclude

that it is necessary rather to measure the actrakpgimes. Moore’s method does
not address Roark and Charniak’s search for a eéat is insensitive to different

degrees of optimization. In fact, when one wantsdmpare different parsing

algorithms, one needs to restrict oneself to a @ispn of implementations that

are as similar as possible in that regard.

Since the outputs of strongly equivalent grammaes equivalent, the method

proposed by Yoshinaget al (2003) allows meaningful comparisons to be cdrrie
out among parsers for different grammar formalisegardless of their surface
differences. This method therefore seems to offier dltimate solution to the

problem of comparing the efficiencies of parsingsteyns. Where mappings
between grammars exist, that is clearly the cabe. @roblem is similar to the

difficulties that one encounters when creating niraggp between treebanks: such
algorithms are difficult, and in many cases impolgsito devise. Where mappings
do exist, this method is valuable for comparing #ffects of specific parsing

approaches, filtering mechanisms, and so on.

| argue that a clear separation should be mairdabetween the following two
notions of efficiency. The first one focuses onaéhcy in parsing algorithms and
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the parsability of grammar formalisms. This typeewhluation is of the greatest
use to developers of parsing algorithms. The seomedfocuses on parsing times.
NLP practitioners are interested in practical défeces in the efficiency of
parsers, i.e. in parsing times. An orientation tasaeither of the types of
efficiency should also affect the choice of metiaesl the measures applied. The
methods of the type that Carballo and Charniak §1.98nd Roark and Charniak
(2000), have proposed are useful for comparing effficiency of parsing
algorithms in those cases where the algorithms safficiently similar. The
method proposed by Yoshinaghal (2003) is especially useful for comparing the
parsability of grammar formalisms. But such methads only of limited use to
NLP practitioners who want to compare actual pgrsimes. In order to do this, it
is best to have the actual parsing times measuredstandardized machine
configurations.

8.5 Evaluation Tools

There are few freely available parser evaluatioolstoMost of the tools are
constructed for preciseness evaluation, and theyausingle evaluation metric. |
shall discuss these tools in this section.

Evalbis a freely available bracket-scoring program ttegaorts the PARSEVAL
measures precision, recall, and the number of icr@$sackets (Sekine & Collins
2006). It also reports tagging accuracy as thegmeage of the POS tags correctly
assigned. This program takes the gold standardpamser output files as the
inputs, and reports the scores for each sentempagately by printing them to the
standard outpuRandomized Parsing Evaluation ComparalgrBikel (2006) is a
statistical significance tester for Evalb outpui&/hen parser evaluation is
performed repeatedly on the same data and matetiedsmportant to know if the
improvements in the preciseness are statisticadjgifecant. Bikel's Perl script
takes outputs from two separate Evalb evaluatisnegut, and calculates whether
the differences in recall and precision are siasifly significant or not.

The LA metric has been implemented in C (Sampsoidiggins 2006).The
program takes two input files, one of which corssat parser output and the other
of which consists of gold standard analyses. Thpudwconsists of a preciseness
figure for each word and the whole parse treent wants to make a change to
the partial match function used in node label regi@ents, one needs to modify
the source code.
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The creators of STMDP-CoNNL-X released an evaluatsaript for the task
(Buchholz & Marsi 2006). It is a Perl implementatiof the three pure D
evaluation measures (UAS, LAS and LA) used in #s&tand is available on-line
(CoNLL-X Shared Task 2006). The user can choosdlveiné¢o use punctuation in
evaluation or whether to base it only on the warkkehs. This tool also reports
error analysis statistics: the precision and refigllres for D relations, distance
figures for heads and dependents and a listafe confusion§’

Trnstreeis Lin's C++ implementation of his precisenessleaon metric, and it
can translate SUSANNE structures into D trees arfbpm evaluations on those
(Lin 1999). Since the tool's scripting languageais one to define mapping rules
between annotation and output schemes, this makesable for treebanks other
than SUSANNE. In spite of this, no such use hasibbeported in the literature.
The tool reports precision and recall figures dherD structures.

Carroll's (2006)GRAMRELEVALis a Lisp-implemented evaluation tool for the
GR metric. The tool takes as input the GR corpud e parser output and
calculates precision and recall measures. The impusists of four files: a

lemmatized word file, a file with the input senteamumbered, and files for gold
standard and parser output GRs respectively. Ts@msyoutputs precision, recall
and an F-score for each GR and an overall figurer @l the relations. It also

gives a confusion matrix over the GR types forHarterror analysis.

The HPSG community uses the tecompetence and performance profilifay a
structured snapshot of the parser status at airceltaelopment point (Oepen &
Flickinger 1998, Oepen & Callmeier 2000, Oepen &rGh2000).[incr tsdb()] is

a software package for producing, maintaining, exsgecting such profiles. The
tool has a graphic user interface and functiongfofile analysis and comparison.
It is also able to store profiles in a databaseddter use. This tool is suitable for
comparing a parser's performance with earlier tesaind between various
parameter settings. Approximately 100 attributes @corded in a profile that
consists of information about the system setuppardmeters, the coverage (parse
trees per reading, the number of analyses, etenbiguity and resource
consumption (the use of memory and time).

AutoEval and Missplel (Bigert 2006) are robustness evaluation tools thete
used in the evaluations reported by Bigdral. (2003, 2005). AutoEval has been

3 A frame is a list of the D relations of a tokendathe relations of all its children. Frame
confusion occurs when the gold standard and theepautput frame are not identical.
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designed to simplify the gathering, processing endnting of the kind of data
often involved in NLP evaluation tasks. It includescript language for describing
the evaluation task that will be carried out. laiso able to store the data from test

runs. While Missplel is a tool that introduces humtie spelling errors into text,
it is trained only for Swedish data.

Table 8-3 summarizes the main characteristics ®fethaluation tools introduced

above.

Table 8-3 Evaluation tools. KEY: P = precision; R = recall.

evaluation script

Tool Type Metrics Measures
Evalb Preciseness PARSEVAL P, R, no. of crossing brackets
Randomized Parsing Significance .
A Comparison between R
Evaluation tester for p-value
and P of two Evalb runs
Comparator Evalb
LA C implementatior] Preciseness LA LA word and sentence level
STMDP-CONNL-X |, iseness Pure D UAS, LAS, LA

Trnstree Preciseness Lin’s mapping based P, R, F-score
GRAMRELEVAL | Preciseness GR scheme P, R, F-score
- Items covered, time and
Profiling tool memory consumption, the
[incr tsdb()] for HPSG | Coverage, efficiency y phon,
number of chart edges +
parsers
several others
General NLR Definable by the script
AutoEval . y P P, R, F-score
evaluation language
Error
Missplel . . - -
P induction

Most of the existing evaluation tools are for pseciess evaluation and they
implement a single evaluation method. AutoEval @indr tsdb()] are the only
tools that take a more broad perspective on evaluathe advantage of AutoEval
is its flexibility: the user can define an evaloatitask by using the script
language. However, AutoEval has only been usedénrbbustness evaluations
reported by Biggeret al (2003, 2005). While [incr tsdb()] implements d eé
evaluation methods and measures, it is designed@valuating only UG parsers
and has been applied to parsers using HPSG. Thadsa graphic user interface
for making browsing and the interpretation of réselasier. The system, however,
offers only a limited ability to make inter-systeammparisons.
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8.6 Conclusion

In conclusion | would like to make the following s#yvations. Firstly, there is a
need for a framework that defines the criteria émaluating parsers and that
establishes a coherent set of evaluation metridsna@asures for each criterion.
The evaluation methods should be based either merdubest practices or their
improved versions. New methods and measures shoeldievised for those
criteria for which no suitable methods and measwes currently available.
Secondly, it is necessary to define the interadtietween the different aspects of
parsers’ performance. Since current evaluation austHocus on a single aspect,
namely the preciseness, they are deficient in aoteons of this kind. It is
nevertheless clear that undergeneration, overgemerand robustness, for
example, are tightly connected (this point wasulised in Section 5.1.2). Thirdly,
the greatest challenge in comparative evaluatiadhdsintegration of the level of
detail in parser outputs. It is necessary to ineladmeasure of this kind in the
evaluation framework that is devised. Fourthly, idy@ needed are software tools
for carrying out evaluations — especially the kofdools that offer several types
of evaluation metrics and measures and that alppostiseveral annotation and
output schemes.
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9 FEPa — A Framework for Evaluating Parsers

As described in Chapter 8, existing evaluation mé@shfocus on one single aspect
of parser performance. While each approach to mpgrisas distinctive strengths

and weaknesses and the structure and detail ofrpausputs varies, it becomes
obvious that a single scalar value cannot fullycomprehensively reflect the

quality of a particular parser. It is for this reaghat more sophisticated and fine-
grained methods are needed.

The Framework for Evaluating Parser~EPa) that | describe in this chapter
focuses on intrinsic evaluation and provides usefibrmation for parser
developers. My purpose is to provide a fuller pietaf a parser than other existing
methods are able to do. The goal of FEPa is toigeoa framework for practical
evaluations of parser performance and to definetafsmeasures for evaluating
parsers. FEPa can be used, moreover, for compaangers based on several
criteria.

This chapter is organized in the following way. 8&t 9.1 describes the metrics
and measures applied in the FEPa framework. Se8tdns concerned with the
types of linguistic resources that are neededdaryog out evaluations with such
a framework. Section 9.3 concludes the chapter sathe closing remarks.

9.1 The Framework

An evaluation framework needs to be able to addtes$ollowing five questions:

1. Purpose What is the purpose of the evaluation? Purposthis context
would typically be defined by what the user intertds do with the
evaluation results. One might ask, for example,thérethe results will be
used by parser developers or by NLP system devedopleo are trying to
select a suitable parser.

2. Criteria: What is being measured? Evaluation criteria define set of
characteristics of the system that is being evathlaPARSEVAL, for
example, focuses on the single criterion of prewss.

3. Metrics What are the means that one uses to observestf@pance of a
system in terms of each of the criteria? A metsiai system of related
measures that facilitates the quantification ofeasmg a criterion. The
PARSEVAL metric, for example, is based on a congmariof bracketed
tree structures.
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4. MeasuresHow are the results reported? A measure is theimahich the
results of an evaluation are quantified when onesus specific metric.
Measures can be used for monitoring the progreaspafticular parser and
for comparing system performanc@secision and recall, for example, are
used as the measures of preciseness in PARSEVAL.

5. Materials What kinds of resources (i.e. software tools,guistic
resources) are used for evaluation? PARSEVAL evalus, for example,
are based on a treebank — often the PTB. The EV#loBis usually used
for PARSEVAL evaluations.

9.1.1 Purpose and criteria for parser evaluation

There are two main reasons why parsers need todleaged. The first reason is

that evaluations give parser developers the infaomahey need to guide their

work. There are two separate kinds of developem@ngar writers and parsing

algorithm developers, and they both have particelauation needs. The second
reason is that evaluation provides NLP system dgezt with information about

the relative performances of different parsing esys.

The evaluation criteria in FEPa gpeecisenesscoverage robustnessefficiency
andsubtlety The evaluation process for each of these criwreists of selecting
the resources for evaluation, parsing selecteds texth the parsers to be
evaluated, and performing the calculations that meeded to measure their
performances in terms of a given criterion. Didive metrics and measures are
needed for each criterion. The evaluation critetsed will obviously also affect
the choice of the linguistic resources that willligized. When the results of the
evaluations undertaken in terms of the five critenie combined into performance
profiles for parsers, those parsers can then bepamd from several different
points of view. In the following five sections | Wintroduce each of these criteria
in detail and describe the metrics and measuresifeerving parsers’ performance
in terms of each of them.

9.1.2 Preciseness

Preciseness is the most important evaluation @it parsers: a parser that
cannot produce correct analyses is not much of ea Esstly, a preciseness
evaluation method should measure the parser'sgaeess in assigning syntactic
tags. Secondly, if a parser performs a morpholdginalysis, the preciseness of
morphological tagging should also be measured.dlfhisince the tags cannot be
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correctly assigned if segmentation has failed ptieeiseness of word and sentence
segmentation will also obviously be indirectly asss®. Apart from its ability to
define the preciseness of a parser, this kind @uaion is also useful for
producing error analyses. Detailed information be preciseness of a parser in
assigning certain tags can, for example, be pravide

| concluded on the basis of the results of theyamldescribed in Section 8.1.3.3
that FEPa should apply the following evaluation moets. In D-based evaluation,
LAS and labeled CM should be applied for intringgaluation and for a

comparison of parsers whose tagsets match oneanttAS and CM need to be
used for comparing systems in those cases whepitosthemes do not match.
For PS-based evaluation FEPa uses the LA metrgguse of its many desirable
characteristics described in Chapter 8. D-baselliatian is the preferred type for
comparative evaluation where applicable.

9.1.3 Coverage

The concept otoveragehas two meanings (Prasad & Sarkar 2000). In ttsg fi
place, grammatical coverageefers to a parser’s ability to cope with differen
linguistic phenomenaParsing coverageby contrast, measures the proportion of
naturally occurring, free-text for which a parser able to produce a full,
unfragmented parse. | further divide parsing cogerato categories of genre
coverage based on different types of text suchr@sep newspaper, law, financial,
religious, and so on. This allows one, for examfieneasure the generalizability
of a parsing approach over text genres. | usedimedeneralizabilityto refer to a
parser’s ability to analyze texts from diverse gsnr

The results of grammatical coverage evaluation lwarreported by listing the
types of grammatical phenomena covered and notredveThis kind of
information can be especially useful for grammaveligpers. Parsing coverage
can be measured as the percentage of input seatiratea parser is able to assign
a complete, unfragmented parsdlo annotated text is needed for performing this
type of evaluation. While results obtained in tiway are comparable across
parsers, the detail in each parser output shoutdke into consideration in order
to assure the fairness in this type of evaluation.

™ Note that a more strict definition of parsing cage (namely, the proportion of sentences
covered correctly) is equivalent to sentence-lgvetiseness evaluation.
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On the one hand, one can argue that coverage almmsitutes a rather weak
measure of parser performance. An obvious probleah drises from measuring
coverage alone is that a parser that returns uhetbi@nd flat analyses for every
sentence will easily obtain high coverage scordsgreas a parser that outputs
detailed analyses will suffer in covering all theput sentences. Another
consideration is that one may regard precisenedscamerage as conflicting
requirements for a parser. While increasing theipemess of the grammar often
causes its coverage to decrease, the addition cé sanstraints to the grammar
will cause some of the sentences to be rejected iétleey are acceptable to users
of the language. In contrast, a loosening of thastaints will allow more
sentences be parsed. While this will increase @meerit can simultaneously cause
overgeneration, problems with disambiguation andreksed preciseness (see
Sections 5.1.2 and 5.1.3).

On the other hand, the points that | have raisesd@bonfirm that there is a strong
relationship between coverage and preciseness.iMpiges that coverage can be
used as an indirect measure of preciseness andagjeability. The aim of
syntactic parsers is to analyze whole sentences rfan just fragments such as
constituents/D links) precisely. The connectionaeetn coverage and preciseness
Is clear in the case of sentence-level precisemeslsiations® One may define this
connection by saying that a sentence that canné@llyeanalyzed cannot have a
complete match with the correct structure. Coverageconsequently be used an
indirect measure of preciseness and can also, Xample, be utilized for
measuring the generalizability of a parser. Preeise and subtlety, however, have
to be taken into consideration while performinghsao evaluation.

9.1.4 Robustness

A robust parser is one that is able to recover fr@mous kinds of exceptional
inputs while parsing — and not crash in the pracé@ssobust parser is able to
provide a complete and correct analysis for a naigyt sentence. This is the
underlying assumption of the two existing robussnesvaluation methods
introduced in Chapter 8. A robust parser, morecsieould perform in a coherent
way when faced with increasing levels of noise. ccept the terminology
suggested by Biggeet al. (2003, 2005) in this matter, and refer to thisparty as
degradation.Secondly, robustness is connectedttbility. Stability means that a
system will not crash while attempting to parsesginputs.

> The CM measure, for example, uses the percenfaggntences whose unlabeled D structure is
completely correct to evaluate the sentence-lereglipeness.
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FEPa makes the simplifying assumption, as do Begeat (2005), that a parser is
robust if it is able to produce a similar analyfsisa correct sentence and a noisy
version of the same senteried.he assumption behind this is that if a parser is
able to do this, it will also be able to performaimobust way when it is confronted
by noisy inputs. In order to measure the degradatiba parser, one needs a
corpus of parallel correct and erroneous senter@es.can measure the stability
of a parser by observing the number of times thadraer fails to parse or crashes
while attempting to parse input sentences.

Robustness evaluations are carried out in FEPherdllowing way. Firstly, the
correct sentences (QSare parsed. Secondly, the noisy sentences),(N&ch
representing an error-leve] are parsed. Thirdly, the analyses produced foh ea
sentence in GSand its corresponding noisy sentence in,Ne&Be compared.
Finally, the performance is measured by using twgtirttt evaluation measures.
The first evaluation measure is the percentageenfesices for which a parser
produced exactly the same structure for both tlieecband noisy input sentence.
| refer to this measure as anlabeled robustness sco(gR score). The second
measureJabeled robustness scorélLR score), is stricter: it accepts an analysis
only if the two structures are the same and ifadldition, the labels on syntactic
categories (GRs, dependencies) mé&tdihe UR and LR scores are defined in the
following way:

Definition 9-1. The structure and labels of a syntactic analysis.
Let X be an analysis for sentencsethat consists of asequence of
grammatical structures IX (i.e. bracket pairs in a PS tree or D links in a D
tree) and a label (i.e. tag) for each
1. StructuréX) denotes the sequence of grammatical structur¥s in
2. LabelgX) denotes the sequence of labels assigned toxeaxh

"% Since some parsers are designed to check granafitgtiof input sentences, their returning of a
“failure to parse” in response to an ungrammatgsitence is (for them) a correct result. This
metric is not applicable to such systems. In sudes, one could use the proportion of ill-formed
sentences that the parser accepts as a measotausfiress. If one definggammar checketo be

a parser that locates errors in input sentencecamdcts them, robustness can be defined as the
proportion of noisy sentences that the system s &b correct so that it matches the original
sentence, and in addition, is able to produce separthe corrected sentence.

" For example, the introduction of a single misspglinto a sentence often results in the type of
the D link associated with the misspelled word ¢caliered.
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Definition 9-2. Unlabeled and labeled similarity of two analyses.
Let X andY be syntactic analyses.
1. Unlabeled similarityis defined as

0, structurg X) # structurgY)

1, structurg X) = structurgY)

l.e. the two analyses match in unlabeled similafigvery structure in the
analyses is similar.

2. Labeled similarityis defined as

1, structurg X) = structurgY) andlabelq x) = labelq y)
0,otherwise '

ULSim(X,Y):{

LSim(X,Y):{

l.e. the two analyses match in labeled similaritythieir structures are
similar and if, in addition, the labels assigne@aezh structure match.

Definition 9-3. Unlabeled and labeled robustness score.
Let CS=s,s,,...,S) be the sequence of correct sentences. Thes) By the
sequence of analyses assigned to these sentencgsarbgr P. Let
NS=ryr,,...,r,) denote the sequence of noisy sentences thatspoind to
the correct sentenc&S P(NS is the set of analyses assigned by a parser
to sentenceBlS

n
_Z ULSIm(P(s),P(5))
The UR score is defined a$R ==L

n

n
2 LSim(P(s).P(r))
The LR score is defined 4R ==L

n

It is quite clear that as the level of noise initaguts increases, the performance of
a system degrades correspondingly. The extent tohvthis occurs, referred to as
degradation, can be measured by increasing the ewaiflerrors in the noisy input
sentences and then observing the effect that tllibave on its performance.

9.1.5 Efficiency

The FEPa framework is restricted to the type oiceiicy defined in Section
8.4.4, namely, the one based on the measuremenpafser’s practical efficiency
in terms of the time and space spent in parsingegific test set. This kind of
efficiency is the most easily measurable and coatgarof the five criteria in
FEPa. In practical terms, the efficiency of a parse be measured by observing
the time and space it takes for a parser to anaysantence.

174



The most straightforward method for empirically lenadéing the efficiency of a
parser (described in detail in Chapter 8) is tmrédhe time that the parser takes
to parse a set of test sentences. This is exadigt WEPa does. Efficiency
evaluations are carried out in the following waysty, the same corpus of text is
parsed with the parsers that are being evaluatedthen same computer
environment. Secondly, one records the parse tforesach of the parsers. When
one uses the same input texts and identical magland environments, one can
compare the parsers’ performances. The efficiergyrds thus obtained can be
analyzed in terms of sentence length to providegimsnto the time and space
complexity of the parser. A parser’s efficiencyanalyzing ill-formed input can
also offer insight into the way in which the romesds mechanisms of the system
are implemented.

9.1.6 Subtlety

| use the ternmsubtlety® in reference to the level of detail in a parsendpaot.
Subtlety refers to both the levels of descriptinrthe output (syntax, semantics,
etc.) as well as to the complexity of the desaviptior each level. Some parsers
leave some of the ambiguities in the output unkesbbecause they either return
multiple analyses for an input sentence or becabsy leave some words
underspecifiedWhile the amount of desired detail depends on th@iaation in
which a parser is to be applied, ambiguity and wspEification are regarded as
negative properties in a parser.

Subtlety has two uses in evaluation. In earliecusion (Chapter 3), | noted that
varying levels of detail in parser output are neefite different NLP tasks. NLP
developers who are searching for a suitable pdaetheir application need
information about the type and richness of syntadascription they will get in
parser outputs. Subtlety can be applied, moreosasr,a factor for the fair
measurement and therefore comparison of systemgith@duce different levels of
richness in their outputs. It is obvious that tkegel of detail in the analysis is
proportionate to the number of decisions that aaderduring parsing. This makes
it more difficult and time-consuming to assign areot analysis which is rich in

"8 | have avoided using the term “delicacy” — coitbgdAtwell (1996) — because it might suggest
fragility and therefore be misunderstood asegativeproperty of a parser.

" If one were to restrict oneself to considering ehparsers that use only syntactic information (as
most of the existing parsers do), one could asbkatta parseshouldleave pending the types of
ambiguity (for example, PP attachment (see Sed&itrl)) that it cannot resolve reliably and that
it should leave such decisions to later processiages.
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information. One should therefore use the subtétihe outputs as a factor in the
comparison of parsers in order to make such comsmasi fairer. The lack of
sensitivity to subtlety is one of the main defi@gms in existing methods of
comparative evaluation.

The subtlety of an output scheme is measured inaFiEPthe following way.
Firstly, the evaluator needs to consider the amotidietail in the output scheme.
The amount of detail can either be defined manuzfligr an examination of the
parser’s documentation or automatically by scraing the complexity of the
tagset. The subtlety measures for describing thailda parser output in FEPa
are: the number of POS tags, the types of outmdymed (PS, D, semantics, etc.)
and the size of the syntactic tagset. Secondlylethed of ambiguity remaining in
the output is measured by observing the averagdeuof analyses per sentence
and the proportion of sentences that are left witihre than one analysis in the
output. Thirdly, the underspecification remainimgthe outputs is measured from
the output. Underspecification is measured by tlopqrtion of words that are left
underspecified. This information is finally combthanto a subtlety profile of the
parser.

9.1.7 Conclusion

While preciseness and coverage are essentialiariter grammar developers,
robustness and efficiency metrics are needed mbsgtiyne developers of parsing
algorithms. Subtlety is useful both for those whi@ anaking inter-system

comparisons and for NLP system developers whocaidrig for a parser that will

suit their needs. The criteria, metrics and measurd-EPa and their prospective
users are summarized in Table 9-1 below. Figureilfsdtrates the interactions
between the criteria.
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Table 9-1. FEPa evaluation criteria, metrics and measures. cbhemn “Users”
specifies the groups of users to which each ooitemight be most useful. KEY:
G = grammar developers; A = parsing algorithm depets; P = NLP
practitioners

Criterion | Sub-criterion Metrics Measures Users
Morphological | Comparing parser outpufThe percentage of corre :tG A
tagging and correctly tagged text tags '
Preciseness D-based UAS, LAS, CM, labeled
. . CM
Syntactic parsing All

Precision, recall, f-score|
sentence-level measure
Grammatical | Comparing parser outputGrammatical constructiop

PS-based (LA metric)

coverage and a test suite types covered G
_ Observing the proportion The percentage of
Parsing coverageof analyzed sentences pn sentences covered All
Coverage unannotated texts
Observing the proportion
Genre coverage of analyzed sentences pn The percentage of All

unannotated texts from sentences covered
several genres

Stability Observing the number oty . percentage of failurgs A
crashes
Robustness Comparing the outputs Unlabeled and labeled
Degradation* | for correct and erroneous percentage of similar | A, G
sentences analyses
- Time Parsg time on a single Minutes/seconds A P
Efficiency machine & environment
Space Memory consumptio KBs/MBs A P
POS Observ!ng the output / The number of tags P
Level of consulting the manual
detail | Syn- Observ!ng the output / The number of tags =
tax | consulting the manual
Subtlety The number of
Underspecification Observing the output| underspecified words per All
sentence

The number of analyses All
per sentence
*Degradation can be further divided on the basisheftype of noise in the inputs (grammatical

mistakes, misspellings).

Ambiguity Observing the output
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May increase
computational compl

Increase

May decrease by

increasing|overgeneration
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Precisene:

Efficiency connected

by making parsing

) May decrease
May increase

computational complexity ay decrease by making parsing

decisions more complex
Subtlety

Figure 9-1. Connection between the properties of parsers.

Some of the connecting lines in Figure 9-1 needhérr explanation. The
discussion above (see Section 9.1.3) emphasizeshétra is a strong connection
between the coverage and preciseness of a parsepuFpose of syntactic parsers
is to analyze whole sentences rather than justrfesgs (constituents/D links)
precisely. The connection between coverage andsereess is clear in the case of
sentence level evaluation measures such as CMntange that cannot be fully
analyzed cannot make a complete match with theecbrstructure in the
evaluation resource.

The connection between preciseness and coveratyeoisvay. Preciseness and
coverage can also be seen as conflicting requiresiena parser. Increasing the
preciseness of the grammar often causes its covdrmaglecrease; adding more
constraints to the grammar causes sentences tejéeed even when they are
acceptable to users of the language. While theelung of constraints allows

more sentences to be parsed (and therefore insreaserage), it can at the same
time easily cause overgeneration, problems witlardisguation and decreased
preciseness.

The effect of subtlety on preciseness and coveilagevo-fold. Firstly, the
provision of detailed analyses makes it more diffito cover all input sentences.
Conversely, it is easier to achieve a high coveegkpreciseness if only shallow
analyses are provided. Secondly, a high performan@asier to achieve when
parses contain underspecification and when amipgugire left unresolved.

There is an important connection between robustmessiseness and coverage. If

robustness is achieved by adding new rules to thenmar and/or relaxing the
constraints, the coverage of the parser incredags.it is more than likely that
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such a parser will suffer from overgeneration amddpce large numbers of
candidate parses for every sentence, includingaumgratical sentences. This, in
turn, would diminish the preciseness of the systddobustness may also
compromise the efficiency of a parser because tabas mechanisms often
generate more processing and so overload a systemmgutational capacity.

9.2 Linguistic Resources for FEPa

It is best for an evaluation to be performed byngdiifferent kinds of linguistic
resource: a treebank, a test suite, and a corpusgrimmatical sentences. The
resources should also preferably consist of texdm fdiverse text genres. Such
resources, however, do not currently exist for &mguage or parser, and the
evaluations have to be carried out with resourieaslack exhaustiveness.

Along with evaluation of grammatical coverage, Beness evaluation makes the
greatest demands on the annotation of the evaluatsources. As for the
resources used for preciseness evaluation, it batdble whether the resources
should be tailored towards linguistically interagtisentences, which are often rare
in running text, or more commonly occurring cases.

All the above-mentioned types of resources are Igquseful for measuring

efficiency, stability and subtlety. While test-sithased evaluation is more
suitable for measuring grammatical coverage, evalnathat is based on a
treebank or unannotated texts is better suitedef@uating parsing coverage.
Measuring grammatical coverage calls for a tegesni which items are marked
with the grammatical phenomena that they contaiasd and Sarkar (2000) point
out that the difference between the two conceptscmferage can also be
approached from the points of view of competencd performance that |

described in Section 6.1.4.3. This observation lmarunderstood in terms of the
type of evaluation resources that are needed. Geditath coverage, or the
proportion of linguistic phenomena that a parser ftandle correctly, depends on
competence and is better measured by a test-sastrbevaluation. Parsing
coverage, the proportion of sentences from a nlijfuwvecurring free text a parser
is capable of parsing correctly, depends on théopeaance of the system, and is
better captured by treebank-based methods or dialgacarried out with the use
of unannotated texts.

An annotated evaluation resource would be needetktmsure the robustness of a
parser against human judgments. However, this woedgire the annotation of
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noisy sentences and their correct counterpartsfarmat that is compatible with
the output formats of all the parsers that needbéo evaluated. In such
circumstances it is probable that the resource avbal/e to be annotated in terms
of more than one annotation scheme. This wouldrbermrmous task. Assuring
consistency between the annotations would be andiiffeculty inherent in this
approach. Because of such complications, robustaeskiations in FEPa are
performed on unannotated texts. In addition to stiess evaluation, a collection
of ungrammatical sentences can be applied for miegsthe performance of a
grammar-checking parser. Table 9-2 summarizes teeuskion on linguistic
resources for evaluation.

Table 9-2. Types of linguistic resources most suitable forleang each FEPa
criteria.

Criterion | Sub-criterion Material
Morphological
. P . 9 Corpus, treebank
Preciseness tagging
Syntactic parsing Treebank
Grammatical .
Test suite
coverage
Coverage Parsing coverage Unannotated texts

Unannotated texts, severa

Genre coverage
text genres, treebank

Stability All
Robustness C f i
Degradation* orpus of ungrammatica
sentences
Efficiency Time Al
Space All
POS All
Synt. All
Subtlety yn ax i
Underspecification All
Ambiguity All

*Can be further divided on the basis of the typaafe in the inputs (viz. grammatical mistakes,
misspellings).

9.3 Comparative Evaluation in FEPa

The FEPa framework does not provide direct measofreslative preciseness of
parsing systems working in different formalisms. RAwill point out below, it
remains debatable whether such an approach idkeadi all. FEPa nevertheless
offers a common ground for measuring and reprasgmnine performance of
parsers according to several dimensions and thosides a way for the
comparison of their strengths and weaknesses.
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| concluded, on the basis of my analysis and dsoansin Chapter 6 and 8 of the
problems generated by comparative parser evaludtadnit is unrealistic to expect

to be able completely to harmonize the outputs Ibparsers by mapping, an

hierarchically organized tagset or by any other msear resource available for
comparative evaluation. Only the dimensions commocall parsers (such as POS
tagsets, nonterminal/D labels) can be comparecattireand the variety of detail

in the output of a parser cannot be taken into idenstion when one is making
direct comparisons. Many parsers do not agree abart such low-level tasks as
segmentation or basic word classes, let alone syni@description. For this reason,
metrics such as PARSEVAL that try to directly comgdhe preciseness of
different types of parsers always need to absteacdy from parser-specific

information.

Santos (2003), among others, came to the sameusimt! Black (1998) is of the

same opinion when he states that it may never Bsilfle to compare all parsers
of any given language in a uniform way. He sugg#sas, instead of comparing

parsers across grammar formalisms and parsing agpes using coarse-grained
scores based on dubious technical compromises,ai@i could be carried out
by using highly accurate methods within the frameéwof the parser to be

evaluated.

Because of these considerations, FEPa does nataiimectly comparing parsers
that are based on different output formats, buteraat facilitating comparative
evaluations by applying the subtlety measures. risgethis is not, however, to
claim (as has already been discussed in Chaptansl @) that annotation schemes
that support comparative evaluation shoutd be developed. Linguistic resources
with well-defined annotation schemes that can beped into different parser
output schemes are one of the most important coergerof successful evaluation
practices. For parsers for which more direct methofl comparing relative
performances are available (because they use the ea highly similar output
formats or have a parallel treebank), such measoaes be incorporated in
evaluation to provide more direct measures of inedgtarser performance.

The evaluation scores can be made more comparabEERa by using the subtlety
measures. This method takes into account the Eveeétail in a parser’s output
and the possible ambiguity and underspecificatiet tremains in the parser’s
output. Thus, for example, the overall precisersesse PR;) of parserp can be
formulated according to Equation (9-1).
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precisenes, * detaily,

PRy = ——— P (9-1)
ambiguity, * underspedicationy,

Parsers that produce detailed analyses shoulddoedssl an advantage over those
that produce undetailed parses. For example, thed & detail in the syntactic
description of a D-based parser could be definetherbasis of the number of D
link types in its tagset. The factors abiguity, andunderpecificatiop are used
respectively to account for remaining ambiguity amtlerspecification in the
output. If the parser returns, say 1.05 syntacigstper word, it should be
penalized when it is compared to a parser thatywesl only a single tag per
word® Similarly, a parser that leaves part of the words structures
underspecified should be penalized in a comparisa parser that assigns a tag
for each word.

Another mechanism that FEPa uses to facilitate eovatjye evaluations and
adaptability to evaluators’ needs is the use ofofacfor emphasizing specific
criteria. If a particular evaluator regards efffisg as a crucial component, she can
emphasize it when making comparisons between pgassistems. For example, if
preciseness is seen as the most important critesiorevaluator can give it extra
weight in parser comparisons.

9.4 Conclusion

In this chapter, | described in detail a framewfankcarrying out empirical parser

evaluations and explained how such evaluation cbelgerformed. The purpose
of the method thus offered is to provide a basiscftaracterizing how well and

efficiently a parser is able to analyze syntaxisbaonsidered the ways in which
this model can be utilized to compare the perforceanf different parsing systems
— without the need for using compromising directnparison metrics. | also

outlined a method in Section 9.3 for using FEPmé&ke comparative evaluations.
| utilize this method in Chapter 10 to compare tparsers that use a grammar
based on the same formalism and also to compamensabased on different

grammar formalisms.

8 Determining the level of ambiguity for a syntactinalysis is a rather complicated issue. In

order to distinguish between overgeneration anf] ird@erent ambiguity, the treebank that is used

for evaluation should include several parses fatesees that cannot be disambiguated purely on
the basis of syntactic information.
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The main advantage of this framework over exisgwgluation methods is that
FEPa adopts a broad approach to parser evaluatompravides a set of criteria
for defining the quality of a parser. FEPa alsovpgtes a set of measures for
carrying out evaluations according to each of tiiterca.

The subtlety factors for comparative evaluationEiquation 9-1 are admittedly
difficult to define and are therefore open to qioestlf, however, one wants to
compare diverse parsing systems, one has to takaasount the difference in the
complexity of the decisions that a parser has tkem@ order to succeed.
Although one has to make compromises when defisirglety factors, one can
avoid thereby the main problem associated withngite to compare parser
outputs directly: no compromises needs to be madie evaluation itself. A
parser output can be compared to an evaluationresavith a similar annotation
scheme, and there is no need to abstract awaythendifferences in the outputs
of the parsers under consideration. | will descmbg practical experiments in
which | compare parsers by using FEPa in Sectioni aDthe next chapter.

183



184



IV EVALUATIONS

10 FEPa in Use

This chapter describes a series of experimentsudeathe FEPa. The parsers that
were used in the experiments are described in@etf.1. Section 10.2 analyzes
the preciseness results reported in the literdturéhe six selected parsers. The
experiments themselves are described in the fatigwour sections: coverage
(Section 10.3), robustness (Section 10.4), effmye(Bection 10.5), and subtlety
(Section 10.6). The parsers are then comparedatioc®el0.7 on the basis of the
data obtained from these experiments. Section @¢6r@ludes with the findings
and analyzes the amendments that will be madest&EiPa framework as a result
of the information obtained from these experiments.

10.1 The parsers

The six parsers listed in Table 10-1 below wereced for the evaluation. The
parsers are based on five different grammar fosmadi the four state-of-the-art
parsers are based on CCG, PCFG and LG; one ofldee parsers uses a DG
formalism, and the remaining one uses its own pagecific grammar
formalism.
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Table 10-1 The parsers in this experiment. The two “grammaws indicate the
grammar formalism on which the grammar used bypidweser is based, and the
type of the grammar. The two “output” rows indicéite type of output used for
evaluation in this experiment (Type 1), and theeotheme for those parsers that
support more than one output scheme (Typ&E): A= automatically induced;
M= manually constructed.

Apple Pie Link
PP C&C Grammar | MINI- Stanford
Parser StatCCG***
(APP) Parser Parser PAR | Parser (SP)
(LGP)
. 0.96, 23 k limi
Version v.59,4 \Iilovember 4.1b, Januar li/nerZic())Vr:n v.15.1,30 F:tre::s:garli
April 1997 2005 "I May 2006 j
pr 2006 1998 | January 2004
semi
g Formalism context- cca LG DG Unlexicalized cca
% sensitive*, PCFG**
o probabilistic
Type A (PTB) A (PTB) M M A (PTB) A (PTB)
probabilistic finciole
probabilistic| log-liner, . P P .. . |probabilistic
. dynamic based, | probabilistic, )
Algorithm | bottom-up,| packed rogrammindgistributed CYK generative,
chart chart, prog 1 CYK
chart
supertagger
= | Typel PS, 20 GR, 48 LG, 107| D, 27+20 GR, 38 cce
3 yp : ' ’ S : derivations**+*
5
o
Type 2 - PAS PS PS PS PAS
Klein &
. Clark & | Sleator & . Manning .
Sekine Lin 2003). d Hockenmaig
Reference (1998) Curran | Temperley (1098) ( ), de (2003)
(2004) (1991) Marneffeet
al. (2006)

*Sekine (1998) states that the grammar is semiectisensitive, but leaves this grammar class
undefined. **SP supports both unlexicalized anddatized grammars. | used the unlexicalized
grammar bundled with the parser in the experiméttBecause StatCCG does not perform POS
tagging, | used the MXPOST tagger (Ratnaparki 1966)reprocess the texts before inputting
them to StatCCG. ***StatCCG'’s lexical category smintains approximately 1,200 types, and
there are four atomic types in the syntactic dpsoni.

While | wanted to include parsers that use diffefenrmalisms, | also wanted to
include two CCG parsers in order to find out howllw&Pa is capable of
comparing parsers that use the same formalismosechiwo parsers, APP and
MINIPAR, that were developed in the 1990s, and fetate-of-the-art parsers, for
this evaluation. My inclusion of older generatioystems was motivated by my
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desire to evaluate the level of development inipgrsystems over the last decade.
One of these older parsers is a PS parser (APP)tlamdother a D parser
(MINIPAR).

Language processing applications that involve pgreiust set practical limits on
resource consumption. In order to create similad agual conditions for all
parsers throughout the evaluation, | limited the aBmemory to the same value
for all the parsers and experiments. | accordirsgiected 650 MB as the limit
because it is a realistic setting for free workingmory in an average personal
computer with 1GB of memor$t In addition, parsing in the order of hundreds of
thousands of sentences with six parsers consuraasahds of hours of processor
time. | was therefore obliged to limit memory comgtion so that | could run the
experiments in parallel on a server and complegtlall within a reasonable
period of time.

10.2 Preciseness

For preciseness evaluation, | used the resultsrtepan the literature. There are
several reasons for this. Firstly, these resulteevawailable for all the evaluated
parsers. Secondly, | did not have access to the Bi@| would have needed such
access for carrying out further experiments. Tatll@2 summarizes the

preciseness figures for the six parsers.

81| used several methods (depending on the parseeooed) for limiting memory usage. In the
Java-based parsers, | set the limit accordingdcire of the Java heap. With the C&C parser, for
example, setting values at 1,250,000 to 1,300,@®@CtHfe maxsupercats parameter limited the
memory usage to approximately 650 MB. In APP, thet Ifor the chart size was set at compile
time.
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Table 10-2 Preciseness results reported in the literatukg/:KP = precision, R =
recall; F = F-score.

Gold . Results
Parser Source Metric
standard P R F
. Unlabeled
APP Sekine (1998) PTB PARSEVAL 71.1 70.3 70.7
Clark & Curran Labeled
C&C PTB 84.8 84.5 84.6*
(2004a) PARSEVAL
Molla &
LGP Hutchinson SUSANNE | GR-based** 54.6 43.7 48.5
(2003)
MINIPAR Sampson (1995) SUSANNE | Lin’s D-based 88.0 80.0 83.8
Klein & Labeled
SP PTB 86.3 85.1 85.7
Manning (2003 PARSEVAL
Hockenmaier Labeled
StatCCG PTB 83.7 84.2 | 84.0%**
a (2003) PARSEVAL

*90.7 for unlabeled F-score. **Only four GR relai®(subj, obj, xcomb, mod) were considered in
the evaluation. ***91.2 for unlabeled F-score (®l& Curran 2004a). F-score 91.3 and 83.3 for
unlabeled and labeled word-word dependencies iR#& output (Hockenmaier 2003).

A direct comparison of the results reported in €ab0-2 would be unreliable.
While four of the parser were evaluated on the PFiB, SUSANNE corpus was
used for evaluating the two others. Although th@eaneasures were used in the
SUSANNE-based evaluations, the results were cakdilwith different metrics.
Even if the parsers had been evaluated on the dataeand the same metrics had
been applied, the figures would not take into tbeoant the differences in the
subtlety of the parsers’ outputs. A CCG parsereicample, needs to distinguish
between complements and adjuncts and to identifp&Dn order to get a
derivation right. Most PCFG parsers, such as Smalameed to predict these in
order to do well on labeled PARSEVAL measures beedbe LDDs are ignored
by these parsers.

One may draw the following conclusions about periance of the parsers on the
basis of the preciseness resétilts.
1. SP performs best. Its labeled PARSEVAL F-scorehenRTB data is 85.7.
This is slightly higher than those of the two CC&gers?

8 This ranking does not address the differencekdrstibtlety of the parser’s outputs. See Section
10.6 for preciseness evaluation that considerdetybt

8 Hockenmaier (2003) points out two sources of dlifty when comparing CCG preciseness

figures to parsers using other grammar formalishine first is that since CCG trees use a fine-

grained category set, PARSEVAL scores cannot bepeoad. The second is that the grammar in
StatCCG has over 1,200 lexical category types. F&®&es, however, address both kinds of

difference by using subtlety measures.
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2. C&C, StatCCG and MINIPAR form the second group. rielable ranking
can be made between these three parsers on tiseob#se reported scores.
Depending on the test settings, either C&C or ST&ds more precise
than the othet. While MINIPAR achieved an F-score of 83.8 in D
evaluation on the SUSANNE, StatCCG scored 83.3 ameleéd PAS
evaluation. This indicates a comparable preciseness

3. APP is the second-worst performer. If one compédrés the unlabeled
PARSEVAL evaluations of C&C and StatCCG, the parssored an F-
score which is over 20 percentage points lower thanF-scores of these
two parsers. Although the evaluations were performath different
measures on different test sets, it is reasonaldstume that APP is more
precise than LGP because it achieved an F-scoteigh@gher by 22.2
percentage points than that achieved by LGP.

4. LGP performs worst. Although the reported evaluatised only four GR
types, the F-score is more than 30 percentage otomater than the two
parsers for which there are comparable evaluatiesults available:
MINIPAR’s F-score on labeled D-based evaluation 838 and CCG'’s F-
score on labeled PAS dependencies was 83.3.

10.3 Coverage

In this section | describe a set of parsing coveragaluations. In addition to
examining overall parsing coverage, | will also sider the genre coverage of the
evaluated parsers. This will allow me to make judgta about the generalizability
of the parsers. The three questions for which ghbanswers were as follows:

* What is the parsing coverage of state-of-the-aidgra?

* How does the text genre affect the parsing covérage

* How much progress has been made on parsing covierdge last decade?

10.3.1 Previous work

This experiment is the only one reported in therditure that compares the
coverage of a set of parsers for English. The stuthat critically examine the
genre dependency of parsers have all come to the sasurprising conclusion
that the text genre has an effect on parser pediocen Clegg and Shepherd
(2005) conducted experiments on biomedical datadiyg theGENIA treebank

8 In the experiments reported by Clark and Currdd042), the model was slightly better than
Hockenmaier’s. But Hockenmaier (2003) comparedpiréormance of the two parsers and found
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(GENIA Project 2006). They point out that biomedid&nglish is distinctly
different from newspaper English, and that it migidteed be characterized as a
sub-language (Friedmast al 2002). Laakso (2005) reports experiments on the
CHILDES corpus that consists of transcriptions @hwersations between parents
and their children. Mazzei and Lombardo (2004) repmss-training experiments
in Italian on newspaper and civil law texts, in aflhan LTAG, CFG and DG were
trained on one data set and tested on the othezn\Wiey did this, they observed a
dramatic drop of usually around 10 to 30 percentamets in the parsing coverage
of all the three grammars.

It has been found out that the performance of daibiistic parser degrades —
often to a considerable extent — when it parsets te@m genres other than those
that were used for training the model. Sekine (}J@®&erved the following order
of performance from best to worse between theitrgiand testing data: the same
genre, the same cla¥sall genres, another class, and other genres. Seltso
found out that even a significant increase in tize sf the training data from a
genre other than the one being parsed often hasffaot on the performance.
Gildea (2001) reports similar findings.

One of the rare studies that reflects upon theiplesseasons for the drop in
performance when a parser is applied to a gener titlan the one intended when
developing the system, is reported by Baldetral (2004). The authors evaluated
the performance of the manually constructed ERG Gllg&ammar (Copestake &
Flickinger 2000) on 20,000 sentences from Brtish National Corpus The
grammar was created on the basis of corpus ofedditacted from informal genres
such as conversations about schedules and e-rhaillg a-commerce. Baldwiet

al. (2004) restricted the experiment to sentence$ wifull lexical span(i.e.
sentences that only contain words included in ¢éixécbn). ERG had a full lexical
span for 32% of the sentences in the test data.pah&er was able to generate a
parse for 57% of these. A total of 83% of the asasywere correct. The parser
was thus able correctly to parse 47.3% of the seatewith full lexical span. This
represented 15.1% of all the sentences. Thesdg@sdicated that an extension of
the grammatical coverage of the grammar increades doverage on the
unparsable sentences with a full lexical span (b8#ll the sentences). However,
extending the lexical coverage raises the coveoagie sentences without a full
lexical span (68% of the whole test set). Theydfwe came to the conclusion

out that when they were trained on the same datapérser slightly outperformed the parser of
Clarket al (2002) with 90.5% unlabeled precision and 91.&&al.
8 In Sekine’s experiment, class refers to the diitm between fiction and non-fiction texts.
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that lexical expansion should be the first step tie process of parser
enhancement.

10.3.2 Test settings

| performed a parsing coverage evaluation by usimgnnotated texts drawn from
MGTS. The design of the test settings was guidedth®y three questions
enumerated above. | answered the first questiopalosing a document collection
that contained hundreds of thousands of senterésbg then measuring the
coverage of the parsers on the data. Because M&divided into genre-specific
subsets, this allowed to measure the effects ofegeariance and so provide an
answer to the second research question.

One might argue on the one hand that coverage édameather weak measure of
a parser’s performance and therefore of its geizatality. An obvious problem
inherent in the measurement of coverage aloneaisalparser, such as APP, that
returns undetailed and flat analyses will easilgdoice high coverage, whereas a
parser (such as C&C and StatCCG) that outputslddtanalyses will be unable to
cover all the input sentences.

On the other hand, as | pointed out in Section69.i2.is clear that coverage and
preciseness are connected. The connection betwmarage and preciseness is
clear in the case of sentence-level evaluation ureasa sentence that cannot be
fully analyzed cannot have a complete match with tlrrect structure in the
evaluation resource. | consequently argue thatregeecan be used an indirect
measure of generalizability. It sets the upper ldoflam performance on sentence-
level measures such as the CM and LA sentence meeasn evaluation should
nevertheless always be accompanied by data abeytrétiseness of the parser
and the level of detail in its output.

The most important decision about parsing coveesgduation is how to make the
distinction between a covered and an uncovereceseeat Since it was also my
intention to collect data about the proportion ehtences for which the parsers
generated a fragmented analysis, | had to defiheratriteria for this purpose.

These criteria have to be defined separately foh gearser. | set out the criteria
that | used in this experiment in Table 10-3.
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Table 10-3 The criteria for defining whether a sentence wagoed.

Criteria
Parser
Covered sentences Fragmented analyses
A single S non-terminal is found which L
APP g . More than one S non-terminal is foung.
dominates the whole sentence.
After projecting each GR to a graph that
The parser marks the sentence as fully proJ 9 grap
C&C allows cycles, more than one connected
parsed. .
set is found.
LGP At least one linkage without null links |No linkage is found that does not contain
found. null links.
A single root is found for the sentenge
thatis connected to all the words in t“'?'he analysis contains U tags that indigate
MINIPAR| sentence through a path. The root is, in y . g
" . . unrecognized structures.
addition, assigned with a phrase/sentence
type marker.
After projecting each GR to a graph that
SP allows cycles, only one connected sef isMore than one connected set is foung.
found.
StatCCG StatCCG does not mark the sentence & sentence-level non-terminal is found
“failed” or “too long” in its output. in the CCG derivations output.

| implemented a set of tools in Java to record staistics from the parsers’
outputs, and also devised experiment runner tootssbme of the parsers.
Whenever a parser crashed, these tools restareevtdiuation process from the
following sentence. The results are reported bgrdeihing an overall percentage
of the sentences covered over all the text gemédsalso by determining separate
results for each genre.

10.3.3 Results

Table 10-4 summarizes the results of the experimiére parsing coverage of the
parsers for each of the sub-corpora in MGTS is ntepdoseparately. Total figures
are given on parser and sub-corpus level. The gerability of the parsers was
measured by comparing their coverage on the newspggnre to their coverage
on the lowest-scoring genre:

Generalizdility =1-

MIN (Coveragéall

genred) — Coveragénewspape)

Cov
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Table 10-4.Comparison of the parsing results for each subtoand parser. The
column labeled “Average” gives the average of theecage figures for the six
genres weighted according to the number of senseimnceach genre. The column
labeled “Generalizability” shows the percentagette coverage in the lowest-
scoring genre compared to the coverage in the regyesmenre.

— Q

Q s c c

T S | s | S| 8|8 |g|s2
Parser o @ = o =) 3 S123

= k) = c ) e S | &N

(@) @ L ®) o o I O =

z - z @ ©
APP 99.8 98.9 97.5 96.4 93.1 98.9 98.593.3
C&C 87.8 84.9 86.0 81.2 75.5 84.§ 85.086.0
LGP 74.1 38.7 38.4 42.1 15.0 49.4 50.220.2

MINIPAR 88.0 68.8 68.0 71.5 34.4 70.1  72.139.1

SpP* 99.8 995 98.0 98.3 98.9 98.5 99.298.2
StatCCG 96.7 85.2 87.7 86.7 94.0 83.3 89.186.1
Average 91.0 79.3 79.3 79.4 68.5 80.8 82.470.5
*SP experienced a coverage drop of tens of pergengaints in comparison to other genres on the
Hansard dataset. This was caused mainly by a siegie: the dataset contained a number of
sentences that contained only a single word — seegesuch as “Nay.”, “Agreed.”, “No.” and so
on. Because no root node is assigned to D andlys&P, the parser did not return any analysis for
such sentences. These sentences were omitted frereviluation. When the sentences were
included, the coverage on legislation data was%9.5

Table 10-5 breaks down the coverage figures tocatdi the percentage of the
analyses that failed or were incomplete, and thebar of occasions on which the
parser crashed or terminated during the process.

Table 10-5.Breakdown of the failures. All the results areased as a percentage
of the total number of sentences (826,485). Tharool labeled “Incomplete”
reports the proportion of sentences that were gdosé the analysis was not full.
The column labeled “Failed” indicates those casesvhich the parser was not
able to return a parse. The column labeled “Tertetliashows the proportion of
the cases in which the parser crashed or termirthtedg the process of parsing a
sentence.

Parser | Incomplete Failed Terminated

APP 1.5 0.0 0.001
c&C 12.8 2.2 0.006
LGP 42.2 7.4 0.206
MINIPAR 27.9 0.0 0.009
SP 0.5 0.4 0.002
StatCCG 9.6 1.4 0.000

Average 15.8 19 0.037
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APP and SP performed at the highest rate of coeemadhis experiment. APP

produces shallow parses, which enables it to oladigh coverage. When it is
unable to recover a full parse for a sentence, ghiser enters a fitted parsing
mode in which a fragmented parse is recovered tt@partial trees in the chart.
This typically causes the analysis to have two &)t constituents. Klein and

Manning (2003) claim that SP is able to analyzdtedl sentences in section 23 of
the PTB in a machine with 1GB of memory. If one lages the one-word

sentences from the legislation dataset, SP gaveb#st coverage and best
generalizability rate. The most common reason farfolly covering a sentence

was a fragmented analysis caused by segmentatiors @m which a delimiter was

considered to be a node in the D tree.

The overall performance of C&C (85.0%) was slightiyorse than the
performance of the other CCG-based system thaedcan average coverage of
89.1%. Compared to StatCCG, C&C’s coverage was,ellewy more consistent
over the genres. Although StatCCG skipped extrerugly sentences, it only did
this on 353 occasions.

LGP (average coverage 50.2%, generalizability r20e2%) and MINIPAR
(72.1%, 39.1%) gave the worst coverage and lowesterglizability in the
experiment. While MINIPAR achieved an 88.0% coveragn the newspaper
corpus, its performance dropped over 15 percentag@s on other corpora. Its
coverage was only 34.4% with the religion corpuse Thost commonly occurring
problem with this data was a fragmented analysisasioned by sentences
beginning with an “And” or “Or” that was not conred to any other words in the
parse tree. LGP coverage on the religion dataset tva lowest in the whole
experiment, only 15.0%.

10.3.4 Conclusion

The six parsers were able to cover, on averagel?8af the sentences. The
coverage was, unsurprisingly, highest on the nepespgenre. The lowest average
coverage was achieved on the religion and legisiagienres. The difficulties in
parsing the religious texts are attributable astlea part to the length of the
sentences in the sub-corpus (on average 27.1 werdsentence), which was the
highest over all the genres. The legislation gerxuesists of transcribed speech,
which may be the main reason for the lower-tharraye performance on that
data. Contrary to my expectation, the biomedicahrge with its specialist
terminology, was not the most difficult genre fbetparsers.
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If one compares these results to those obtaineMlIDYPAR, it is clear that the
coverage of the newer parsers has improved. AP#upes a shallow analysis that
enables it to achieve a high coverage. The goofbmmeance of the APP may be
partly explained by its rather poor precisenessrate of just over 70% is much
lower than that of other parsers. The poor perfoigaaf the two parsers that are
based on manually constructed grammars, MINIPARLAZBR, supports what was
said in Section 5.2 about how probabilistic pardgmcally have an advantage
over rule-based ones with regard to coverage.

10.4 Robustness

The robustness comparison of parsers for Englishlttiescribe in this section are
the only evaluations of their kind reported in thierature. In making this
evaluation | sought answers to the following queHi

* What is the overall robustness of the evaluatedgra?

» What effect does an increasing error level havéherparsing results?

» How stable are the parsers?

10.4.1 Previous work

Not much work has been done on methods for empliricevaluating the
robustness of parsers. Foster (2004) is the ordgareher to have reported a
robustness evaluation of a parser for English i literature. She evaluated
Charniak’s (2000) PCFG parser by using the corpscribed in Section 6.1.3.
The parser returned the same analysis for cormedtearoneous versions of the
same sentence in 32% of the cases. The highe#t a@&s achieved on agreement
errors and the use of the wrong preposition. O$¢hever 70% of cases obtained
a complete match.

The research most closely resembling my own isrteddoy Bigertet al (2005)
(see Section 8.3.2). The automatic introductioerobrs enabled the researchers to
undertake a controlled testing of degradation whécthe effect of an increased
error rate on a parser’s output. But they only egablhis method for Swedish.

10.4.2 Test settings
In order to evaluate the degree to which a parser@andle noisy input, and

spelling errors in particular, the following expagnt was set up. A set of test
sentences, both correct and erroneous, was obthadthe RobSet. | then used
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the metric and measures defined in Section 9. ety UR score and LR score,

to compare the overall robustness of the six ewtliparsers and considered the
degradation in the parsers’ performances in redatioincreasing error levels. In

order to evaluate the stability of the parsersedorded the number of crashes
while parsing the MGTS. The final step was to cdesithe preciseness figures
reported in the literature for the parsers anctogare them to these findings.

While some might claim that input with misspelledrds tests the accuracy of
POS tagging rather than the preciseness of syatdescription, it is my opinion
that such an assertion is inadmissible. Firstlya iparser is able to distinguish
grammatical sentences from ungrammatical oned)atld be able to rule out a
considerable number of analyses generated by eusrfeOS sequences which the
misspelled words might have caused. Secondly,pé@er's POS tagger is well
designed, it should not try to disambiguate the RS of the words that it cannot
recognize, but rather leave disambiguation to ymegtic analysis component

10.4.3 Results

Table 10-6 summarizes the results of the experimemoisy input and indicates
the overall robustness scores as well as sepam@tessfor each error level (1,2,3).

Table 10-6 The results of the experiment are reported séggréor the two
evaluation metrics. Separate scores for each lavet are also given. The column
labeled “D” gives the degradation rates. These defined by comparing the
robustness scores on levels 1 and 3 and calculd#tmglrop in performance in
percentages.

UR LR
Parser
Avg. 1 2 3 D Avg. 1 2 3 D
APP 433 | 59.2| 28.7| 149 749 370 545 192 7.5 86.3
C&C 63.8 | 72.9*| 628 | 404 | 446 454 608 340 149 7b5
LGP** 298 | 404 223 854 789 176 22|10 202 32 85.5
MINIPAR | 37.9 | 57.4| 221 11| 982 206 33)2 6/3 141 96.8
SP 553 | 71.0| 426 255 640 19p 294 96 11 96.4
StatCCG | 57.1 | 726| 415/ 309 6575 44D 588 27.7 20.2 65.6
Average | 478 | 62.3| 36.7| 202 69y 30p 431 195 80 84.4

*C&C failed to parse 23 correct sentences in this-sorpus. Because | considered the inability of
a parser to cover some sentences to be a seribustness flaw, | deliberately included these
sentences in the calculations. This brought theescdown from 80.2 to 72.9 and 66.8 to 60.8 for
UR and LR respectively. **LGP leaves some of thebaguities unresolved and returns several
parses for such sentences. This occurred with wfostir test sentences. But in the interest of
ensuring an entirely fair comparison among theqrard only considered the first highest-ranking
linkage in the evaluation.
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The results show, as was expected, that the peaftzenof the parsers degrades as
the level of distortion in the input sentences éages. The results indicate that
performance usually declines by tens of percentagiats when parsers are
presented with texts that contain misspellings. I&/lthe parsers produced the
same analyses for correct and erroneous senteoicdS.fl% of the sentences in
labeled evaluation on error level 1, the averageeson error level 3 was only
8.0%.

When tested on the purpose-built test set of 4#48sees, the best parser in the
experiment (C&C parser) was able to return exaittyy same parse tree for the
grammatical and ungrammatical sentences for 603%4% and 14.9% of the
sentences with one, two or three misspelled woedgectively.

The overall performance of StatCCG and SP are a&inon the unlabeled
evaluation in which the LGP performs considerablgrse than the other five
parsers. Error level 3 on labeled evaluation was a@hly category in which
StatCCG outperformed C&C in this experiment. Figut®-1 shows the
performance of the parser at each error level iitaheled evaluation.

70.0
60.0
50.0
.
@ 40.0 ~ C&C
) o
30.0 QStatCCG
Sp
20.0
- APP
10.0 =~ LGP
0.0 MINIPAR
1 2 3
Errors

Figure 10-1 Unlabelled robustness scores on the three ezvald. The UR-axis
indicates the robustness score on the three ewelsl given on the x-axis.

Figure 10-1 shows that while C&C is the best penfr, LGP and MINIPAR are
the worst performers on all three error levels tincsural similarity evaluation.
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StatCCG beats SP on error levels 1 and 3. The gmtiern of performance
degradation is repeated as the error level risé¢sle\ithe robustness score of C&C
decreases from 72.9% on error level 1 down to 4004Pdevel 3, equaling to
44.6% drop, the figure for LGP is 78.9% and 98.ByoMINIPAR. StatCCG and
SP are again in the upper middle-class, at aro0gf, Gvhile APP positions itself
between these two and C&C with 74.8% degradation.
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50.0 NN
N oSN
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\ e ~
\\ - < -
20.0 B AN \\ StatCCG
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10.0 S
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MINIPA ‘<LGP
0.0 : SP
1 2 3
Errors

Figure 10-2 Labeled robustness scores.

The results of the labeled evaluation (see Tabké Ehd Figure 10-2 above)
indicate that while structural similarity can beegerved for close to 73% of the
sentences on error level 1 by the two best par&&taCCG and C&C), the

performance drops to around 60% when the labelalacerequired to match. The
degradation figures in labeled evaluation are: & (65.6%), C&C (75.5%),

LGP (85.5%), APP (86.3%), SP (96.4%), and MINIP/AR.8%).

The large tagset of 107 tags makes it difficult 106P to obtain a good

performance on labeled evaluation. LGP was ableatd third on degradation,

largely due to the fact that its performance wasr{@2.0%) even on the lowest
error rate. It was rather surprising, however, sesve how dramatically SP’s
robustness scores decreased between the unlalmelddbeled evaluations. This
indicates a flaw in the robustness mechanismseptrser, a flaw that might be
attributable to the poor ranking of candidate parses for noisy sentences or
problems with the POS tagging model of unknown word
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In addition to being able to perform well when fdcgith just slightly distorted
input, C&C is the most consistent parser when fag@l increasing distortion:
the unlabelled robustness score dropped by 44.6e% érror level 1 to error level
3. LGP has the lowest reported preciseness anpeifermance also degrades
drastically, especially on unlabelled evaluatior789% drop from error level 1 to
error level 3). MINIPAR was the worst performer lwitegard to degradation,
scoring 98.2 and 96.8 for unlabeled and labeledatizgion respectively.

| carried out a stability evaluation by parsing thiole of the 826,485-sentence
MGTS and recording the number of times each ofpdwesers terminated during
the parsing. These figures are given in the colterminated” in Table 10-5
(above). LGP crashed in 0.21% of the cases, whiakesi it the most unstable
parser in the experiment. StatCCG and APP provée ttve most stable parsers in
the experiment. While StatCCG did not crash at ARP terminated once.
MINIPAR crashed 72 times altogether (i.e. for 0.206f the sentences). SP and
C&C were on the middle ground, terminating on 0.@®2 0.006 per cent of the
cases.

10.4.4 Conclusion

Table 10-7 summarizes the findings of the robustegperiments.

Table 10-7.The overall robustness of the parsers. The coluaivsled “Noisy
input” and “Degradation” show the ranking on theibaof the labeled evaluation.

The column labeled “Rank” shows the overall rankafighe parser on the basis of
the averages of the rankings in the three measures.

Parser I_\Imsy Degra- Stability | Rank
input dation

APP 3 4 1 3
c&C 1 2 4 2

LGP 6 3 6 6*
MINIPAR 4 6 5 5
SP 5 5 3 4
StatCCG 2 1 1 1

*LGP and MINIPAR scored the same average rank. liladause of its instability, which was
much greater than that of any other parser in tper@ment, it ranks after MINIPAR.

C&C was the only parser in the experiment that poed coverage of less than
100% on our test set. In spite of this, it provedoe by far the best-performing
parser. In comparison to StatCCG, C&C performedebet especially on the
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unlabeled measure. The performance of APP wasemitidle ground between

the three best and two worst parsers. It compaspdagally well on error levels 1

and 2 for the labeled evaluation. However, its ganfince degraded drastically on
error level 3.

The performance of MINIPAR and LGP left a lot to desired across all of the

evaluation categories. They are both based onbaged, manually constructed
grammars. LGP also returned up to thousands o&djek per input sentence. All

these observations, together with the low precserfggures reported in the

literature, indicate serious problems in the disigodition model of the parsers.

These results support the observation made in @ed&i2 about the lack of

robustness in many rule-based parsers. APP wasewbas the state-of-the-art
parsers — with the exception of LGP. This indicales considerable progress has
been made in probabilistic parsing with regardotaustness.

10.5 Efficiency

This section reports a set of efficiency evaluaiorhese evaluations were carried
out for the purpose of measuring practical efficienf the six parsers. This kind

of efficiency answers the question: How long ddetake a parser to analyze a
particular set of sentences on a given machinethédg&xperiments were run on a
single machine configuration, a meaningful comparief the parsers could be

made.

10.5.1 Test settings

The experiments were run under Linux Fedora Cooe & Pentium M 1.72 GHz

machine with 1 GB of memory. The machine was deddanly to the parsing

task during the experiments. A 20,000-sentenceesutfsthe MGTS newspaper
subcorpus was parsed by each of the parsers anotéh@arse time recorded. For
parsers that did not perform POS tagging, the @ng time of the external

tagger was added to this time.

10.5.2 Results and conclusion

Table 10-8 and Figure 10-3 give the results ofdffieiency evaluation performed
on a 20,000-sentence test set consisting of newspaxts.
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Table 10-8. A comparison of running times of six parsers owsmaper data of
20,000 sentences. The column labeled “Time comigfeshows the complexity
of the best known algorithm for the type of gramitiner parser uses.

Time Time
Parser ) Sec./sent )
(min.) complexity
APP | 130.14 0.39 N/A
C&C 6.58 0.021 f
LGP | 214.18 0.64 i
MINIPAR| 4.40 0.014 i
SP 230.31 0.69 r
StatCCG | 657.22 1.97 i
Average | 240.35 0.72 -
2
1.8 -
1.6 -
o 14 _—
o
§ 1.2 _—
g 1 ]
v
8 0.8
0 0.6
0.4 |
0.2 _—
0
MINIPAR  C&C APP LGP SP StatCCG

Figure 10-3 Average parsing times in seconds per sentence.

The parsers can be grouped into four categorieterims of their efficiency.
MINIPAR (0.014 sec. per sentence) and C&C (0.02&)cansiderably faster than
the other parsers. The speed of APP lies betwedrofiMINIPAR and C&C and
the group formed by LGP and SP, with an averageepame of 0.39 sec. per
sentence. StatCCG is almost three times slower 8kt took StatCCG almost
two seconds on average to parse a sentence. Tperiment confirms the
observation that | made in Chapter 4, namely, ttatheoretical upper bounds for
the time complexity of parsing a certain grammam@alism have little to do with
a parser'practical efficiency.
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10.6 Subtlety

This section describes the evaluation of the stybtdé the six parsers. In this
experiment, | addressed four notions of subtlejythé levels of representation in
the parser’s output, 2) the detail on each levelh& level of ambiguity, and 4) the
amount of underspecification remaining in the outpu

10.6.1 Test settings

| determined the levels of representation in eauisqy’s output on the basis of the
documentation of the system. | used both the doaotatien and observation of

outputs to determine the size of the POS and siyottagsets, and measured the
level of ambiguity and underspecification remainingthe parsers’ outputs. For

this purpose | implemented a set of software taoldava that provide statistics

about the richness, the level of ambiguity andamm®unt of underspecification in

the outputs.

10.6.2 Results

Table 10-9 summarizes the levels of representatiehdetail in the output of the
six parsers. The amount of detail on lexe{i.e. POS or syntax) of an output
schemesis calculated in the following way:

score = Iog(jtagseg,xp (10-1)

When considered intuitively, this equation appéargive a reasonable advantage
to parsers that produce output that is more detab®er example, out of the six
parsers in this experiment APP receives the loveeste for its word-level
annotation (0.0), StatCCG, C&C and SP achieve thkest scores (1.65). On a
syntactic level, APP once again scores the lowestes(1.30), and StatCCG
achieves the highest score, 3.02.

A scoring scheme for the level of detail in an amitpcheme should give more
credit to the richness of the syntactic descripti@cause it is a more important
feature of a syntactic parser's output than thénéss of the word level
description. The scheme therefore assigns a dowdlght to the syntactic output
scheme in comparison to the POS scheme. The ogemak of an output scherae
is defined in FEPa as:

202



SCOr&wWORD LEVEL
2

socre = +SCOrg SYNTAX (10-2)

Table 10-9. A comparison of the output schemes. The two columeotided
under the label “Word level” indicate whether therd level tags are included in
the output, and the number of tags in the POS tagbe four columns included
under the label “Syntactic level” indicate whethiee scheme includes PS or D
representations respectively. The columns “Typel ‘&ho. tags” indicate whether
the parser supports PS and D-style output scheamelsthe type and number of
tags in the syntactic description used for evatumtin the experiments. The
column labeled “Score” shows a score for the risknef the output scheme as

defined in Equations 10-1 and 10-2.

Word level Syntactic level
Parser % < % g ;—/%
S DN E 5 h |
Z Z
APP No 0 Yes| No PS 20 13| 6
C&C Yes |36+9*| No | Yes GR 48 25] 2
LGP Yes 8 Yes Yes | LG linkage 107 25| 2
MINIPAR Yes 18 | No| Yeg D 27 21| 5
SP Yes 36+9*| Yes| Yes GR 48 25| 2
StatCCG (Yes)** | 36+9* | Yes| Yes PAS 1044**| 38 | 1

*The tagset of the PTB consist of 36 word categoard 9 tags for punctuation. *StatCCG does
not produce POS tags, but expects a tagged inpfits *observed from the output of the parser
for the MGTS legislation sub-corpus of over 390,8@6@tences.

Table 10-10 is concerned with the level of ambigaitd underspecification in the
outputs of the parsers.
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Table 10-10. A comparison of level of ambiguity and underspeation. The
results are given as the average number per cogergdnce, calculated over the
same 20,000-sentence test set that was useddrerdly evaluation.

Underspecified | No. of analyses
Parser Rank
words per sent. | per sentence
APP* 0.0006 1.0 5
C&C 0.0 1.0 1
LGP 0.0 1.259%** 6
MINIPAR 0.0 1.0 1
SP* 0.0%* 1.0 1
StatCCG 0.0 1.0 1

*The underspecification in APP and SP is markedhgytag X. **The average number of X tags
per sentence in the PS output was 0.005. The GRibdbes not contain underspecified relations.
The underspecification in the SP’s output was e@tlifrom the evaluation because the parser
was evaluated using the GR-style output. ***The bemof analyses returned after ranking the
linkages based on their costs. On average thergarggd 50182.0 linkages per sentence.

10.6.3 Conclusion

Table 10-11 combines the results represented ite$d®-9 and 10-10 to provide
an overall subtlety ranking of the six parsers.

Table 10-11.Overall subtlety ranking of the parsers. The caluabeled “A&U”
gives the ranking on the basis of ambiguity andeuspkcification (see Table 10-
10).

5 8|3 g

< )

g |a|<|3
APP | 6| 5] 6
ceC |2 |12
LGP | 2|65

MINIPAR | 5 | 1| 4

sP | 2] 1] 2

StatccG| 1 | 1] 1

In addition to creating the kind of subtlety prefibf the parsers that is given in
Table 10-11, subtlety can also be taken into camaitbn directly in the
evaluation measures. Equation 9-1 suggested amwaich these factors can be
applied in preciseness evaluation. | have alreafineld in Equations 10-1 and
10-2 how the level of detail can be measured. Beeof for underspecification in
the output of schemeis formulated as follows:

factor, = 1+ score, (10-3)
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In Equation 10-3scorg refers to the underspecification rate for the augzheme
o given in Table 10-10. The ambiguity factor is dquathe average number of
analyses per sentence given in Table 10-10. Tabi#21gives the preciseness
evaluation of the parsers that takes the subtlétyhe output schemes into
consideration according to the above definitions.

Table 10-12.The preciseness evaluation of the parsers thasttie subtlety of

the output schemes into consideration. F-scoreg wbtained from Table 10-2.
The column labeled “Detail” indicates the score fbe level of detail in the

parser’s output as defined in Table 10-10. Theréguin the columns labeled
“Ambiguity” and “Underspecification” were obtaindoshsed on Table 10-10 as
defined above. The column labeled “Score” gives piheciseness score for the
parser as defined in Equation 9-1.

Preciseness c
2 =
= S = @ Q X~
Parser % x 8 é % 2 9 g
(7]
APP 707 | 5 1.3 1.0 1.0006 91.9 5*
c&C 846 | 2 2.5 1.0 1.0 212.2] 2*
LGP 485 | 6 2.5 1.26 1.0 956 5*
MINIPAR | 838 | 2 2.1 1.0 1.0 1725 4
SP 857 | 1 2.5 1.0 1.0 2149 2*
StatCCG | 840 | 2 3.8 1.0 1.0 323.0 1

*The differences between the pairs APP/LGP and &B/@ere considered too small to make a
reliable ranking between the parsers.

10.7 Overall Results and Comparison
Table 10-13 shows an overall comparison of thegrarbased on their average

rankings according to the five criteria: precisemegsoverage, robustness,
efficiency, and subtlety.
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Table 10-13.An overall comparison of the parsers. The coluaireled “Rank”
indicates the final comparative ranking of the pess

v) (N
- 1252|132
0 nilol2|2= |5
o olS|3|o L <
o 283185 a|"
a |©|x W
APP 512| 3| 3] 6/5
C&C 2142 2] 2|1
LGP 5|/6| 6| 4/ 5|6
MINIPAR| 4 | 5| 5| 1| 4| 4
SP 2|1 1] 4| 5| 2|2
StatCCG| 1| 3| 1| 6| 1|2

FEPa allows the evaluator to adjust the comparatsivaluation scheme for
particular purposes. What follows are a few exasgiehow this may be done.
One may argue that preciseness is the most impogtauation criterion for a
parser. Quickly produced analyses that cover a vadge of sentences structures
are of limited use if they are erroneous. In exa#lin Table 10-13, preciseness
is allocated a double weight in comparison to ttieeocriteria when calculating
the average rankings for the parsers. Becauseadedetnalysis was not regarded
as crucial for the application for which the pars@is being selected, subtlety was
not used as a factor in the evaluation. This mmytdur, for example, when a
parser is intended to be used in a named entitygrezer, in which its most
important function is to recognize the NP chunkmbdy.

In example B, the evaluator has determined thatieffcy is not a key factor in
the particular application for which the parserlwg used. This might occur, for
example, in a text mining system that is not useddal-time queries, but rather
for mining information that will be used later. tead of giving the weightneto
all of the criteria, efficiency is allocated only® half of the weight.

In example C, the NLP application for which thegerwas selected was such that
coverage and efficiency were considered to be tlost nmportant evaluation
criteria. These two criteria are therefore giverda@uble weight. This might
happen, for example, when one selects a parseanfdMT system, in which the
user inputs need to be handled in real-time angé#nser needs to cover as high
proportion of sentences as possible so that it lell possible to translate the
sentences. Table 10-14 shows the ranking of theepaaccording to each of the
comparative schemes described above.
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Table 10-14.Overall comparisons of the parsers that each esmalifferent
criteria.

N P I R
;g) = g g | 2 Rank
Parser | .2 § 12|35
© 18 |S|E|a|alBlcC
o x
AP | 5| 2| 3| 3| 6545
caC | 2 | 4| 2| 2] 2]2]2] 2
LeP | 5| 6] 6| 4| 5][6|6][6
MINIPAR| 4 | 5 | 5| 1| 4[4]|5]4
SP 2| 1| 4| 5] 2331
StatCCG| 1 | 3 [ 1| 6] 1[1[1] 2

10.8. Conclusion and Future Wrk

This section concludes with the findings obtaineaht the experiments (Section
10.8.1). Section 10.8.2 considers possible dirastfor future work.

10.8.1 Experiments and FEPa

The two CCG parsers were the best performers toganiseom these comparisons.
One could rank either of the two as top perfornugending on the comparison
scheme. The only criteria for which neither StatC8& C&C emerged as top
performers was coverage. StatCCG also failed t& mtner first or second in

efficiency evaluation. The only criteria in whiclP $erformed much worse than
C&C and StatCCG was robustness. While one couldtéothe performance of
MINIPAR in the middle on the basis of the othettemig, it proved to be the most
efficient of all the six parsers. APP was espegiabmpromised by its lack of

subtlety and preciseness in comparison to the pedoce of the top four parsers.
LGP failed to reach a ranking higher than fourthamy of the criteria and thus
was ranked last in the overall ranking.

In summary, one may conclude that the results ef gresent study indicate that
probabilistic parsers — because of their desigendto be more robust and to have a
better coverage than rule-based ones as suggesthd theoretical evaluation in Part
| of the thesis. However, the sample of parsersithalected was not large enough to
allow me to make a general clainfhe original observation about the poor
connection between the theoretical upper boundaswiputational complexity of

formalisms and practical efficiency was also supgmbiby the empirical findings.

If one excludes LGP, the evaluations also gaver demlence that more recently
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developed parsers are superior in performance tsethparsers that were
developed in the 1990s. The findings moreover conthe observation made in
Section 3.4.1.6 that some sentence constructioBsagish seem unable to fit the
LG framework.

One finding that should be made based on the axpets relates to the user
friendliness and documentation of the parsing systéespite the fact that all the
system requirements were met, two of the parseast were intended to be
included in this evaluation were unable to functiwnour machine configuration.
While all the parsers have a set of parameters taat be adjusted, the
accompanying documentation about their effectsvisnany cases insufficiently
detailed. Some exceptions, however, exist. Suatxaaption in particular was the
documentation provided for C&C. From the NLP praatier’'s point of view, the
process of selecting an appropriate parser fovangiask is complicated by the
fact that the output format of a parser is freglyedéscribed in insufficient detail.
It would also be helpful in many NLP applicatiofidhie parser were to indicate
whether it could parse a sentence completely or Ihatould also be ideal if a
confidence score that indicated the reliabilitytiog returned analysis could be
provided.

The process of parsing the test material of hursliedthousands of sentences
with several parsing systems was neither simple sti@ightforward. To begin
with, most of the parsers crashed at least oncengluthe course of the
experiments. This is obviously an unacceptableufeain any kind of computer
software. The C&C parser, for example, terminategmwit encounters a sentence
with two spaces between words. It would be far nemevenient for users if the
parser were automatically to skip or normalize ssefitences.

In its first application, FEPa proved to be a ukafd practical tool for empirical
parser evaluations. It can provide a rich and kyepicture of a parser’'s
performance and can compare the performancesfefalit systems. While | was
carrying out these experiments, | made several fications to the framework
proposed in paper [5].
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10.8.2 Future work

There are three general future directions for yipe of experimentation described
in this section. Firstly, the inclusion of more gans would offer a broader view of
the current state of the art in parsing. In paléicubecause of their wide use, it
would be necessary to include an HPSG and an LA&epan the experiments.
Secondly, the evaluation materials could be entébath in terms of their size
and quality. Thirdly, the findings of the experintercould be used for further
developing the FEPa framework.

One of my most important plans includes the pertoroe of preciseness
evaluations. The lack of such empirical work is thiggest deficiency in the
evaluation reported in this chapter. The first gha such evaluations could be
carried out by using the PTB and PTB-derived resesirsuch as DepBank and
CCGBank.CCGBankis a CCG-style treebank that is derived from tAé3f
(Hockenmaier & Steedman 2007). If one used thidhotktone could evaluate PS,
D and CCG parsers on the same data.

The most obvious directions for work on coveragal@ation would include other
text genres and even larger collections of textge Could also pinpoint the most
problematic types of sentence structures by apglgmor-mining technigues to
the results of the experiments. Another extensiaie line of research would be
to include grammatical coverage evaluations. | gmec#ically interested in
finding out how well the parsers would handle sfpecitypes of LDD
constructions because they represent one of ttetegtechallenges in the way of
extending the current capacity of the best conteargcstate-of-the-art parsers.

Several directions for future work also suggestntbelves in robustness
evaluation. One could collect more data for morengeehensive system
comparisons. One could in addition extend the reke@ include various kinds of
noise other than only misspellings. A future reskar might, for example, use the
corpus of Foster and Vogel (2004) as a source forastically distorted
sentences. It would also be interesting to appigremining techniques to the
sentences that parsers fail to analyze.

The weakest part of the comparative evaluation mehm FEPa are the factors
represented in Equations 10-2 and 10-3; they aeffiniently motivated. More

experiments, particularly ones carried out with timge of standard metrics,
measures and test data, are needed for a more eloemgive definition of these
aspects of the framework. | believe, however, BtéPa, even in its current state,
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is quite capable of providing a great deal of illnating and helpful insight into
the relative strengths and weaknesses of parsers.
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11 Conclusions and Future Work

This research comprises an extensive analysistafaldanguage parsers and the
relative merits and disadvantages of their respeavaluation methods. In order
to test the validity of my theoretical assumptiongpotheses and conclusions, |
also developed a set of evaluation resources avld tmd applied them under
controlled experimental conditions in order to e a select number of parsing
systems.

This chapter summarizes the main contributionsisf dissertation (Section 11.1)
and suggests directions for further research (&ecltil.2). Four main research
tasks were identified in Chapter 1. These | grouipéal four main categories in
order to address the following topics and issu@sTHe theoretical analysis of
parsers, parser evaluation resources and evaluatiethodology; 2) The
development of linguistic resources for parsers aha framework for parser
evaluation; 4) The application of the developedueses, methods and tools in
practical parser evaluations. The concerns additassgections 11.1 and 11.2 are
based on these divisions.

11.1 Summary of Results

11.1.1 Theoretical evaluation of current state-dfe-art parsing

In Chapter 2, 3 and 4, | described the theorefmahdations on which state-of-

the-art parsers are being constructed. | notedhap@r 2 that a high degree of
preciseness can be achieved in the preprocessaggsstit appears that these
figures (close to 100% in segmentation and 96-97/%cavrect tags in POS

tagging) are close to the upper bound. 100% acguirad®OS tagging is not

achievable with the current methods. Probabilisggers will always encounter
training data that contain errors. The rules ollke-based parser can rarely, if
ever, be error-free. The only way therefore to iower the preciseness of
preprocessing is by incorporating segmentationtagding into the syntactic (and
perhaps semantic) processing by permitting intemadb take place between the
preprocessing and latter processing stages.

One can characterize grammar formalisms , as Irdidhapters 3 and 4, on the
basis of their descriptive power, computational ptaxity and equivalence to
other formalisms. On the basis of this analysisohatuded that grammar
formalisms, which in many respects constitute thentlations of parsing systems,
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are difficult to evaluate on theoretical groundena. A grammar formalism is
merely a language in which linguistic theories banexpressed. There are many
different ways of encoding the same linguistic mfation, and every formalism
contains its own advantages and disadvantaigesould be invidious to assert
categorically that one particular grammar formalisnsuperior to others. It is, after
all, the grammar theory that the grammar formalexpresses in combination with
the properties of the formalism itself and, mospariantly, withthe quality of the
grammar,that suggests how well a grammar may perform actire.

It is only possible to predicate superiority on tpgality of the grammar itself,

whether it be automatically acquired or manuallystaucted. It is in this sense
that the quality of available grammars, grammarettggment and induction tools
becomes a decisive factor in the choice of a granfarenalism. One of the most

prominent developments in parsing grammars is éveldpment of automatically

acquired deep grammars. It has often been demtethtifaat such grammars can
outperform their hand-crafted counterparts whiclvehdeen developed over
several years or even decades. It is, however, engopal conviction that the

possible benefits that could be obtained from aldpoation of manually encoded
linguistic knowledge and the use of probabilistitormation have not as yet been
fully exploited. This line of research work mightelivbe a precursor to future
improvements.

An NLP system developer might well find any of thaailable formalisms suitable
for the task at hand. English parsers, for examblat are freely available for
research purposes exist for PCFG and many DG femal(such as, for example,
CG, XDG), LG, CCG, HPSG, and different versiong8fG. The selection should
be guided by the intended usage of the parser.

After taking expressive power, maturity of theondahe availability of resources
into consideration, | concluded that LTAG, CCG, LB&d HPSG are currently
the most attractive and viable grammar formalisorsaf parser developer who is
looking for a suitable formalism for a parsing yst It is their generative
capacity and ability to handle LDDs that enableassert that HPSG, LFG, the
MCSGs analyzed in this work are in fact the mosaative and viable formalisms
currently available for parser development. | woalso add non-projective DGs
into this group. XDG will offer a number of advagés once the open issues in the
formalism have been resolved. The lack of free gnamdevelopment tools and
parsers disfavors FDG.
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It is a more straightforward task to determineieeessary criteria for comparing
parsing algorithms and computational propertiedoofmalisms: time and space
complexity are the main factors. Even though oneukh keep in mind the
distinction between the theoretical upper bound émmplexity and actual
performance, the findings with regard to searclordigms in Chapters 4 and 5
could be distilled into the following observatioa: practical parsing algorithm
should be efficient (i.e. use minimum computationalk) and robust (i.e. behave
in a sensible way when parsing a sentence thahiat analyze fully).

From the point of view of computational properti€s;, LG, MCSGs (CCG and
LTAG) and PCFG are among the most attractive onedable because of their
relatively low computational complexity. Much to nsurprise, however, the
efficiency of the LTAG parser that | ran experimaiyt was, in fact, poor. It will
be necessary to carry out practical evaluationslB8G, LFG and XDG and other
non-projective D parsers in order to verify exachlgw they will behave in
practice. The recognition problems of all thesengrers have been reported to be
intractable.

The observations that | made in Chapter 5 lead maenake the following
conclusions. Firstly, there appears to be a limithee performance of parsers that
use only probabilistic or rule-based approachesv ldgactly to combine the two
approaches is an attractive research proposition.

Secondly, a problem in the typical sequential oizgtion of parsing is potential

error-propagation. When the output of a compongnised as input for the next
processing level, it may generate errors on thatlland might even cause a
failure to produce a parse. What is needed in suchmstances are more flexible
processing architectures that allow interactiontake place between the different
stages of processing. Intelligent ways of combinprgdictions from several

sources (each of which is unreliable alone) maultas improved performances.

This is especially important when one combinesrimgtion from rule-based and
probabilistic sources.

Thirdly, apart from the fact that a successful panelies both on syntactical

information as well as lexical and contextual infation, it is evident that

researchers will need semantically richer lexiesources and parsing models if
they are to improve the performance of contempostge-of-the-art parsers.
However, as intuitively viable as the idea of usggmantic information to guide

syntactic parsing decisions might appear to be,itlcerporation of semantic

information into syntactic parsing is anything lautraightforward task.
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The conclusion that one might draw from these figdiis that the interaction of
the levels of linguistic knowledge and processitagss appears to offer great
potential for improving the performance of the bemttemporary parsers.

11.1.2 Designing and implementing linguistic resaas for parser evaluation

Linguistic resources play a crucial role in parssaluation. | analyzed and
reviewed existing linguistic resources in Chapteartsl considered the various
ways in which these resources might be designedaandtated in order to render
them useful for purposes of parser evaluation.nl sammarize the results of that
analysis in the following way.

Firstly, a comprehensive evaluation experiment ireguthe use of a diversity of
linguistic resources. Secondly, the annotation wélwation resources is a
demanding task that compels one to make a choteeeba a more parser-specific
resource and the preservation of high adaptabilitthe comparison of parsers.
Thirdly, the need to balance the requirements akgaity and specificity create a
tension during the process of constructing resauf@eparser evaluation. Most of
the resources that one uses in parser evaluatogeareral in the sense that they
are also used for other purposes. However, in ai@dre practically useful, an
evaluation resource should be sufficiently sped¢diaccomplish the main purpose
of evaluation — which is to measure how well a paiis able syntactically to
analyze sentences.

| utilized the results of Chapter 6 in Chapter de&sign and implement a set of
linguistic resources that | deliberately created tfee specific purpose of parser
evaluation. | adapted the design of a treebankFanish so that it would be

effective for evaluating parsers. | described, moves, the design and

implementation of an annotation tool, DepAnn, fotrBebanks. The outstanding
features of this treebank are the inclusion of digdext genres, an hierarchically
organized tagset, the use of an XML-based exchforget for encoding, and the
fact that the annotation scheme allows multiplelym®s to be saved for each
sentence.

| also described two new evaluation resources faliEh. These resources can be

used for carrying out evaluations of coveragecedficy, subtlety and robustness.
RobSet will, moreover, be made freely availablegers.
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11.1.3 Deriving an evaluation framework

In Section 9, | described, on the basis my analgpdighe parser evaluation
methods and tools described in the literature (&re), the FEPa framework for
carrying out parser evaluations and comparisomnstidted the experimental part
of this research project by identifying the follogi five requirements for the
design of such a framework: purpose, criteria, it®tmeasures and resources. |
then explained how each of these requirements ddeessed within FEPa. Most
importantly, | explained how parsers are evaludtgd=EPa from the following
five points of view: preciseness, coverage, efficie robustness and subtlety. |
also considered ways of using the framework for gammg the strengths and
weaknesses of parsers.

11.1.4 Empirical parser evaluations

In Chapter 10, | reported a series of parser etialsin which | experimented
with FEPa in practice. | selected six parsers tUmee five different grammar
formalisms as the parsers that | wanted to evalUdte parser that performed best
in these experiments was C&C, which achieved th& rh to 3 on all the
evaluation criteria. After taking into account tfiedings from Chapters 3 and 4
about the properties of grammar formalisms, | cotet that C&C was the best
parser in this experiment. The good performanceSttCCG confirmed my
conclusion that CCG seems to be among the mostcaie grammar formalisms
for grammar and parser development — for Englidbagst.

These experiments also confirmed that the perfocenari parsers has improved
considerably over the last decade. The best parsers the comparative
experiment performed in most cases better thaoltter parsers of the 1990s, and
they also produced outputs that were more infonreati

FEPa proved its worth as a useful tool for carrymug empirical comparisons
between various approaches to parsing. But thesgamtive experiments also
revealed the number of shortcomings in the inwatsion of the framework. |
accordingly implemented changes and amendmentsetdramework during the
experiments — but left others for future research.

215



11.2 Future Work

Because this dissertation reports on such a widetyaf topics and experimental

research undertakings, it has been necessary foo sigke a balance between the
scope of presentation (the number and variety picsoand problems) and the
effective range of depth and detail of my approexisuch topics and problems.
Because of this, the research reported in thiedsson constitutes in many ways
but the first steps towards making a complete Ee¢sources and tools available,
and using these for empirical evaluations at same tn the future. This section

outlines several directions for future work.

11.2.1 Theoretical evaluation of state-of-the-awnsing

It appears to be the case that analysis of therdhieal upper bounds of the

complexity of parsing grammar formalisms is of kied use in practice. The most
interesting challenge presented by theoretical uawin is to conduct more in-

depth explorations of the details of the generatiapacities of the formalisms. It

Is the ability of a grammar formalism to descrilag¢unal languages that remains its
most important property in a parsing system.

The treatment of LDDs specifically represents ftasl an interesting topic in this
field. Insufficient attention has been devoted s tissue in parser evaluations
reported in the literature. Apart from the need tfugoretical evaluation, there is
also a great need for practical evaluations thdt vd based on a set of test
sentences containing different types of LDDs.

11.2.2 Designing and implementing linguistic resaas for parser evaluation

The most ambitious future plan involves the cortdtom of a manually checked D
treebank. The treebank that | designed for thisishkas not yet been manually
checked. The manual checking of parser-createdsemlis beyond the scope of a
single dissertation. The treebank is as yet todldoraa comprehensive testing of
a parser’s performance. Both the annotation todlthe treebank are sufficiently
developed to offer adequate grounds for develo@n@ull-scale treebank for
Finnish. My hope is that it will be possible to adtsh a project that will
undertake the construction of the treebank for iBmron the basis of the data
produced by this research. In the project, the tatioms would be checked by
hand and the size of the treebank extended. Buausecthe construction of a
manually checked D treebank requires huge resoufapsto hundreds of
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thousands of euros by present standards), it rentaibbe seen how the work on
the treebank can be continued.

Before a full-scale manual checking process cannbegwill be necessary to
construct annotation guidelines that will guide tfecking process and ensure
consistent annotation. The annotation tool will ibgwroved during the manual
checking process by more stringent automatic cteregsy checks and a higher
level of automation. In order to obtain fine-grainéeedback from errors in
parsing and morphological analysis, the sub-coymesi for testing grammatical
coverage could be transformed into a test suitevhich the sentences will be
organized as test items and grouped into test defsrmation about the
morphological and syntactic phenomena that occut would also be added to
each test item.

An obvious direction for the work on MGTS would teeinclude other text genres
and even larger collections of texts. More compnshe data could be collected
in order to make robustness evaluation with Rolh8ete reliable. This work

could also be extended in the direction of permuttkinds of noise other than
misspellings, for example grammatical errors.

11.2.3 Deriving an evaluation framework

There are some details of the FEPa framework, mbghem connected to the
comparison of parsers, that need further revisBuch modifications are carried
out on the basis of practical evaluation experimevith the framework. The only
way to evaluate the usefulness and ease of ugeedfamework is by applying it
in practice and then using the feedback that otetgeamprove it.

A set of tools were implemented to carry out eviues within the framework.
Such tools would be more convenient to use if tweye combined into a single
full-scale evaluation environment for performing a®ations by using the
proposed framework. Such a system should be abfake use of several existing
linguistic resources. It should also be able tovig® the user with detailed
information about all of the five aspects of thaleation framework. The key
properties that such a tool would provide would be:

1. Support for several types of parsers,

2. support for diverse linguistic resources,

3. implementations of evaluation metrics and measuwes preciseness,

coverage, efficiency, robustness and subtlety,
4. tools for browsing, storing and comparing resuftsaparate test runs, and
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5. a graphic user interface that will permit parse tveewing and graphs for
suppressing evaluation results in graphic form.

11.1.4 Empirical parser evaluations

FEPa should be used to carry out more practicaepavaluations so that a more
comprehensive picture of the current state of théngoarsing will emerge and so
that researchers will be able to identify the peotd of particular parsers. More
specifically, | see it as essential to include &882 LFG, and FDG parser in such
experiments in order to determine how they willngtaip to a comparison with
CCG and other parsers. Evaluating an FDG parseexample, would provide a
fuller picture of the state-of-the-art in rule-bdggarsing. Any attempt to include
an LTAG parser in the experiments were hinderethbyenormous computational
complexity of the system which may reflect the eatly immature state of LTAG
parser development.

Apart from future uses of the FEPa framework todeant evaluations of other
parsers, it is also necessary to clarify the rofeth® subtlety measure in
comparison of systems. For example, in those cabese the same test set is not
used for carrying out evaluations, the subtlety snea should take into account
the degree of difficulty in parsing the test sets.
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Appendix A: Glossary of Grammatical Terms

The descriptions are based on the following sourtessk (1993), Crysmann (2006), Van Eijck
(2003), and Kim (2000).

Term Description

Agreement is a form of croseference between different parts o
sentence or phrase. Agreement occurs when one ahartbes its form i
dependence on other words to which it is related.gxample, “He kick
is incorrect, but “He kicks” is correct.

Agreement

Predicate and argumeate the two main parts of a sentence. Argun
Argument can be realized as nouns, groups of nouns or sErgeBee alspredicate
andpredicate-argument structure

Also argument cluster coordination. In sentenceh s “Sponsors ga
[Harry three balls] and [Robbie some books]” the sN&enoted wit
brackets form argument clusterscoordinated by a coordinati
conjunction (“and”).

Argument clustering

A type of structure in which a clause is interrublgy a second clause. F
example, in the sentence “The ball [that the agaicked]hit the post”
“that the attacker kicked” is embedded in the clause “Thé bdlthe
post”.

Center-embedding

This is also called partial parsing. Instead ofoggizing the intern:
structure of the phrases as onedefull parsing, only the base phra
(referred to as chunks), such as NPs, VPs and RiPSxample, ar
identified in chunking, even though their structigéeft unidentified.

Chunking

Coordination refers to the combination of like @mitar syntactic units
into groups of the same category or status. Theegbsentence eleme
are referred to asonjuncts In a coordinate structure, such as “strikers

Coordination defenders”, conjunctions like “and” or “but” conjowords or phrases. .
first glance cordination might appear to be a relatively sin
phenomenon. It is, however, notoriously difficudt finguistic theories t
define.

A part of a sentence that forms a distinct syntaatiit is referred to as

Constituent ) .
constituent. A phrase in a PS tree forms a comstitu

Lexical items belonging to this category are used €onstructin

Conjunction .
) coordinate structures. Examples are “but”, “and,"*

In control, a VP complement with no overt subjecinterpreted as havil
an NP as @bject. For example, in the sentence “The coacledagke

Control attacker [PRO to score goals]”, PRO is controllgdtite subject “Th
coach”. This is an example of a specific type ofitoal called subject-
control.

Dependent This is also called a modifier or aghter. In dependency grammar:
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dependency relation is defined as the relation éetwa head and
dependent. See albead

A construction from which an element is missinghaitgh it can b
recovered from the context. For example, the sestéBefenders can

Ellipsis score goals, but attackers can”, contains an dlipamely the VP “scol
goals”.
Extraction occurs when a subconstituent of somestdaent is missing
and some other constituent of the incomplete cluestt representthat
. missing constituent in some way. For example, grgence “The refere
Extraction

hated the man thathe goalkeeper sold the ball to” contains lef
extraction represented by the annotation that lihkgpronoun “that” to it
tracet;.

The domain of locality specifies many of the prdigsr of a gramme
formalism because it defines the domain over whigpendencie
(syntactic and semantic) can be stated. For exarifdedomain of localit

Extended domain of in CFPSG, corresponding to a single rule, is owvellen a PS tree. The

locality term extended domain of locality is used especiallhWiAGs and refet
to the fact that the elementary trees are largéts uhan the rules i
CFPSG, thus allowing an extended domain over whigendencies ci
be stated.

Gapping is a type of ellipsis that occurs in comfmi sentences.
gapping, the main verb of a clause is missing dral doordinator i
presented instead=or example, “John kicks the ball and George _
attacker.”

Gapping

This is also calledgrammatical function It describes connections o
Grammatical relationgrammatical nature between parts of a sentencernibisé widely accepte
GRs include subject, predicate and object.

This is also callethead The syntactically central element of a constituen
D link or GR Most grammar formalisms assume that there isdanghte
which can be identified as the head among the datgyintroduced by

Head word . .
rule. For example, the head of an NP is typicallgoain. In DGs, a D
relation is defined as the relation between a hmadl a dependenSee
alsodependent

. An immediate dominance relatidmlds between a mother node anc
Immediate ) . .
. daughter in a parse tree if there is no other noeteveen themFor
dominance

example, the rulX — Y Zdefines thaK immediately dominate¥ andZ.

This is also referred to aslexeme It is an abstract object that ha
Lexical item consistent meaning or function but which can varyorm. For instanct
the lexical item BALL can be realized in the forthsll” and “balls”.

A relation that holds between two nodes in a paesein which one of tF
two is located before (i.e. precejlése other in left to right order. F
example, an immediate dominance rule with no linracedence ruleX
— Y Zcan be expanded into a structure in which thedibtings ofX, Y

Linear precedence
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Local ambiguity

Long-distance
dependency

Predicate

Predicate-argument
structure

Principle

Relative clause

Right-node raising

Self-embedding

Simplex sentence

Small clause

Topicalization

Tough-movement

andZ, may occur in either order. After adding the linpeecedence rulg
< X, only the expansiolf Zis allowed.

A type of ambiguity that occurs only when a paft a sentence
considered in isolation.

A dependency in which the two elements may be s¢pdiby an arbitral
distance. The connection between the elements badbet definel
recursively.LDDs occur, for example, in wh-quesi® such as “Whol
did you give to ball to?”. The word “whom” servesd sense as the NP
the preposition phrase (PP) “to whom”. A constitug@he filler) appear
to be “dislocated” from its usual place (the gap).

A predicate must contain a nee and can contain objects or phre
governed by the verb. It gives information abot éihguments.

The predicate and argument are the two main pdrta sentence. .
predicate-argument structure represents the hidcalaelations betwee
a predicate and its arguments. The set of theoekatypes depends on 1
theory. For example, the following types could leeognized: Agent
Experiencer / Theme / Location / Goal.

A statement in a grammatical theory tHas universal validity. Fe
example, the Head Feature PrincipleHPSG projects the properties ¢
head word onto headed phrases.

This is a clause that modifies an NP. For exanifflee coach is watchin
the defender [the scout told him about]".

A construction that consists of a coordinationwb tsentences that lac
its rightmost constituent when a single further stitnent appears on t
right filling the gaps in both sentences. For exempThe goalkeepe
passed, and the attacker kicked, the ball.”

A phrase is self-embeddin§ it is embedded into another phrase of
same type and is there surrounded by lexical nztéfor example, The
attacker the defender the goalkeeper helped blostkedbled.”

A simplex sentence consists of a single clause tlam has one predici
and one subject.

A small clausess a minimal predicate structure. It lacks a &niterb
Small clauses usually occur within full clauses amaly act as the dire
ovject of the verb. For example, “The attacker [vregared shoes] pass
the ball”.

In topicalization an element of a sentence is ndhrls the topic. Fc
example, in English topicalization is done by prEpg the eément. Fo
instance, “[This ball] is round.”

Movement of a direct object of a verb to appearttes subject. Fc
example, the sentence “It is hard to please thelcbahanges to the for
“The coach is hard to please.” by the tough-moveroéthe direct objec
“the coach”.
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Well-formedness

Wh-item

Wh-movement

Wh-relative clause

A well-formed structure is consistent with all the requieats of th
grammar.

A lexical item that serves to ask a question. Bangle, “who”, “why”,
“where”.

A construction that consists of a tkm that appears in a sentence
clause-initial position

A relative clause in which the relative pronoun as wh-type. Fol
example, “The attacker [who scored five goals] saspended.”
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