IR Models:
The Probabilistic Model

L ecture 8

LecCture 8 Information Retrieval

N

Probabllity of Relevance?

Q----bQ
Rel(q,d) sim(q’,d’)
-> {011} -> [011]
D----pD

IR IS an uncertain process

- Information need to query

- Documents to index terms

- Query terms and index terms mismatch

Leads to several statistical approaches
- probability theory, fuzzy logic, theory of evidence...

LecCture 8 Information Retrieval

Probabilistic Retrieval

N

+ Glven a query g, there exists a subset of
the documents R which are relevant to g

- But membership of R Is uncertain

- A Probabilistic retrieval model

- ranks documents in decreasing order of
probability of relevance to the information
need: P(R | g,d)

LeCture 8 Information Retrieval 3

Difficulties

N

1. Evidence is based on a lossy representation

Evaluate probability of relevance based on
occurrence of terms in query and documents

Start with an initial estimate, and refine through
feedback

2. Computing the probabilities exactly according
to the model is intractable

Make some simplifying assumptions

LecCture 8 Information Retrieval 4

Probabilistic Model definitions

N

: dj = (tl’j, L - tt,j), L {0,1}
- terms occurrences are boolean (not counts)
- guery g Is represented similarly

- R Is the set of relevant documents,
~R Is the set of irrelevant documents

- P(R] d;) is probability that d IS relevant,
P(~R | d) irrelevant

LeCture 8 Information Retrieval 5

Retrieval Status Value

NN . P(R|d)
"Similarity" function rsv(d,,q) = —=——>
- ratio of prob. of relevance P(R| d;)

to prob. of non-relevance
Transform P(R | d) using Px|y)= P(x);P(y %)
Bayes’ Rule ()
- Compute rsv() in terms of

docufnent pr(())babilities rsw(d ,q) = P(df ﬁ) X P(ﬁ)
P(R) and P(~R) are P(d, | R)xP(R)
constant for each 7R
document rsv(d ., q) = r(d, _)

’ P(d . | R)

J

LeCture 8 Information Retrieval 6

Retrieval Status Value (2)

N
\

- d Is a vector of binary

term occurrences P(d.|R) = HF{ti|R]

- We assume that P(t|R)
terms occur rsv(d;,q) = Zl og
independently of = P(tlR)
each other

t;|H Plt;|H
R e

| P(t|R)P(t:|R)
= 2 log P(t]|R)P(t]|R)

LecCture 8 Information Retrieval 7

Computing term probabilities

N

Initially, there are no retrieved documents

- R Is completely unknown
- Assume P(t|R) Is constant (usually 0.5)

- Assume P(t|~R) approximated by distribution of t.
across collection — IDF
N—n+0.5

PtlE) =log — =~

This can be used to compute an initial rank
using IDF as the basic term weight

LecCture 8 Information Retrieval

Probabilistic Model Example

d Document vectors <tf, >

col day eat hot lot nin old pea por pot
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
5 1.0 1.0
6 1.0 1.0
W, 0.26 0.56 0.56 0.26 0.56 0.56 0.56 0.0 0.0 0.26

gl = eat

g2 = porridge Wt=|og(N-n+O.5/n+O.5)
g3 = hot porridge
g4 = eat nine day old porridge

Improving the ranking

N

Now, suppose
- we have shown the initial ranking to the user

- the user has labeled some of the documents
as relevant ("relevance feedback")

- We now have
- N documents in coll, R are known relevant
- n.documents containing t, r. are relevant

LecCture 8 Information Retrieval 10

Improving term estimates

fortermi ... Rel Non-rel Total
docs containing r Nn-r n
term
docs NOT R-r N-R-n+r N-n
contalnlng term
Total R N-R N
7 P (I_Qz)
=P(t,|R) = — w, = log
& (I‘) K Qz(l_pz)
qE=P(l‘E\E)= n—r zlogr(N—R—n+r)
N-R (n—r}R—r)

LecCture 8 Information Retrieval 11

Final term weight

N

- Add 0.5 to each term, to keep the weight
from being infinite when R, r are small:

(r+0.5)N—-R—n+r+0.5)
(n—7+0.5(R—r+0.5)

w, = log

- Can continue to refine the ranking as the
user gives more feedback.

LecCture 8 Information Retrieval 12

Relevance-weighted Example

d Document vectors <tf, >

col day eat hot lot nin old pea por pot
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
5 1.0 1.0
6 1.0 1.0
W -0.33 0.0 0.0 -0.33 0.0 0.0 0.0 0.62 0.62 0.95

g3 = hot porridge, document 2 is relevant

LecCture 8 Information Retrieval

13

Summary

N

Probabilistic model uses probability theory to
model the uncertainty in the retrieval process

Assumptions are made explicit

Term weight without relevance information is
Inverse document frequency (IDF)

Relevance feedback can improve the ranking
by giving better term probability estimates

No use of within-document term frequencies or
document lengths

LecCture 8 Information Retrieval 14

Building on the Probabillistic
Model: Okapi weighting

N

Okapi system
- developed at City University London
- based on probabilistic model

Cost of not using tf and document length

- doesn’t perform as well as VSM
+hurts performance on long documents

Okapl solution

- model within-document term frequencies as a
mixture of two Poisson distributions

- one for relevant documents and one for irrelevant
ones

LecCture 8 Information Retrieval 15

Okapli best-match weights

(r+0.5) (N —R—n+r+0.5)

BMO="Y lo this is w'
é . (n—r+05)}(R—-r+0.5) ()
t
BM1=Y w x
teQ k3 sz,g
ko+Dt . (k,+Dx]
BM25 T zw(l} X (:) a2 X (i) -4 +k2 * ‘Q‘. anZ dz
teg K+ rf?,f' k3 X ri,q avdl + dl
(K =k, (1= b)+(b-dl)/ avdD))
in TREC-8: k,=[1,2] Ky =7
k=0 b = [0.6,0.75]

LecCture 8 Information Retrieval 16

Okapi weighting

N

- Okapi weights use
- a "tf" component similar to VSM

- separate document and query length
normalizations

- several tuning constants which depend on
the collection

In experiments, Okapi weights give the
best performance

LecCture 8 Information Retrieval 17

Okapi-weights Example

d Document vectors <tf, > di
col day eat hot lot nin old pea por pot

1 1.0 1.0 20 20 6
2 1.0 1.0 1.0 |3
3 1.0 1.0 1.0 3
4 1.0 1.0 2.0 |4
5 20 20 4
6 1.0 1.0 2
wh) 10.26 0.56 0.56 0.26 0.56 0.56 0.56 0.0 0.0 0.26

clzeat. kK,=1.2 K, =7

g2 = porrldgg k= 0 b = 0.75

23 = hot porridge vdl = 3.66

4 = eat nine day old porridge

Okapi-weights +RF Example

d Document vectors <tf, > di

col day eat hot Ilot old pea por pot
1 |1.0 1.0 2.0 6
2 1.0 1.0 |3
3 1.0 1.0 1.0 3
4 1.0 1.0 2.0 |4
5 2.0 4
6 1.0 1.0 2
w® 1-0.33 0.0 0.0 -0.33 0.0 0.0 0.0 0.62 0.62 0.95

ggc 2hi(;t rz?écggf , (=12 =7
K,=0 b=0.75

avd|l = 3.66

Ranking algorithm

N

1. A ={} (set of accumulators for documents)
2. For each query termt
Get term, f, and address of |, from lexicon

set w) and qgtf variables
Read inverted list |,

For each <d, f,> In |,

1. If AjOA, initialize A to 0 and add it to A
2. A=A, + (WD xtf x gtf) + gnorm

3. Foreach A in A
1. Ad — Ad/Wd
4. Fetch and return top r documents to user

LecCture 8 Information Retrieval 20

Managing Accumulators

N

How to store accumulators?

- static array, 1 per document

- grow as needed with a hash table
How many accumulators?

--can iImpose a fixed limit

- quit processing |’s after limit reached

- continue processing, but add no new A;'s

LecCture 8 Information Retrieval

21

Managing Accumulators (2)

N

To make this work, we want to process the
query terms in order of decreasing idf,

Also want to process |, in decreasing tf,, order
- sort |, when we read it in

- or, store inverted lists In f, -sorted order

<5; (1,2) (2,2) (3,5) (4,1) (5,2)> <f; (d, f,,)...>
<5;(3,9) (1,2) (2,2) (5,2) (4,1)> sorted by f,,

<5; (5, 1.3) (2, 3:1,2,5) (1, 1:4)> <f;; (f4,, c:d,...)... >

- This can actually compress better, but makes
Boolean queries harder to process

LecCture 8 Information Retrieval 22

Getting the top documents

N

Naive: sort the accumulator set at end

Or, use a heap and pull top r documents
much faster if r << N

add the length norm (W,):

make first r accumulators into a min-heap

- for each next accumulator
- if A, < heap-min, just drop it
- If A, > heap-min, drop the heap-min, and put A, in

LecCture 8 Information Retrieval

Or better yet, as accumulators are processed to

23

