
Discriminative Probabilistic Models for Relational Data

Ben Taskar
Computer Science Dept.

Stanford University
Stanford, CA 94305

btaskar@cs.stanford.edu

Pieter Abbeel
Computer Science Dept.

Stanford University
Stanford, CA 94305

abbeel@cs.stanford.edu

Daphne Koller
Computer Science Dept.

Stanford University
Stanford, CA 94305

koller@cs.stanford.edu

Abstract

In many supervised learning tasks, the entities to be
labeled are related to each other in complex ways and
their labels are not independent. For example, in hy-
pertext classification, the labels of linked pages are
highly correlated. A standard approach is to clas-
sify each entity independently, ignoring the correla-
tions between them. Recently, Probabilistic Relational
Models, a relational version of Bayesian networks,
were used to define a joint probabilistic model for a
collection of related entities. In this paper, we present
an alternative framework that builds on (conditional)
Markov networks and addresses two limitations of the
previous approach. First, undirected models do not im-
pose the acyclicity constraint that hinders representa-
tion of many important relational dependencies in di-
rected models. Second, undirected models are well
suited for discriminative training, where we optimize
the conditional likelihood of the labels given the fea-
tures, which generally improves classification accu-
racy. We show how to train these models effectively,
and how to use approximate probabilistic inference
over the learned model for collective classification of
multiple related entities. We provide experimental re-
sults on a webpage classification task, showing that
accuracy can be significantly improved by modeling
relational dependencies.

1 Introduction

The vast majority of work in statistical classification
methods has focused on “flat” data – data consisting
of identically-structured entities, typically assumed to be
independent and identically distributed (IID). However,
many real-world data sets are innately relational: hyper-
linked webpages, cross-citations in patents and scientific
papers, social networks, medical records, and more. Such
data consist of entities of different types, where each entity
type is characterized by a different set of attributes. Entities
are related to each other via different types of links, and the
link structure is an important source of information.

Consider a collection of hypertext documents that we
want to classify using some set of labels. Most naively, we
can use a bag of words model, classifying each webpage
solely using the words that appear on the page. However,
hypertext has a very rich structure that this approach loses
entirely. One document has hyperlinks to others, typically
indicating that their topics are related. Each document also
has internal structure, such as a partition into sections; hy-
perlinks that emanate from the same section of the docu-
ment are even more likely to point to similar documents.
When classifying a collection of documents, these are im-
portant cues, that can potentially help us achieve better
classification accuracy. Therefore, rather than classifying
each document separately, we want to provide a form of
collective classification, where we simultaneously decide
on the class labels of all of the entities together, and thereby
can explicitly take advantage of the correlations between
the labels of related entities.

We propose the use of a joint probabilistic model for an
entire collection of related entities. Following the approach
of Lafferty (2001), we base our approach on discrimina-
tively trained undirected graphical models, or Markov net-
works (Pearl 1988). We introduce the framework of rela-
tional Markov network (RMNs), which compactly defines
a Markov network over a relational data set. The graphi-
cal structure of an RMN is based on the relational structure
of the domain, and can easily model complex patterns over
related entities. For example, we can represent a pattern
where two linked documents are likely to have the same
topic. We can also capture patterns that involve groups of
links: for example, consecutive links in a document tend to
refer to documents with the same label. As we show, the
use of an undirected graphical model avoids the difficulties
of defining a coherent generative model for graph struc-
tures in directed models. It thereby allows us tremendous
flexibility in representing complex patterns.

Undirected models lend themselves well to discrimi-
native training, where we optimize the conditional likeli-
hood of the labels given the features. Discriminative train-
ing, given sufficient data, generally provides significant im-
provements in classification accuracy over generative train-
ing (Vapnik 1995). We provide an effective parameter esti-



mation algorithm for RMNs which uses conjugate gradient
combined with approximate probabilistic inference (belief
propagation (Pearl 1988)) for estimating the gradient. We
also show how to use approximate probabilistic inference
over the learned model for collective classification of mul-
tiple related entities. We provide experimental results on
a webpage classification task, showing significant gains in
accuracy arising both from the modeling of relational de-
pendencies and the use of discriminative training.

2 Relational Classification

Consider hypertext as a simple example of a relational do-
main. A relational domain is defined by a schema, which
describes entities, their attributes and relations between
them. In our domain, there are two entity types:

�����
and���	��


. If a webpage is represented as a bag of words,
�����

would have a set of boolean attributes
������

HasWord � in-
dicating whether the word � occurs on the page. It would
also have the label attribute

�������
Label, indicating the topic

of the page, which takes on a set of categorical values. The
Link entity type has two attributes:

���	��
��
From and

���	��
��
To,

both of which refer to
�����

entities.
In general, a schema specifies of a set of entity types��� ������� ����� �����! 

. Each type
�

is associated with
three sets of attributes: content attributes

� � "
(e.g.�������

HasWord � ), label attributes
� � #

(e.g.
���$���

Label),
and reference attributes

� � %
(e.g.

���	��
&�
To). For sim-

plicity, we restrict label and content attributes to take on
categorical values. Reference attributes include a special
unique key attribute

� � '
that identifies each entity. Other

reference attributes
� � (

refer to entities of a single type�*)+�
Range , � � (.- and take values in Domain , �/) � '0- .

An instantiation 1 of a schema
�

specifies the set of en-
tities 1�, � - of each entity type

�324�
and the values of all

attributes for all of the entities. For example, an instanti-
ation of the hypertext schema is a collection of webpages,
specifying their labels, words they contain and links be-
tween them. We will use 1 � " , 1 � # and 1 � % to denote the
content, label and reference attributes in the instantiation
1 ; 1 � 5 , 1 � 6 and 1 � 7 to denote the values of those attributes.
The component 1 � 7 , which we call an instantiation skeleton
or instantiation graph, specifies the set of entities (nodes)
and their reference attributes (edges). A hypertext instanti-
ation graph specifies a set of webpages and links between
them, but not their words or labels.

The structure of the instantiation graph has been used
extensively to infer their importance in scientific publica-
tions (Egghe and Rousseau 1990) and hypertext (Kleinberg
1999). Several recent papers have proposed algorithms
that use the link graph to aid classification. Chakrabarti et
al. (1998) use system-predicted labels of linked documents
to iteratively re-label each document in the test set, achiev-
ing a significant improvement compared to a baseline of
using the text in each document alone. A similar approach
was used by Neville and Jensen (2000) in a different do-
main. Slattery and Mitchell (2000) tried to identify direc-

tory (or hub) pages that commonly list pages of the same
topic, and used these pages to improve classification of uni-
versity webpages. However, none of these approaches pro-
vide a coherent model for the correlations between linked
webpages. Thus, they apply combinations of classifiers in
a procedural way, with no formal justification.

Taskar et al. (2001) suggest the use of probabilistic rela-
tional models (PRMs) for the collective classification task.
PRMs (Koller and Pfeffer 1998; Friedman et al. 1999) are
a relational extension to Bayesian networks (Pearl 1988).
A PRM specifies a probability distribution over instantia-
tions consistent with a given instantiation graph by speci-
fying a Bayesian-network-like template-level probabilistic
model for each entity type. Given a particular instantia-
tion graph, the PRM induces a large Bayesian network over
that instantiation that specifies a joint probability distribu-
tion over all attributes of all of the entities. This network
reflects the interactions between related instances by allow-
ing us to represent correlations between their attributes.

In our hypertext example, a PRM might use a naive
Bayes model for words, with a directed edge between�������

Label and each attribute
���$�&�

HadWord � ; each of these
attributes would have a conditional probability distribu-
tion 89, �������HasWord �3: ������ Label

-
associated with it,

indicating the probability that word � appears in the doc-
ument given each of the possible topic labels. More im-
portantly, a PRM can represent the inter-dependencies be-
tween topics of linked documents by introducing an edge
from

�����&�
Label to

�������
Label of two documents if there is

a link between them. Given a particular instantiation graph
containing some set of documents and links, the PRM spec-
ifies a Bayesian network over all of the documents in the
collection. We would have a probabilistic dependency from
each document’s label to the words on the document, and
a dependency from each document’s label to the labels of
all of the documents to which it points. Taskar et al. show
that this approach works well for classifying scientific doc-
uments, using both the words in the title and abstract and
the citation-link structure.

However the application of this idea to other domains,
such as webpages, is problematic since there are many cy-
cles in the link graph, leading to cycles in the induced
“Bayesian network”, which is therefore not a coherent
probabilistic model. Getoor et al. (2001) suggest an ap-
proach where we do not include direct dependencies be-
tween the labels of linked webpages, but rather treat links
themselves as random variables. Each two pages have a
“potential link”, which may or may not exist in the data.
The model defines the probability of the link existence as
a function of the labels of the two endpoints. In this link
existence model, labels have no incoming edges from other
labels, and the cyclicity problem disappears. This model,
however, has other fundamental limitations. In particular,
the resulting Bayesian network has a random variable for
each potential link — ;=< variables for collections contain-
ing ; pages. This quadratic blowup occurs even when the



actual link graph is very sparse. When ; is large (e.g.,
the set of all webpages), a quadratic growth is intractable.
Even more problematic are the inherent limitations on the
expressive power imposed by the constraint that the di-
rected graph must represent a coherent generative model
over graph structures. The link existence model assumes
that the presence of different edges is a conditionally in-
dependent event. Representing more complex patterns in-
volving correlations between multiple edges is very diffi-
cult. For example, if two pages point to the same page, it
is more likely that they point to each other as well. Such
interactions between many overlapping triples of links do
not fit well into the generative framework.

Furthermore, directed models such as Bayesian net-
works and PRMs are usually trained to optimize the joint
probability of the labels and other attributes, while the goal
of classification is a discriminative model of labels given
the other attributes. The advantage of training a model only
to discriminate between labels is that it does not have to
trade off between classification accuracy and modeling the
joint distribution over non-label attributes. In many cases,
discriminatively trained models are more robust to viola-
tions of independence assumptions and achieve higher clas-
sification accuracy than their generative counterparts.

3 Undirected Models for Classification

As discussed, our approach to the collective classification
task is based on the use of undirected graphical models. We
begin by reviewing Markov networks, a “flat” undirected
model. We then discuss how Markov networks can be ex-
tended to the relational setting.

Markov networks. We use � to denote a set of discrete
random variables and � an assignment of values to � . A
Markov network for � defines a joint distribution over � .
It consists of a qualitative component, an undirected depen-
dency graph, and a quantitative component, a set of param-
eters associated with the graph. For a graph � , a clique is
a set of nodes ��� in � , not necessarily maximal, such that
each ��� � �	� 2 � � are connected by an edge in � . Note that
a single node is also considered a clique.

Definition 1: Let � � ,
� � � - be an undirected graph with
a set of cliques � ,�� - . Each  2 � ,�� - is associated with
a set of nodes � � and a clique potential � � ,�� � - , which is
a non-negative function defined on the joint domain of ��� .
Let � � � � � ,�� � -  ����������� . The Markov net ,�� � � - defines
the distribution 89,�� - � ���� ����������� ����,
� � - , where ! is
the partition function — a normalization constant given by! �#"%$�& � ����,
� )� - .

Each potential � � is simply a table of values for each as-
signment ��� that defines a “compatibility” between values
of variables in the clique. The potential is often represented
by a log-linear combination of a small set of indicator func-
tions, or features, of the form '�,
� � -)(+* ,�� � � � � - .
In this case, the potential can be more conveniently rep-

Label 1
Label 2
Label 3

Figure 1: An unrolled Markov net over linked documents.
The links follow a common pattern: documents with the
same label tend to link to each other more often.

resented in log-linear form:

� � ,
� � - �-,/.	0!�21
�%3 �4'5� ,�� �

-  �-,/.	0 �76 �98;:<� ,�� � -  �

Hence we can write:=?>�@ 89,
� - �#1
�
6 �987:<� ,
� � -BAC=�>D@ ! �-6 8E: ,�� -�AC=?>�@ !

where
6

and : are the vectors of all weights and features.
For classification, we are interested in constructing dis-

criminative models using conditional Markov nets which
are simply Markov networks renormalized to model a con-
ditional distribution.

Definition 2 : Let
"

be a set of random variables on
which we condition and

#
be a set of target (or la-

bel) random variables. A conditional Markov network
is a Markov network ,�� � � - which defines the distribu-
tion 89, 6 : 5 - �

�� �GF2� � �����9��� � ����, 5 � � 6 � - , where ! , 5 -
is the partition function, now dependent on

5
: ! , 5 - �"%H & � ����, 5 � � 6 )� - .

Logistic regression, a well-studied statistical model for
classification, can be viewed as the simplest example of
a conditional Markov network. In standard form, forI �KJML

and
" 2 �ON �;L& �

(or
" 2QP �

), 89,
R : 5 - ��� �GF2� ,/.	0!� R 6 8 5  � Viewing the model as a Markov net-
work, the cliques are simply the edges  � � �7S � � I  with
potentials � � ,
T � � R - �-,/.	0 � R 3 � T �

 
.

Relational Markov Networks. We now extend the frame-
work of Markov networks to the relational setting. A rela-
tional Markov network (RMN) specifies a conditional dis-
tribution over all of the labels of all of the entities in an
instantiation given the relational structure and the content
attributes. (We provide the definitions directly for the con-
ditional case, as the unconditional case is a special case
where the set of content attributes is empty.) Roughly
speaking, it specifies the cliques and potentials between at-
tributes of related entities at a template level, so a single
model provides a coherent distribution for any collection
of instances from the schema.

For example, suppose that pages with the same label
tend to link to each other, as in Fig. 1. We can capture this



correlation between labels by introducing, for each link, a
clique between the labels of the source and the target page.
The potential on the clique will have higher values for as-
signments that give a common label to the linked pages.

To specify what cliques should be constructed in an in-
stantiation, we will define a notion of a relational clique
template. A relational clique template specifies tuples of
variables in the instantiation by using a relational query lan-
guage. For our link example, we can write the template as
a kind of SQL query:

SELECT doc1.Category, doc2.Category
FROM Doc doc1, Doc doc2, Link link
WHERE link.From = doc1.Key and link.To = doc2.Key

Note the three clauses that define a query: the FROM
clause specifies the cross product of entities to be filtered
by the WHERE clause and the SELECT clause picks out
the attributes of interest. Our definition of clique templates
contains the corresponding three parts.

Definition 3: A relational clique template � � ,�� ��� ��� -
consists of three components:� � � ��� �  — a set of entity variables, where an entity

variable
� � is of type

� , � � - .� � ,�� � % - — a boolean formula using conditions of
the form

� � � ( � �	� � � (�
 .� � � �� � � "�� � � # — a selected subset of content and
label attributes in � .

For the clique template corresponding to the SQL
query above, � consists of doc1, doc2 and link of
types Doc, Doc and Link, respectively.

� ,�� � % - is����� � � ������� �����  L � '�� R! ����� � � " � ����� $# � '�� R and � � �
is
���  L � ��%�& �(' ��� R and

��� $# � ��%�& �$' ��� R .
A clique template specifies a set of cliques in an instan-

tiation 1 :

� ,	1 - ( �  � : � �*) : 2 1�,+� -  � , : � 7�-  ��
where : is a tuple of entities

� ' �  in which each ' � is of
type

� , � � - ; 1�,+� - � 1�, � , � � - --, �����., 1�, � , � � - - denotes
the cross-product of entities in the instantiation; the clause� , : � 7- ensures that the entities are related to each other
in specified ways; and finally, : � � selects the appropriate
attributes of the entities. Note that the clique template does
not specify the nature of the interaction between the at-
tributes; that is determined by the clique potentials, which
will be associated with the template.

This definition of a clique template is very flexible, as
the WHERE clause of a template can be an arbitrary predi-
cate. It allows modeling complex relational patterns on the
instantiation graphs. To continue our webpage example,
consider another common pattern in hypertext: links in a
webpage tend to point to pages of the same category. This
pattern can be expressed by the following template:

SELECT doc1.Category, doc2.Category
FROM Doc doc1, Doc doc2, Link link1, Link link2
WHERE link1.From = link2.From and link1.To = doc1.Key
and link2.To = doc2.Key and not doc1.Key = doc2.Key

Depending on the expressive power of our template def-
inition language, we may be able to construct very complex
templates that select entire subgraph structures of an instan-
tiation. We can easily represent patterns involving three (or
more) interconnected documents without worrying about
the acyclicity constraint imposed by directed models. Since
the clique templates do not explicitly depend on the iden-
tities of entities, the same template can select subgraphs
whose structure is fairly different. The RMN allows us
to associate the same clique potential parameters with all
of the subgraphs satisfying the template, thereby allowing
generalization over a wide range of different structures.

Definition 4: A Relational Markov network (RMN) / �
,10 � � - specifies a set of clique templates 0 and corre-
sponding potentials � � � ���  �9�32 to define a conditional
distribution:

89, 1 � 6 : 1 � 5 � 1 � 7-
� L

! ,	1 � 5 � 1 � 7�-�4���32 4�����9�65 � � � , 1
� 5 � � 1 � 6 � -

where ! ,	1 � 5 � 1 � 7�- is the normalizing partition function:! ,	1 � 5 � 1 � 7�- � " 587 H & � �9�32 � �������65	� � ��, 1 � 5 � � 1 � 6 )� -
Using the log-linear representation of potentials,� � ,
� � - �-,/.	0!�76 � 8 :4� ,
� � -  , we can write=?>�@ 89, 1 � 6 : 1 � 5 � 1 � 7�-� 1

�9�32
1
�����9�65 �

6 � 8�:4� , 1 � 5 � � 1 � 6 � -�A =?>�@ ! ,	1 � 5 � 1 � 7�-
� 1

�9�32
6 � 8�: ��, 1 � 5 � 1 � 6 � 1 � 7�- A =?>�@ !*, 1 � 5 � 1 � 7-

� 6 8 : , 1 � 5 � 1 � 6 � 1 � 7�- A =?>�@ ! ,	1 � 5 � 1 � 7�-
where

: ��, 1 � 5 � 1 � 6 � 1 � 7�- � 1
�����9�65 � : ��,	1

� 5 � � 1 � 6 � -

is the sum over all appearances of the template � , 1 - in the
instantiation, and : is the vector of all : � .

Given a particular instantiation 1 of the schema, the
RMN / produces an unrolled Markov network over the
attributes of entities in 1 . The cliques in the unrolled net-
work are determined by the clique templates � . We have
one clique for each  2 � , 1 - , and all of these cliques
are associated with the same clique potential � � . In our
webpage example, an RMN with the link feature described
above would define a Markov net in which, for every link
between two pages, there is an edge between the labels of
these pages. Fig. 1 illustrates a simple instance of this un-
rolled Markov network.

4 Learning the Models

In this paper, we focus on the case where the clique tem-
plates are given; our task is to estimate the clique poten-
tials, or feature weights. Thus, assume that we are given a



set of clique templates 0 which partially specify our (re-
lational) Markov network, and our task is to compute the
weights

6
for the potentials � . In the learning task, we

are given some training set � where both the content at-
tributes and the labels are observed. Any particular setting
for

6
fully specifies a probability distribution 8�� over � ,

so we can use the likelihood as our objective function, and
attempt to find the weight setting that maximizes the likeli-
hood (ML) of the labels given other attributes. However, to
help avoid overfitting, we assume a “shrinkage” prior over
the weights (a zero-mean Gaussian), and use maximum a
posteriori (MAP) estimation. More precisely, we assume
that different parameters are a priori independent and de-
fine � , 3 �

- � �
� <���� 	

,/.	0�
 A
3 <�� #�� <�� .Both the ML and MAP objective functions are con-

cave and there are many methods available for maximiz-
ing them. Our experience is that conjugate gradient and
even simple gradient perform very well for logistic regres-
sion (Minka 2000) and relational Markov nets.

Learning Markov Networks. We first consider discrim-
inative MAP training in the flat setting. In this case � is
simply a set of IID instances; let

�
index over all labeled

training data � . The discriminative likelihood of the data
is ��� 8 � ,�R � : 5 � - . We introduce the parameter prior, and
maximize the log of the resulting MAP objective function:

� , 6 � � - � 1
� ��� ,

6 8 : , 5 � � R � - AC=�>D@ !*, 5 � - - A
6 8 6#�� <�� �

�

The gradient of the objective function is computed as:

��� , 6 � � - � 1
� ��� , : ,

5 � � R � -�A IE ����� : , 5 � � I � -�� -�A
6
� <

�

The last term is the shrinking effect of the prior and the
other two terms are the difference between the expected
feature counts and the empirical feature counts, where the
expectation is taken relative to 8 � :

IE � � � : , 5 � � I � -!� � 1
" & : ,

5 � � R )� - 8#�*,
R )� : 5 � -��

Thus, ignoring the effect of the prior, the gradient is zero
when empirical and expected feature counts are equal.

�
The prior term gives the smoothing we expect from the
prior: small weights are preferred in order to reduce over-
fitting. Note that the sum over R ) is just over the possible
categorizations for one data sample every time.

Learning RMNs. The analysis for the relational setting is
very similar. Now, our data set � is actually a single in-
stantiation 1 , where the same parameters are used multiple
times — once for each different entity that uses a feature.
A particular choice of parameters

6
specifies a particular$

The solution of maximum likelihood estimation with log-
linear models is actually also the solution to the dual problem of
maximum entropy estimation with constraints that empirical and
expected feature counts must be equal (Della Pietra et al. 1997).

RMN, which induces a probability distribution 8 � over the
unrolled Markov network. The product of the likelihood
of 1 and the parameter prior define our objective function,
whose gradient

��� , 6 � 1 - again consists of the empirical
feature counts minus the expected features counts and a
smoothing term due to the prior:

: ,	1 � 6 � 1 � 5 � 1 � 7�- A IE �%� : , 1 � # � 1 � 5 � 1 � 7-�� A
6
� <

where the expectation
� � �&� : , 1 � # � 1 � 5 � 1 � 7�-!� is1

5 7 H & : ,	1
� 6 ) � 1 � 5 � 1 � 7- 8 � ,	1 � 6 ) : 1 � 5 � 1 � 7�- �

This last formula reveals a key difference between the
relational and the flat case: the sum over 1 � 6 ) involves
the exponential number of assignments to all the label at-
tributes in the instantiation. In the flat case, the probabil-
ity decomposes as a product of probabilities for individ-
ual data instances, so we can compute the expected feature
count for each instance separately. In the relational case,
these labels are correlated — indeed, this correlation was
our main goal in defining this model. Hence, we need to
compute the expectation over the joint assignments to all
the entities together. Computing these expectations over an
exponentially large set is the expensive step in calculating
the gradient. It requires that we run inference on the un-
rolled Markov network.

Inference in Markov Networks. The inference task in
our conditional Markov networks is to compute the poste-
rior distribution over the label variables in the instantiation
given the content variables. Exact algorithms for inference
in graphical models can execute this process efficiently for
specific graph topologies such as sequences, trees and other
low treewidth graphs. However, the networks resulting
from domains such as our hypertext classification task are
very large (in our experiments, they contain tens of thou-
sands of nodes) and densely connected. Exact inference is
completely intractable in these cases.

We therefore resort to approximate inference. There is
a wide variety of approximation schemes for Markov net-
works. We chose to use belief propagation for its sim-
plicity and relative efficiency and accuracy. Belief Prop-
agation (BP) is a local message passing algorithm intro-
duced by Pearl (1988). It is guaranteed to converge to
the correct marginal probabilities for each node only for
singly connected Markov networks. However, recent anal-
ysis (Yedidia et al. 2000) provides some theoretical justifi-
cation. Empirical results (Murphy et al. 1999) show that it
often converges in general networks, and when it does, the
marginals are a good approximation to the correct posteri-
ors. As our results in Section 5 show, this approach works
well in our domain. We refer the reader to Yedidia et al.
for a detailed description of the BP algorithm.

5 Experiments

We tried out our framework on the WebKB dataset (Craven
et al. 1998), which is an instance of our hypertext exam-



ple. The data set contains webpages from four different
Computer Science departments: Cornell, Texas, Washing-
ton and Wisconsin. Each page has a label attribute, repre-
senting the type of webpage which is one of course, fac-
ulty, student, project or other. The data set is problematic
in that the category other is a grab-bag of pages of many
different types. The number of pages classified as other
is quite large, so that a baseline algorithm that simply al-
ways selected other as the label would get an average ac-
curacy of 75%. We could restrict attention to just the pages
with the four other labels, but in a relational classification
setting, the deleted webpages might be useful in terms of
their interactions with other webpages. Hence, we compro-
mised by eliminating all other pages with fewer than three
outlinks, making the number of other pages commensurate
with the other categories. < For each page, we have access
to the entire html of the page and the links to other pages.
Our goal is to collectively classify webpages into one of
these five categories. In all of our experiments, we learn a
model from three schools and test the performance of the
learned model on the remaining school, thus evaluating the
generalization performance of the different models.

Unfortunately, we cannot directly compare our accuracy
results with previous work because different papers use dif-
ferent subsets of the data and different training/test splits.
However, we compare to standard text classifiers such as
Naive Bayes, Logistic Regression, and Support Vector Ma-
chines, which have been demonstrated to be successful on
this data set (Joachims 1999).

Flat Models. The simplest approach we tried predicts the
categories based on just the text content on the webpage.
The text of the webpage is represented using a set of bi-
nary attributes that indicate the presence of different words
on the page. We found that stemming and feature selection
did not provide much benefit and simply pruned words that
appeared in fewer than three documents in each of the three
schools in the training data. We also experimented with in-
corporating meta-data: words appearing in the title of the
page, in anchors of links to the page and in the last header
before a link to the page (Yang et al. 2002). Note that meta-
data, although mostly originating from pages linking into
the considered page, are easily incorporated as features,
i.e. the resulting classification task is still flat feature-based
classification. Our first experimental setup compares three
well-known text classifiers — Naive Bayes, linear support
vector machines � (Svm), and logistic regression (Logis-
tic) — using words and meta-words. The results, shown in
Fig. 2(a), show that the two discriminative approaches out-
perform Naive Bayes. Logistic and Svm give very similar

�
The resulting category distribution is: course (237), faculty

(148), other (332), research-project (82) and student (542). The
number of remaining pages for each school are: Cornell (280),
Texas (292), Washington (315) and Wisconsin (454). The number
of links for each school are: Cornell (574), Texas (574), Washing-
ton (728) and Wisconsin (1614).�

We trained one-against-others Svm for each category and
during testing, picked the category with the largest margin.
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Figure 3: An illustration of the Section model.

results. The average error over the 4 schools was reduced
by around 4% by introducing the meta-data attributes.

Relational Models. Incorporating meta-data gives a sig-
nificant improvement, but we can take additional advantage
of the correlation in labels of related pages by classifying
them collectively. We want to capture these correlations in
our model and use them for transmitting information be-
tween linked pages to provide more accurate classification.
We experimented with several relational models. Recall
that logistic regression is simply a flat conditional Markov
network. All of our relational Markov networks use a lo-
gistic regression model locally for each page.

Our first model captures direct correlations between la-
bels of linked pages. These correlations are very common
in our data: courses and research projects almost never link
to each other; faculty rarely link to each other; students
have links to all categories but mostly courses. The Link
model, shown in Fig. 1, captures this correlation through
links: in addition to the local bag of words and meta-data
attributes, we introduce a relational clique template over
the labels of two pages that are linked.

A second relational model uses the insight that a web-
page often has internal structure that allows it to be broken
up into sections. For example, a faculty webpage might
have one section that discusses research, with a list of links
to all of the projects of the faculty member, a second sec-
tion might contain links to the courses taught by the faculty
member, and a third to his advisees. This pattern is illus-
trated in Fig. 3. We can view a section of a webpage as a
fine-grained version of Kleinberg’s hub (Kleinberg 1999)
(a page that contains a lot of links to pages of particular
category). Intuitively, if we have links to two pages in the
same section, they are likely to be on similar topics. To
take advantage of this trend, we need to enrich our schema
with a new relation Section, with attributes Key, Doc (doc-
ument in which it appears), and Category. We also need to
add the attribute Section to Link to refer to the section it
appears in. In the RMN, we have two new relational clique
templates. The first contains the label of a section and the
label of the page it is on:

SELECT doc.Category, sec.Category
FROM Doc doc, Section sec
WHERE sec.Doc = doc.Key

The second clique template involves the label of the section
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Figure 2: (a) Comparison of Naive Bayes, Svm, and Logistic on WebKB, with and without meta-data features. (Only
averages over the 4 schools are shown here.) (b) Flat versus collective classification on WebKB: flat logistic regression
with meta-data, and three different relational models: Link, Section, and a combined Section+Link. (c) Comparison
of generative and discriminative relational models. Exists+NaiveBayes is completely generative. Exists+Logistic is
generative in the links, but locally discriminative in the page labels given the local features (words, meta-words). The Link
model is completely discriminative.

containing the link and the label of the target page.

SELECT sec.Category, doc.Category
FROM Section sec, Link link, Doc doc
WHERE link.Sec = sec.Key and link.To = doc.Key

The original dataset did not contain section labels, so
we introduced them using the following simple procedure.
We defined a section as a sequence of three or more links
that have the same path to the root in the html parse tree. In
the training set, a section is labeled with the most frequent
category of its links. There is a sixth category none, as-
signed when the two most frequent categories of the links
are less than a factor of 2 apart. In the entire data set, the
breakdown of labels for the sections we found is: course
(40), faculty (24), other (187), research.project (11), stu-
dent (71) and none (17). Note that these labels are hidden
in the test data, so the learning algorithm now also has to
learn to predict section labels. Although not our final aim,
correct prediction of section labels is very helpful. Words
appearing in the last header before the section are used to
better predict the section label by introducing a clique over
these words and section labels.

We compared the performance of Link, Section and
Section+Link (a combined model which uses both types of
cliques) on the task of predicting webpage labels, relative to
the baseline of flat logistic regression with meta-data. Our
experiments used MAP estimation with a Gaussian prior on
the feature weights with standard deviation of 0.3. Fig. 2(b)
compares the average error achieved by the different mod-
els on the four schools, training on three and testing on the
fourth. We see that incorporating any type of relational in-
formation consistently gives significant improvement over
the baseline model. The Link model incorporates more re-
lational interactions, but each is a weaker indicator. The
Section model ignores links outside of coherent sections,
but each of the links it includes is a very strong indica-
tor. In general, we see that the Section models performs
slightly better. The joint model is able to combine bene-

fits from both and generally outperforms all of the other
models. The only exception is for the task of classifying
the Wisconsin data. In this case, the joint Section+Link
model contains many links, as well as some large tightly
connected loops, so belief propagation did not converge
for a subset of nodes. Hence, the results of the inference,
which was stopped at a fixed arbitrary number of iterations,
were highly variable and resulted in lower accuracy.

Discriminative vs Generative. Our last experiment il-
lustrates the benefits of discriminative training in rela-
tional classification. We compared three models. The Ex-
ists+Naive Bayes model is a completely generative model
proposed by Getoor et al. (2001). At each page, a naive
Bayes model generates the words on a page given the page
label. A separate generative model specifies a probability
over the existence of links between pages conditioned on
both pages’ labels. We can also consider an alternative Ex-
ists+Logistic model that uses a discriminative model for
the connection between page label and words — i.e. uses
logistic regression for the conditional probability distribu-
tion of page label given words. This model has equiva-
lent expressive power to the naive Bayes model but is dis-
criminatively rather than generatively trained. Finally, the
Link model is a fully discriminative (undirected) variant we
have presented earlier, which uses a discriminative model
for the label given both words and link existence. The re-
sults, shown in Fig. 2(c), show that discriminative training
provides a significant improvement in accuracy: the Link
model outperforms Exists+Logistic which in turn outper-
forms Exists+Naive Bayes.

As illustrated in Table 1, the gain in accuracy comes at
some cost in training time: for the generative models, pa-
rameter estimation is closed form while the discriminative
models are trained using conjugate gradient, where each it-
eration requires inference over the unrolled RMN. On the
other hand, both types of models require inference when
the model is used on new data; the generative model con-



Links Links+Section Exists+NB
Training 1530 6060 1
Testing 7 10 100

Table 1: Average train/test running times (seconds). All
runs were done on a 700Mhz Pentium III. Training times
are averaged over four runs on three schools each. Testing
times are averaged over four runs on one school each.

structs a much larger, fully-connected network, resulting
in significantly longer testing times. We also note that the
situation changes if some of the data is unobserved in the
training set. In this case, generative training also require an
iterative procedure (such as EM) where each iteration uses
the significantly more expressive inference.

6 Discussion and Conclusions

In this paper, we propose a new approach for classifica-
tion in relational domains. Our approach provides a co-
herent probabilistic foundation for the process of collective
classification, where we want to classify multiple entities,
exploiting the interactions between their labels. We have
shown that we can exploit a very rich set of relational pat-
terns in classification, significantly improving the classifi-
cation accuracy over standard flat classification.

In some cases, we can incorporate relational features
into standard flat classification. For example, when clas-
sifying papers into topics, it is possible to simply view the
presence of particular citations as atomic features. How-
ever, this approach is limited in cases where some or even
all of the relational features that occur in the test data are
not observed in the training data. In our WebKB example,
there is no overlap between the webpages in the different
schools, so we cannot learn anything from the training data
about the significance of a hyperlink to/from a particular
webpage in the test data. Incorporating basic features (e.g.,
words) from the related entities can aid in classification, but
cannot exploit the strong correlation between the labels of
related entities that RMNs capture.

Our results in this paper are only a first step towards un-
derstanding the power of relational classification. On the
technical side, we can gain significant power from intro-
ducing hidden variables (that are not observed even in the
training data), such as the degree to which a webpage is an
authority (Kleinberg 1999). Furthermore, as we discussed,
there are many other types of relational patterns that we can
exploit. We can also naturally extend the proposed models
to predict relations between entities, for example, advisor-
advisee, instructor-course or project-member.

Hypertext is the most easily available source of struc-
tured data, however, RMNs are generally applicable to any
relational domain. In particular, social networks provide
extensive information about interactions among people and
organizations. RMNs offer a principled method for learn-
ing to predict communities of and hierarchical structure be-
tween people and organizations based on both the local at-

tributes and the patterns of static and dynamic interaction.
Given the wealth of possible patterns, it is particularly in-
teresting to explore the problem of inducing them automat-
ically. We intend to explore this topic in future work.
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